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Abstract
In this paper, we propose a new prostate computed tomography (CT) segmentation method for
image guided radiation therapy. The main contributions of our method lie in the following aspects.
1) Instead of using voxel intensity information alone, patch-based representation in the
discriminative feature space with logistic sparse LASSO is used as anatomical signature to deal
with low contrast problem in prostate CT images. 2) Based on the proposed patch-based signature,
a new multi-atlases label fusion method formulated under sparse representation framework is
designed to segment prostate in the new treatment images, with guidance from the previous
segmented images of the same patient. This method estimates the prostate likelihood of each voxel
in the new treatment image from its nearby candidate voxels in the previous segmented images,
based on the nonlocal mean principle and sparsity constraint. 3) A hierarchical labeling strategy is
further designed to perform label fusion, where voxels with high confidence are first labeled for
providing useful context information in the same image for aiding the labeling of the remaining
voxels. 4) An online update mechanism is finally adopted to progressively collect more patient-
specific information from newly segmented treatment images of the same patient, for adaptive and
more accurate segmentation. The proposed method has been extensively evaluated on a prostate
CT image database consisting of 24 patients where each patient has more than 10 treatment
images, and further compared with several state-of-the-art prostate CT segmentation algorithms
using various evaluation metrics. Experimental results demonstrate that the proposed method
consistently achieves higher segmentation accuracy than any other methods under comparison.
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I. Introduction
PROSTATE cancer is the second leading cause of cancer death for American males [1], [2].
It is estimated by the American Cancer Society that in year 2012, around 241 740 new cases
of prostate cancer will be diagnosed, and around 28 170 men will die because of prostate
cancer. However, prostate cancer is often curable if diagnosed early. Image guided radiation
therapy (IGRT), as a noninvasive approach, is one of the major treatment methods for
prostate cancer. During IGRT, high energy X-rays with different doses from different
directions are delivered to the prostate to kill the cancer cells. IGRT mainly consists of two
main stages, namely the planning stage and the treatment stage. During the planning stage,
an image called the planning image is obtained from the patient. Then, the prostate in the
planning image is manually delineated and a treatment plan is designed in the planning
image space. During the treatment stage, new image called the treatment image is obtained
from the same patient on each treatment day. Then, the prostate in each treatment image is
segmented so that the treatment plan designed in the planning image space can be
transformed to the treatment image space. Although additional dose will be delivered to the
patient during the acquisition of treatment computed tomography (CT) image (around 2
cGy), if the treatment target (e.g., prostate) is not accurately localized, higher therapeutic
radiation dose (around 200 cGy) could be delivered to the surrounding healthy tissues during
the treatment and could cause the severe side effects such as rectum bleeding. In addition,
this will also lead to the under-treatment for the prostate tumor and finally the poor outcome
for tumor control. Therefore, to improve the efficacy of radiation therapy, it is very helpful
to obtain treatment CT image on treatment days prior to treatment. The treatment is usually
spread out over a weeks-long series of daily fractions. Since healthy tissues can also be
harmed by radiation, it is essential to maximize the dose delivered to the prostate while
minimize the dose delivered to its surrounding healthy tissues, to increase the efficiency and
efficacy of IGRT. Therefore, the key to the success of IGRT is the accurate segmentation of
prostate in the treatment images so that the treatment plan designed in the planning image
space can be accurately transformed or even adjusted to the treatment image space.

However, accurate prostate segmentation in CT images remains as a challenging task mainly
due to three issues. First, the contrast between the prostate and its surrounding tissues is low
in CT images. This issue is illustrated by Fig. 1(a) and (b), where no obvious prostate
boundary can be observed. Second, the prostate motion across different treatment days can
be large (i.e., usually more than 5 mm), which brings additional difficulty in segmenting
prostate in the treatment images. Third, the image appearance on different treatment days
can be significantly different even for the same patient due to the uncertainty of the
existence of bowel gas. This issue is illustrated by Fig. 1(a) and (c).

Many novel prostate CT segmentation methods have been proposed in the literature to deal
with the three challenges mentioned above. They can be broadly classified into three main
categories: deformable model based methods, registration based methods, and classification
based methods. Deformable model based methods [3]–[7] construct the statistical prostate
shape and appearance models to guide segmentation in the new treatment images. For
instance, Feng et al. [3] integrates both the population information and patient-specific
information into a statistical prostate deformable model to segment prostate in the CT
images. Chen et al. [4] proposed a Bayesian framework which considered anatomical
constraints from bones and learnt appearance information to construct the deformable
model. Registration based methods [8]–[11] explicitly estimate the deformation field from
the planning image to the treatment image so that the segmented prostate in the planning
image can be warped to the treatment image space to localize prostate in the treatment
images. For instance, Davis et al. [8] proposed a gas deflation algorithm to reduce the
distortion brought by the existence of bowel gas, followed by a diffeomorphic registration
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algorithm to estimate the deformation field from the planning image to the treatment image
after gas deflation. Wang et al. [12] proposed a 3-D deformation algorithm for dose tracking.
Liao et al. [13] proposed a feature guided hierarchical registration method to estimate the
correspondences between the planning and treatment images. Classification based methods
[14]–[16] formulate the segmentation process as a classification problem, where classifiers
are trained from the training images and based on which voxel-wise classification is
performed for each voxel in the new treatment image to determine whether it belongs to the
prostate or nonprostate region. For instance, Li et al. [14] proposed a location-adaptive
classification scheme which integrates both image appearance and context features to
classify each voxel in the new treatment image. Ghosh et al. [16] combined the high-level
texture features and prostate shape information with the genetic algorithm to identify the
best matching region in the new to-be-segmented prostate CT image. Moreover, Sannazzari
et al. [17] and Chowdhury et al. [18] used both magnetic resonance imaging (MRI) and CT
image modality information to help segment prostate in the CT images. It should be noted
that many novel methods were also proposed for prostate segmentation in MRI [19]–[24]
and ultrasound images [25]–[29]. A comprehensive survey on the existing methods for
segmenting prostate in different image modalities was conducted in [30]. In our paper, we
focus on prostate segmentation in the CT images.

In recent years, a novel multi-atlases label propagation framework based on the nonlocal
mean principle has been proposed [31], [32]. In these papers [31], [32], each voxel is
represented by a small image patch centered at this voxel as the signature. Then, the
anatomical label of each voxel in the to-be-segmented target image is estimated by
comparing the intensity patch-based representation of this voxel with those of the candidate
voxels in the atlases. The more similar the intensity patch-based representation of a
candidate voxel in the atlas image to that of the reference voxel in the target image, the
higher weight this atlas candidate voxel will propagate its anatomical label to the reference
voxel in the target image. This framework has many attractive properties, i.e., it allows
many-to-one correspondences to identify a set of good candidate voxels in the atlases to
perform label fusion, and also it does not require nonrigid image registration as good
candidate voxels usually can be identified based on the nonlocal mean principle by local
searching.

However, there are two major limitations in the conventional label propagation framework
[31], [32], when applied to the prostate CT image segmentation. First, in [31], [32], the
patch-based representation is constructed by using only the voxel intensity information,
which may not be able to effectively distinguish voxels belonging to the prostate or
nonprostate regions, due to low image contrast in the prostate CT images. Second, the
weight of each candidate voxel for label propagation is determined by directly comparing
the similarity between the patch-based representation of each candidate voxel with that of
the reference voxel in the target image, which may not be robust against outlier candidate
voxels and thus increase the risk of misclassification.

Therefore, we are motivated to propose a new prostate CT segmentation method in this
paper, to resolve the two above-mentioned limitations in the conventional label propagation
framework described above. The main contributions of the proposed method lie in the
following aspects. 1) To deal with the low image contrast problem in prostate CT images, a
new patch-based representation is derived in the discriminative feature space with logistic
sparse LASSO [33]. The derived patch-based representation can capture salient features to
effectively distinguish prostate and nonprostate voxels and can thus serve as anatomical
signature for each voxel. 2) The weight of each candidate voxel during label propagation is
estimated by reconstructing the proposed new patch-based signature of each reference voxel
in the new prostate CT image from the sparse representation of the patch-based signatures of
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candidate voxels in both the planning and previous segmented treatment images of the same
patient (i.e., called here as training images). The resulting sparse coefficients are used as
weights for the candidate voxels. Due to the robustness property of sparse representation
against outliers, the segmentation accuracy can be further improved. 3) A hierarchical
segmentation strategy is proposed for first segmenting voxels with high segmentation
confidence in the new treatment image, and then using their segmentations to provide useful
context information for aiding the segmentation of other low-confidence voxels which are
more difficult to segment. 4) An online update mechanism is further adopted in this paper,
by taking each newly-segmented treatment image as a new training image to help
segmentation of future treatment images. A preliminary version of this work was reported in
the conference paper [34]. However, in [34], the image context feature is not considered as
additional information to aid the segmentation process. In this paper, a new hierarchical
labeling strategy is proposed to incorporate both image and context information for further
improvement of segmentation accuracy. Moreover, our proposed method is evaluated and
analyzed in a more systematic manner, and also the contribution of each proposed
component is extensively evaluated in this paper. The flowchart of the proposed method is
illustrated in Fig. 2. The proposed method has been extensively evaluated on a prostate CT
database consisting of 24 patients with totally 330 images, where each patient has more than
10 treatment images. The proposed method has also been compared with several state-of-
the-art prostate CT segmentation algorithms on various evaluation metrics. Experimental
results demonstrate that the proposed method consistently achieves higher segmentation
accuracy than any other methods under comparison.

The rest of the paper is organized as follows. Section II introduces a new anatomical voxel
signature by using patch-based representation in the discriminative feature space. Section III
gives details of the proposed sparse label propagation framework, by using the derived
patch-based signature to estimate the prostate likelihood of each voxel in the new treatment
image and also the hierarchical segmentation strategy to further improve segmentation. The
online update mechanism is further described in Section III. Section IV presents
experimental results and related analysis. Section V concludes the whole paper.

II. Patch-Based Representation in the Discriminative Feature Space
Patch-based representation has been widely used as voxel anatomical signature in computer
vision and medical image analysis [31], [32]. The principle of the conventional patch-based
representation is to first define a small K × K image patch  centered at each voxel  and
then use the voxel intensities of image patch as anatomical signature of . Here, K denotes
the size of image patch. Patch-based representation has many attractive properties, including
its simplicity for calculation and its superior discriminant power for organ recognition [31],
[32].

However, due to the low contrast and also anatomical complexity of prostate CT images,
patch-based representation using voxel intensities alone may not be able to effectively
distinguish prostate and nonprostate voxels. To this end, we propose a patch-based
representation in the high-dimensional discriminative feature space. We denote the current

available M training images from the same patient as  (i.e., including the
planning image and the previous segmented treatment images). As illustrated in Fig. 2, each
previous segmented treatment image is first rigidly aligned to the planning image, based on
the pelvic bone structures similar to [13], for removing the whole-body rigid motion.
Specifically, a predefined threshold value +400 is used with respect to Hounsfield units
(HU), and regions with intensity of more than +400 are determined as pelvic bone
structures. Then, the FLIRT toolkit [35] is used to perform rigid alignment between the
identified pelvic bone structures. This is the only preprocessing step for the proposed
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method. For each training image , it is convolved with a set of feature

extraction kernels  to produce different feature maps 

(1)

where n denotes the number of kernels for extracting n different types of features. 
denotes the resulting feature of Ii(i = 1, …, M) at voxel  associated with the jth kernel

. In this paper, 14 Haar-wavelet [36], 9 histogram-of-oriented-gradient (HOG) [37],
and 30 local-binary-pattern (LBP) [38] kernels are adopted to extract features. As shown in
[39], Haar and HOG features can provide complementary anatomical information to each
other, and LBP can capture texture information from the input image. More advanced image
features may also be used in the proposed framework [40]–[43].

Based on the feature  calculated by (1), we can also obtain
patch-based representation of each voxel . Suppose a K × K patch is adopted, and

then each voxel  has a K × K × n dimensional anatomical signature, denoted as . In
this paper, 2-D patch is used for each voxel in each slice, since the slice thickness of prostate
CT images (3 mm) is too larger, compared with in-plane voxel size (1 × 1 mm2), and thus
the correlation between neighboring slices may be not high. However, the segmentation
process in our method is performed on the whole 3-D volume of prostate CT image, which
will be made clear below.

It should be noted that  may also contain noisy and redundant features which will
finally affect the segmentation accuracy. Therefore, feature selection should be performed in

order to identify the most informative and salient features in . Note that feature
selection can also be viewed as a binary variable regression problem with respect to each
dimension of the original feature. Therefore, the logistic function is used as the regression
function, instead of using the standard linear regression function, based on the following
reasons [44]. 1) Logistic function does not require the homogeneity of variance assumption
for the variables, which is required by linear regression and this assumption does not hold
for binary variables. 2) For binary variables, the predicted value obtained by linear
regression does not have physical meaning since for binary variables the predicted value is
not a probability or likelihood. 3) Logistic regression is very robust with the assumption that
the number of training samples is large. In our application, a sufficient number of sample
voxels can be drawn from the planning and previous segmented treatment images of the
patient.

The logistic function [44] represents a conditional probability model with the form defined
by

(2)

where  denotes the original feature signature of voxel , and y is a binary variable

with y = +1 denoting that  is belonging to the prostate region and y = −1 otherwise.  and
b are parameters of the model.

Moreover, the aim of feature selection is to select a small subset of most informative feature
as anatomical signature, which can be well accomplished by enforcing the sparsity
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constraint during the logistic regression process. Therefore, the feature selection problem
can be finally formulated as a logistic sparse LASSO problem. Specifically, P voxel samples

 are drawn from the training images, with their corresponding patch-based

signature  and also anatomical label Lc. Here, label Lc = 1 if  belongs to the
prostate, and Lc = −1 otherwise. Intuitively, voxels around the prostate boundary are more
difficult to be correctly classified than voxels in other regions. Therefore, more samples
should be drawn around the prostate boundary during the features selection process. In this
paper, a parameter ζ is used to control the ratio between the number of samples drawn
around the prostate boundary and the number of samples drawn from other prostate regions.
Voxels which lie within 3 mm from the prostate boundary are considered as voxels around
the prostate boundary. Since the ground truth prostate boundary is available for each training
image, those voxels around the prostate boundary can be easily drawn. Fig. 3(a) shows a
typical example of the voxel samples drawn from a training image with ζ = 5.

Based on the drawn voxel samples and their patch representations in the feature space, we
aim to minimize the logistic sparse LASSO energy function in (3) [45]

(3)

where  is the sparse coefficient vector, ‖ · ‖1 is the L1 norm, b is the intercept scalar, and λ
is the regularization parameter. The first term of (3) is obtained by inputting the label values
of drawn samples and their original feature signatures to the logistic function in (2), and then
take the logarithm for maximum likelihood estimation. The second term of (3) is the L1

norm which aims to enforce the sparsity constraint for LASSO. The optimal solution (
and bopt) to minimize (3) can be estimated by Nesterov's method [46]. The final selected

features are those with nonzero entries in  (i.e., ).
These selected features have superior discriminant power to distinguish prostate and

nonprostate voxels. We denote the final signature of each voxel  as .

Based on the selected features, we can directly measure their discriminant power to separate
prostate and nonprostate voxels quantitatively, based on the Fisher's score [47]–[49].

The higher Fisher's score indicates the higher discriminative power of the representative
feature. Table I lists the average Fisher score by using different types of image features to
distinguish prostate and nonprostate voxels in 330 prostate CT images used in this paper,
including voxel intensity, intensity-patch-based signature, patch-based signature in the
feature space, and patch-based signature in the feature space after logistic LASSO based
feature selection. The voxel intensity alone is served here as the baseline in this paper. It can
be observed from Table I that all other three types of feature signatures outperform the
baseline (i.e., voxel intensity alone), and the patch-based signature in the discriminative
feature space after logistic LASSO based feature selection has the highest Fisher score.

Fig. 3 also visualizes the superior discriminant power of the proposed patch-based signature
in the discriminative feature space. Specifically, we first rank each feature according to its
discriminative power based on Fisher's score, and then show the joint distribution of the top
two features with the highest Fisher's scores for the conventional patch-based signature [Fig.
3(b)] and for the proposed patch-based signature in the discriminative feature space [Fig.
3(c)] for the voxel samples shown in Fig. 3(a). It can be observed that the proposed patch-
based signature can separate prostate and nonprostate voxels better than the conventional
intensity patch-based signature.
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In the next section, details will be given on how to integrate the proposed patch-based
signature with a hierarchical sparse label fusion framework to segment prostate in the new
treatment images.

III. Hierarchical Prostate Segmentation in New Treatment Images With
Sparse Label Fusion

In this section, details of the proposed hierarchical sparse label propagation method will be
given. In Section III-A, the general multi-atlases based label propagation framework is
briefly reviewed and discussed. Section III-B gives the motivation and further demonstrates
the advantage of enforcing the sparsity constraint in the conventional label propagation
framework for estimating the prostate probability map. Section III-C introduces the
hierarchical labeling strategy to integrate the image context feature from the new treatment
image for guiding segmentation. Section III-D describes how to obtain the final
segmentation result from the estimated prostate probability map and discusses some possible
alternative strategies. Finally, Section III-E describes the online update mechanism.

A. General Multi-Atlases Based Label Propagation
Multi-atlases based image segmentation [31], [32], [50]–[54] is a hot research topic in
medical image analysis and many novel methods have been proposed. Among them, one of
the most popular multi-atlases based image segmentation methods is the nonlocal mean
label propagation strategy [31], [32], and it can be summarized as follows. Given M pelvic
bone aligned training images and their segmentation ground truths {(i, Si), i = 1, …, M}
(also called as atlases), for a new treatment image Inew, each voxel  in Inew is correlated to

each voxel  in Ii with a graph weight . Then, the corresponding label for the
voxel  in Inew can be estimated by performing label propagation from the atlases as below

(4)

where Ω denotes the image domain, and SMA denotes the prostate probability map of Inew

estimated by multi-atlases based labeling.  if voxel  belongs to the prostate

region in Ii, and  otherwise.

The physical meaning of (4) can be illustrated by Fig. 4, where the patch-based
representation of the reference voxel in the new treatment image is highlighted by the small
green square, and the candidate voxels lying within the searching window highlighted by the
purple square in each training image contribute to the estimation of prostate probability for

the reference voxel. The contribution of each candidate voxel  in the training image Ii

during label propagation is represented by its corresponding graph weight , and its

corresponding anatomical label in the ground truth segmentation image  can be

propagated to the reference voxel  in the target image with a weight .

Therefore, the core problem to perform label propagation based on (4) is how to define the

graph weight  with respect to each candidate voxel , which reflects the

contribution of  during label fusion. In the next section, we propose a novel method to
estimate the graph weight by using sparse representation of the derived patch-based
signature of each voxel in the discriminant feature space.
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B. Sparse Representation Based Label Propagation
As discussed in Section III-A and illustrated in Fig. 4, the core problem of the nonlocal

mean based label propagation is how to define the graph weight  in (4). In [31],

[32],  is determined based on the intensity patch difference between the reference

voxel  and candidate voxel . Similar to [31], [32], with the patch-based signature

derived in Section II, the most straightforward way to define the graph weight  is
given by

(5)

where , with  and  denote the patch-based

signature at  of Inew and at  of Inew, respectively. The heat kernel Φ(q) = e−q is used
similar to [32]. γ is the smoothing parameter, and Σ is a diagonal matrix which represents

the variance in each feature dimension.  denotes the neighborhood of voxel  in
image Ii, and it is defined as the W × W × W subvolume centered at .

However, the graph weight defined by (5) may not be able to effectively identify the most
representative candidate voxels in atlases to estimate the prostate probability of a reference
voxel, especially when the reference voxel is located near the prostate boundary, which is
the most difficult region to segment correctly. Fig. 5 shows a typical example, where Fig.
5(a) shows a prostate CT image slice with the reference voxel highlighted by the green cross
(i.e., a voxel belonging to the prostate region but close to the prostate boundary). The
prostate boundary of the ground truth is highlighted by the red contour. Fig. 5(b) shows this
reference voxel's graph weights to the candidate voxels from training images, estimated by
(5). Without loss of generality, we use blue to highlight the graph weights corresponding to
the prostate sample voxels, and red to highlight the graph weights corresponding to the
nonprostate sample voxels.

It can be observed from Fig. 5(b) that, with the conventional label propagation strategy, lots
of nonprostate sample voxels are also assigned with large weights during the label
propagation step, which significantly increases the risk of misclassification.

Motivated by the superior discriminant power of sparse representation based classifiers
(SRC) [55], we propose to enforce the sparsity constraint in the conventional label
propagation framework to resolve this issue. More specifically, we estimate the sparse graph
weights based on LASSO to reconstruct the patch-based signature of each voxel 
by signature of neighboring voxels in the training images. To do this, we first organize

signatures ,  as columns in a matrix A, which is also

called as dictionary. Then, we can estimate the corresponding sparse coefficient vector 
of voxel  by minimizing

(6)

We denote the optimal solution of (6) as . Note that the graph weight  can be

set to the corresponding element in  with respect to  in image Ii.
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Then, the prostate probability map SMA estimated by (4) can be used to localize the prostate
in the new treatment image. Fig. 5(c) shows the resulting graph weight estimated by the
proposed sparse label propagation strategy. It can be observed from Fig. 5(c) that by
enforcing the sparsity constraint, candidate voxels assigned with large graph weights are all
from the prostate regions, while candidate voxels from nonprostate regions are mostly
assigned with zero or very small graph weights. These results show the advantage of the
proposed sparse label propagation strategy.

C. Hierarchical Labeling Strategy
It should be noted that up to this stage, no image context information is incorporated from
the new treatment image to aid the segmentation process. It is demonstrated in [14] that the
image context information also plays an important role in correctly identifying the prostate
region in the new treatment image. In [14], the context features are extracted from each
voxel position  based on the prostate probability map calculated at each iteration,
without considering the confidence level of the classification result, which may accumulate
and propagate the segmentation errors to the next iteration. Specifically, the use of the image
context information extracted from voxels with low segmentation confidence may
significantly increase the risk of misclassification (e.g., with prostate likelihood value close
to 0.5).

Therefore, we are motivated to propose a hierarchical labeling strategy which incorporates
the image context information of the new treatment image into the segmentation process in
an effective and reliable manner. It should be noted that, in our application, voxels around
the prostate center and the voxels far away from the prostate can be classified accurately,
with the high and low prostate likelihood values estimated, respectively. Therefore, in the
proposed hierarchical labeling strategy, only those voxels with high confidence level (i.e.,
with high or low prostate likelihood values in the current estimated prostate probability map)
will be selected from the new treatment image as additional candidate voxels to perform
label fusion in the next iteration. The schematic illustration of the hierarchical labeling
strategy can be illustrated by Fig. 6, where the probability map estimated by the context
information will be iteratively updated, and it will be integrated with the probability map
estimated from atlases only to produce the final fused probability map. Note that only the
probability map estimated by the context information will be iteratively updated, and the
probability map estimated from atlases needs to be calculated only once from Section III-B.
The probability map estimated from atlases is also served as the initialization of the final
fused probability map.

Voxels with high segmentation confidence encode important context information which can
be used to help the segmentation process. The selection criteria can be controlled by two

parameters  and  in [0, 1] at each iteration k, which represent the thresholds for selecting
voxels with high confidence level belonging to the prostate and nonprostate regions,
respectively. We denote the new prostate probability map estimated by fusing the context

information with the prostate probability map SMA estimated by multiple atlases as  at

iteration k. Voxels  with probability map value  or  at
the kth iteration will be selected as additional candidate voxels to perform label fusion at the

(k + 1)th iteration. In the initial stage of segmentation,  and  are set to be higher and
lower values, respectively, for selecting only the most reliable voxels from the new
treatment image for reducing the risk of making wrong segmentations in the initial stages
and propagating errors to future iterations. As the segmentation process continues, these two
threshold values will be gradually relaxed such that more and more voxels from the current
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treatment image can contribute to refine the final segmentation result. In this paper,  and

 are iteratively updated based on

(7)

where ∈ > 0 is the relaxation parameter used in the hierarchical labeling framework.

We denote the set of voxels x ∈ Inew which satisfy the condition  or

 at iteration k as ψk. Then, the prostate probability map  at iteration
k for the current treatment image can be calculated by

(8)

where  is the prostate probability map estimated from only the registered training
images (i.e., registered atlases) based on (4) and (6). τ is the parameter controlling the
weight of the prostate likelihood value estimated by atlases and the context information from

the current treatment image.  is the prostate probability map estimated based on
the context information at iteration k, which is calculated by

(9)

where  denotes the neighborhood of voxel  in current treatment image Inew, and

it is defined as the W × W × W subvolume centered at .  denotes the graph

weight between voxels  and  in current treatment image Inew. In this paper, 
is defined similar to (5), instead of defining it based on sparse representation. The main
reason is that the number of candidate voxels selected from Inew is significantly smaller than
those from training images Ii (i = 1,…,M), thus using sparse representation based on this
small number of sample voxels may lead to unstable graph weights.

It should be noted that in each iteration k, only voxels  (i.e., voxels with low
confidence level) will be updated with new prostate probability values as illustrated in (8).
The proposed hierarchical sparse label fusion strategy can be summarized by Algorithm 1.

Fig. 7 shows a typical example of the prostate probability maps obtained by using different
strategies for a new treatment image of a patient. It can be observed that the conventional
intensity patch-base signature (i.e., second row) fails to effectively identify the prostate
regions, which is consistent with the observations in Fig. 3. On the other hand, the proposed
patch-based signature in the discriminative feature space, but without sparse representation
based label fusion (i.e., third row), can identify the overall outline of the prostate correctly.

Algorithm 1 Hierarchical Sparse Label Propagation

Input: M pelvic-bone-aligned training images and their segmentation groundtruths {(Ii, Si), i = 1,…, M}, and the new
treatment image Inew to be segmented.

Output: The final prostate probability map Sfinal of Inew.
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1. Perform sparse label fusion based on Equations 4 and 6 to calculate SM A from registered training images, and

initialize .

2. Initialize  and .

3. Initialize ψ1 = ∅.

4. FOR voxels 

5.    IF  or 

6.      .

7.    END IF

8. END FOR

9. FOR k = 2 to K

10.     FOR voxels 

11.        Calculate  by Equation 9.

12.        Update  by Equation 8.

13.     END FOR

14.     Set ψk = ∅.

15.     Update  and  by Equation 7.

16.     FOR voxels 

17.        IF  or 

18.          .

19.        END IF

20.     END FOR

21. END FOR

22. Set .

23. Return Sfinal.

This result indicates that more anatomical characteristics can be captured in the high-
dimensional feature space. Moreover, with the sparse representation based label fusion
strategy, most prostate regions can be identified correctly (i.e., fourth row). However,
without using the image context information, the prostate boundary still cannot be accurately
located, especially in the apex area. With the hierarchical label fusion strategy described in
Algorithm 1 to integrate the image context information, the final obtained probability map
(i.e., the fifth row) can localize the prostate boundary accurately. Therefore, the
contributions of using both the patch-based representation in the discriminative feature space
and the hierarchical sparse label fusion strategy are clearly demonstrated in this example.
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D. Final Binary Prostate Segmentation
After obtaining the final prostate probability map Sfinal by Algorithm 1, the prostate can be
localized in the new treatment image by performing image registration from the
segmentation ground truth of each training image Si (i = 1,…, M) to Sfinal. We denote the

registered segmentation ground truth to Si (i = 1,…,M) to Sfinal as . In this
paper, the affine transformation is adopted due to the relative small intra-patient shape
variation, and particularly the FLIRT toolkit [35] is used for this process. Finally, the
majority voting scheme is used to obtain the segmentation result of the new treatment image

based on , and the morphological operations are further performed to remove
the isolated voxels in the segmentation result. One of the advantages of using this strategy to
obtain the final binary segmentation result, other than performing simple thresholding on the
prostate probability map Sfinal, is that we can make use of the prostate shape information in
the planning image and previous segmented treatment images of the same patient to preserve
the topology and shape of the prostate in the final segmentation result.

It is worth noting that more advanced registration algorithms [56], [57] can also be used in
this step to register the segmentation ground truth of each training image to the estimated
prostate probability map Sfinal of new treatment image. For example, the multi-resolution
nonrigid image registration method implemented in the Elastix registration toolkit [58],
based on the fast free form deformation transformation [59], could also be used in this step.

E. Online Update Mechanism
Similar to [13], an online update mechanism is also adopted in this paper, where each
segmented new treatment image will be added into the training set to help segmentation of
future treatment images. It is worth pointing out that manual adjustments on the automatic
segmentation results are also feasible for the online update mechanism as the manual
adjustments can be completed offline when the patient has already left the table. In this
paper, the automated segmentations obtained by the proposed method were used for the
online update, given the fact that the proposed method can already provide accurate
segmentation results in all cases (i.e., even the worst Dice ratio obtained by the proposed
method can still achieve 86.9% as shown in Section IV). It is certain that manual adjustment
for the automated segmentations, if available, could further increase the segmentation
accuracy. But, on the other hand, this requires extra effort from the radiation oncologist.

IV. Experimental Results
The segmentation accuracy of the proposed method and the contribution of its respective
component are systematically evaluated on a 3-D prostate CT image database with 24
patients. Here, each patient has more than 10 treatment images, and 24 patients totally have
330 images. Each image is collected on a Siemens Primatom CT-on-rails scanner with in-
plane image size of 512 × 512 and voxel size of 1 × 1 mm2, while having interslice
thickness of 3 mm. The manual segmentation of each image is also provided by a clinical
expert and served as ground truth. In all the experiments, the following parameter settings
are adopted for the proposed method: Patch size K = 5, and searching window size W = 15
[i.e., the size of the neighborhood used in (5)]. γ = 1 in (5), and λ = 10−4 in (3) and (6).

 and , with ∊ = 0.05 in (7). We set τ = 0.5 for (8). The number of iterations
K in Operation 9 of Algorithm 1 is set to 5. The planning image and the first two treatment
images are served as the initial training images for each patient, which means that, in clinical
applications, radiation oncologists only need to manually label the planning image and the
first two treatment images of the underlying patient, and the proposed method can perform
automatic segmentation for the rest of the treatment images.
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In this paper, four different evaluation measures are adopted to evaluate the segmentation
accuracy of the proposed method: the signed centroid distance (CD), Dice Ratio, average
surface distance (ASD), and the true positive fraction statistics (TPF) between the ground
truth and the estimated prostate volumes.

A. Overall Segmentation Performance of the Proposed Method
We first study the overall segmentation performance of the proposed method. Fig. 8(a)–(c)
shows the whisker plot of the CD measure along the lateral (x), anterior–posterior (y), and
superior–inferior (z) directions, respectively, for each patient after performing only the rigid
bone alignment. It can be observed that even after the rigid bone alignment, the CD values
between the ground truth and the estimated prostate volumes are still considerablely large
(i.e., mostly more than 5 mm). This indicates that the prostate motion relative to bones can
be large across different treatment days, which is consistent with the findings in [60].

Fig. 9(a)–(c) shows the whisker plots of CDs along the three different directions for each
patient, after using the proposed method. It can be observed that the prostate position
estimated by the proposed method is very close to the ground truth, (i.e., the median CDs for
all the patients are mostly within 0.2 mm along all the three directions). Therefore, the high
segmentation accuracy is achieved by the proposed method.

To further illustrate the effectiveness of the proposed method, Fig. 10(a)–(c) shows the
whisker plots of ASDs, TPFs and Dice ratios of the 24 patients between the ground truth and
the estimated prostate volumes by applying the proposed method, respectively. It can be
observed that the proposed method can achieve small ASD values (i.e., the median ASDs for
all the patients are mostly less than 1.5 mm), high TPFs (i.e., the median TPFs for all the
patients are mostly above 90%), and high Dice ratios (i.e., the median Dice ratios for all the
patients are mostly above 90%). The low ASD value indicates that the prostate boundaries
have been localized accurately. TPF reflects whether the prostate volume is underestimated,
and high TPF indicates that high percentage of the ground truth volume is overlapped with
the estimate prostate volume. The high Dice ratios also shed light on the effectiveness of the
proposed method.

The Hausdorff distance (i.e., the maximal surface distance) between the estimated prostate
volume and the segmentation ground truth was also calculated to evaluate the worst-case
performance of the proposed method, and the whisker plot of the Hausdorff distance of each
patient is shown in Fig. 11. It can be observed from Fig. 11 that, for most patients, the
median Hausdorff distance is below 2.5 mm, and the median Hausdorff distances for all the
patients are below 3 mm, which illustrates the robustness of the proposed method.

Typical segmentation results obtained by the proposed method are shown in Fig. 12. It can
be observed that the prostate boundary estimated by the proposed method is visually very
close to that of the ground truth, especially in the apex area of the prostate, which is usually
the most difficult area to segment accurately. It can also be observed that the proposed
method can accurately estimate the prostate boundary even in the case with existence of
bowel gas, which further implies the robustness of the proposed method.

The parameters of the proposed method such as the patch size and the size of the searching
window W were determined by cross validation. Fig. 13 also shows the mean Dice ratios
obtained by the proposed method with different patch size K and different searching window
size W to study the sensitivity of the proposed method with respect to different parameter
values. It can be observed that, when the patch size K is too small (i.e., K = 3), the Dice ratio
decreases as it is not sufficient to fully capture the anatomical properties of each voxel to
serve as the signature. On the other hand, if the patch size K is too large (i.e, K = 7 and K =
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9), the generalizability power of the voxel signature may decrease as the signature is too
specific for a reference voxel and it is hard to find similar candidate voxels in atlases to
perform label propagation. Similar observations can also be found with respect to the size of
the searching window W. If W is too small, good candidate voxels in atlases may be missed
during the label propagation process. However, if W is too large, the confusing and outlier
candidate voxels may be considered and the segmentation accuracy will be degraded during
label propagation. In this paper, we found that, by setting and K = 5 and W = 15, the
proposed method achieves satisfactory segmentation accuracies based on cross validation.

The training phase of the proposed method takes 28.6 min on average, for completing the
rigid-bone alignment and also the feature selection for the patch-based representation. It
should be noted that the training phase can be completed offline, when the patient has
already left the table. After the training step, it takes around 2.6 min on average to segment a
whole 3-D treatment image using parallel implementation (i.e., the prostate probability of
each voxel can be estimated independently), compared to 15–20 min [4] for a clinical expert
to perform joint prostate and rectum volume segmentation of one treatment image. All the
experiments were conducted on an Intel Xeon 2.66-GHz CPU computer with MATLAB
implementation.

B. Effectiveness of the Discriminant Patch-Based Representation and Hierarchical Sparse
Label Propagation Strategy

In this section, we further justify the advantage of using the discriminant patch-based
representation and the hierarchical sparse label propagation strategy in a patient-specific
basis. Specifically, Fig. 14 shows the average Dice ratio between the estimated prostate
volume and the ground truth segmentation of each patient by using 1) the conventional label
propagation framework based on intensity patch-based representation [31], [32], 2) label
propagation with discriminant patch-based (DisPatch) representation derived in this paper,
3) discriminant patch-based representation with sparse label propagation (Sparse +
DisPatch), and 4) the proposed method by also enforcing the hierarchical labeling strategy.

It can be observed from Fig. 14 that, by using the discriminant patch-based representation in
the feature space, the average Dice ratio of each patient significantly increases compare to
the use of only the intensity patch-based representation in [31], [32]. Therefore, the
effectiveness of the proposed discriminant patch-based representation in the feature space to
resolve the issue of low image contrast in prostate CT image is clearly demonstrated, which
echoes the empirical illustration shown in Fig. 3 that demonstrates the superior discriminant
power of the proposed patch-based representation in feature space. Also, by enforcing the
sparsity constraint during label propagation, the average Dice ratio of each patient generally
can be further improved from 3% to 5%, which reflects the strength of sparse representation
to identify good candidate voxels in atlases for label propagation. Finally, by adopting the
hierarchical labeling strategy, the segmentation accuracy can also be slightly and
consistently improved for each patient.

C. Effectiveness of the Online Update Mechanism
In this section, we study the role of the online update mechanism and the relationships
between the segmentation accuracy of the proposed method and the number of available
training images.

Figs. 15 and 16 show the difference of the Dice ratio with and without using the online
update mechanism for the first 12 patients and the rest of the 12 patients, respectively. Note
that the total number of treatment images of each patient is different. If the online update
mechanism is not adopted, then only the planning image and the treatment images of the
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first two treatment days are served as the training images (i.e., same as the initial training set
as stated in the beginning of Section IV). If the online update mechanism is adopted, each
new treatment image will be included in the training set once it is segmented by the
proposed method, to aid the segmentation process for the future treatment images. It can be
observed from Figs. 15 and 16 that, by adopting the online update mechanism, in most
treatment images the segmentation accuracy can be improved, compared to the case without
using the online update mechanism (i.e., for most cases, the difference of the Dice ratio with
and without using the online update mechanism is above the zero horizontal line). Therefore,
the significance of the online update mechanism is clearly demonstrated. It is also worth
pointing out that manual adjustment is also feasible for this online update mechanism, as it
can be done offline when the patient has already left the table, which is an important and
useful feature for real-world clinical applications.

Fig. 17 also shows the average Dice ratios obtained for each patient with and without using
the online update mechanism. It can be observed that, when the online update mechanism is
adopted, the average Dice ratio for each patient is consistently higher (i.e., mostly 2%–4%
higher) than that without using the online update mechanism. Therefore, the importance of
using the online update mechanism to progressively learn more patient-specific information
from each new segmented treatment image is clearly demonstrated.

D. Comparison With Other Methods
In this section, the proposed method is compared with five state-of-the-art prostate CT
segmentation methods proposed by Davis et al. [8], Feng et al. [3], Chen et al. [4], Liao et al.
[13], and Li et al. [14]. The best segmentation accuracies reported in these papers [3], [4],
[8], [13] and [14] are adopted for comparison, as those results were assumed to be obtained
with the optimal parameter setting for different methods. It should be noted that in [3] and
[13], the methods were evaluated on exactly the same database as used in this paper, which
also consists of 24 patients with 330 images in total.

The method proposed by Davis et al. [8] is one of the representatives of the registration
based methods for automatic CT prostate segmentation. This method first performs the gas
deflation process to suppress the distortions brought by the existence of bowel gas. Then,
diffeomorphic image registration is performed to warp the planning image and its
corresponding segmentation ground truth onto the gas deflated treatment image to localize
the prostate. It was evaluated based on the Dice ratio and CD evaluation measures in [8].

The methods proposed by Feng et al. [3] and Chen et al. [4] use deformable model based
segmentation. In [3], both gradient and statistical features are adopted to construct the image
appearance model to guide the segmentation process, while in [4] the intensity similarity and
shape anatomical constraints are both considered in a Bayesian framework. These two
methods are different from the proposed method as they are deformable model based
methods which need to build the shape prior to guide the segmentation, while the proposed
method is a multi-atlases based sparse label propagation method where no shape prior is
needed. In [3], the method was evaluated based on the mean Dice ratio and mean ASD
evaluation measures, and in [4] the method was evaluated based on the mean ASD, median
probability of detection (PD), and the median probability of false alarm (FA).

Liao et al. [13] proposed a feature-guided deformable registration based prostate
segmentation method. Specifically, an explicit Gaussian score similarity function is adopted
to learn the most salient features to drive the registration process. It was evaluated on the
mean Dice ratio, mean ASD, mean CDs along three different directions, median PD and
median FA evaluated measures.
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Li et al. [14] proposed a classification based prostate segmentation method which integrates
both the image appearance and context features. It was evaluated on the mean Dice ratio,
mean ASD, mean CDs along three different directions, median PD and median FA evaluated
measures.

We have also included two other state-of-the-art multi-atlases based segmentation
algorithms proposed by Klein et al. [22] and Coupe et al. [31] for comparison. The method
proposed by Klein et al. [22] adopted the multi-resolution fast free form deformation (FFD)
to register the atlases to target image and then performed majority voting (MV) scheme for
label fusion. This method is denoted as (FFD + MV) in this paper. The method proposed by
Coupe et al. [31] is the conventional intensity patch-based label propagation (LP) approach,
and it is denoted as (Intensity LP) in this paper.

The comparisons among different approaches are summarized in Table II. It can be observed
that the proposed method consistently has higher segmentation accuracy than any other
methods under comparison using different evaluation measures, which reflects the superior
segmentation accuracy and robustness of the proposed method. In Table II, we also report
the minimum Dice ratio obtained by different approaches, which is an important measure to
evaluate the robustness and stability of different approaches. Specifically, in clinical
application, low Dice ratio indicates that the target defined for radiation therapy is either
underestimated or overestimated. For the former case, it means that we may miss the therapy
of cancerous tissue, which often leads to poor outcome of tumor control. For the latter case,
the healthy tissues surrounding the prostate will be mistakenly treated with high radiation
dose, which can often cause side effects on normal structures, e.g., rectal bleeding and
painful urination. It is shown in [8] that the average Dice ratio of inter-rater manual
segmentation is around 79%. Therefore, Dice ratio of 80% can serve as the baseline for the
minimum Dice ratio to evaluate the robustness of different methods. It can be observed from
Table II that the minimum Dice ratio obtained by the proposed method is 86.9%, which is
significantly higher than those obtained by Feng's method [3] (i.e., 42.4%) and Li's method
[14] (i.e., 75.3%). Therefore, the proposed method can provide more accurate and robust
segmentation results to help automatically segment the prostate in the later-time treatment
images.

To clearly demonstrate the contribution of each component of the proposed method, in
Table II, we also report and compare the segmentation accuracies obtained by the proposed
method by adding each component in a progressive manner. Specifically, the last four rows
of Table II list the segmentation accuracies obtained by the proposed method by using 1)
only the discriminative patch based representation (DisPatch), 2) the discriminative patch
based representation with sparse coding (S + DisPatch), 3) the discriminative patch based
representation with sparse coding and hierarchical labeling strategy (HS + DisPatch), and 4)
the proposed method by further adopting the online update mechanism, respectively. It can
be observed that the segmentation accuracies consistently and progressively increase by
adding each component of the proposed method, which illustrates the contribution of each
component in the proposed method.

E. Generalizability to Other Dataset
In order to test the generalizability of the proposed method, the proposed method was also
evaluated on an additional prostate CT image dataset consisting of 10 patients with 100
images in total, where each patient has a planning image and nine treatment images. The
images were obtained from the University of North Carolina Cancer's Hospital, using
different CT scanners other than those used in Section IV-A. Each image has in-plane
resolution 1 × 1 mm2, with interslice thickness from 3 to 5 mm, and the manual
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segmentation ground truth of each image is available. The same parameter setting was used
for the proposed method as that in Section IV-A.

Similar to Section IV-A, the signed centroid distance (CD), Dice ratio, average surface
distance (ASD), and the true positive fraction statistics (TPF) between the estimated prostate
volume and the ground truth segmentations were used as metrics to evaluate the
segmentation accuracy of the proposed method. Fig. 18(a)–(c) shows the whisker plot of
CDs of each patient along the three different directions obtained by the proposed method. It
can be observed from Fig. 18 that the proposed method still achieves satisfactory
segmentation accuracy as the median CDs along all the directions are mostly within 0.3 mm.
Fig. 19(a)–(c) also shows the whisker plots of ASD, TPF and Dice ratio for each patient, and
the low ASD value (i.e., mostly below 1.5 mm), high TPF (i.e., mostly above 85%) and Dice
ratio (i.e., mostly above 85%) values further imply the effectiveness of the proposed method.

The overall segmentation performance of the proposed method on this dataset is
summarized in Table III and compared with two multi-atlases based segmentation
algorithms as in Section IV-D. It can be observed from Table III that the proposed method
still achieves higher segmentation accuracy than the other methods under comparison,
therefore the generalizability and robustness of the proposed method is demonstrated.

Typical segmentation results of the proposed method on this additional prostate CT image
dataset are also visually shown in Fig. 20. It can be observed from Fig. 20 that the estimated
prostate boundary by the proposed method is very close to the segmentation ground truth,
which further illustrates the satisfactory segmentation accuracy of the proposed method.

V. CONCLUSION
In this paper, we propose a new method for semi-automatic prostate segmentation in CT
images, which is an important step for image guided radiation therapy in prostate cancer
treatment. Specifically, a new patch-based representation is derived in the discriminative
feature space, by first extracting anatomical features from image patch of each voxel
position, and then selecting the most informative features with the logistic LASSO
regression process. Moreover, a hierarchical sparse label propagation framework is
proposed. Different from the conventional label propagation strategy, the proposed label
propagation method formulates the problem of determining weight of each atlas voxel in
label fusion as a sparse coding problem. Specifically, the weight assigned to each atlas
sample voxel is determined by its corresponding sparse coefficient to reconstruct the derived
patch-based signature of the reference voxel. It is shown that, by enforcing the sparsity
constraint, the new label propagation framework is more robust and can significantly reduce
the risk of misclassification. To further increase the robustness of the proposed framework
and incorporate the image context information in the current treatment image, the label
propagation process is formulated in a hierarchical manner. Specifically, voxels with high
confidence level, based on the estimated prostate probability map, are first labeled, and
further used as additional sample voxels to provide the image context information for
helping estimate the prostate likelihood of the remaining voxels. Finally, an online update
mechanism is also adopted to progressively learn more patient-specific information from
each new segmented treatment image. The proposed method has been both qualitatively and
quantitatively evaluated on a prostate CT image database consisting of 24 patients and 330
images, by comparison with several state-of-the-art prostate CT image segmentation
methods. It is shown that the proposed method consistently achieves higher segmentation
accuracy than any other methods under comparison.
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Fig. 1.
(a) An image slice obtained from a 3-D prostate CT image of a patient. (b) The manually-
delineated prostate boundary shown by the red contour, superimposed on the original image
in (a). (c) An image slice with bowel gas, obtained from the same patient but at different
treatment day.
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Fig. 2.
Flowchart of our method for prostate segmentation in CT images, where components
associated with the training images are highlighted in red.
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Fig. 3.
(a) Typical example showing sample voxels drawn from a training image. Samples
belonging to the prostate regions are highlighted by small red circles, and samples belonging
to the nonprostate regions are highlighted by green crosses. Here, more samples are drawn
around the prostate boundaries, which are most difficult to be correctly classified. Scatter
plots of the top two most discriminant features (selected based on the Fisher's separation
criteria) are shown for (b) intensity patch-based representation and (c) patch-based
representation in discriminative feature space, for the drawn samples in (a).
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Fig. 4.
Schematic illustration of general nonlocal mean label propagation expressed by Equation
(4). In this example, M training images are available, together with their segmentation
ground truths. The patch-based representation of the reference voxel  is denoted by the
small green square in the new treatment image. The pink squares denote the searching
window, where voxels lying within the searching window in each training image are served

as candidate voxels. For each candidate voxel  in the ith training image, its contribution is

determined by the graph weight .
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Fig. 5.
(a) Prostate CT image slice, with the reference voxel highlighted by the green cross and the
prostate boundary of the segmentation ground truth highlighted by the red contour. Note that
the reference voxel is in the prostate region but close to the prostate boundary. (If needed,
please refer to the electronic version of the paper to better see the green cross.) (b) and (c)
Graph weights to the training sample voxels, estimated by the conventional label
propagation strategy and the proposed sparse label propagation strategy, respectively. Graph
weights highlighted in blue are corresponding to the prostate sample voxels, while graph
weights highlighted in red are corresponding to the nonprostate sample voxels.

Liao et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 December 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Schematic illustration of the hierarchical labeling strategy. In each iteration, only voxels
with high segmentation confidence will be selected as additional candidate voxels to reflect
the image context information and contribute in the label propagation process in the next
iteration. The probability map estimated by the context information will be iteratively
updated, and it will be integrated with the probability map estimated from atlases only to
produce the final fused probability map. Note that the probability map estimated from
atlases needs to be calculated only once.
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Fig. 7.
First row shows different slices of a prostate CT image, overlayed with the manual
segmentation ground-truth indicated by the red contours. Second row shows the
corresponding probability maps obtained by the conventional label propagation process with
the intensity patch-based voxel signature. Third row shows the probability maps obtained
with the proposed patch-based voxel signature in the discriminative feature space, but using
the conventional label propagation. Fourth row shows the probability maps obtained with
the proposed patch-based voxel signature in the discriminative feature space and the
proposed sparse label propagation strategy, but without considering the image context
information. Fifth row shows the probability maps obtained with the proposed patch-based
voxel signature in the discriminative feature space by integrating the image context
information into the sparse label propagation framework as detailed in Algorithm 1.
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Fig. 8.
Centroid distance between the bone-aligned prostate volume and the segmentation ground
truth along the (a) lateral, (b) anterior–posterior, and (c) superior–inferior directions,
respectively. The horizontal lines in each box represent the 25th percentile, median, and
75th percentile, respectively. The whiskers extend to the most extreme data points.
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Fig. 9.
Centroid distance between the prostate volume estimated by the proposed method and the
ground truth along the (a) lateral, (b) anterior–posterior, and (c) superior–inferior directions,
respectively.
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Fig. 10.
Whisker plots of (a) average surface distance, (b) true positive fraction, and (c) Dice ratio
between the estimated prostate by the proposed method and the segmentation ground truth
for each patient.
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Fig. 11.
Whisker plots of the Hausdorff distance between the estimated prostate by the proposed
method and the segmentation ground truth for each patient.
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Fig. 12.
Typical performance of the proposed method on six slices of the sixth treatment image of
the 16th patient (first row) and the seventh treatment image of the third patient (second row).
The corresponding Dice ratios of these two treatment images are 91.04% and 90.69%,
respectively. The red contours denote the manual-delineated prostate boundaries, and the
yellow contours denote the prostate boundaries estimated by the proposed method.
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Fig. 13.
Mean Dice ratios obtained by the proposed method with different patch size K and different
searching window size W.
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Fig. 14.
Average Dice ratios of the 24 patients obtained by using 1) the conventional label
propagation strategy with intensity patch-based representation [31], [32], 2) label
propagation with the proposed discriminant patch-based representation (DisPatch) in the
feature space, 3) discriminant patch-based representation with sparse label propagation
(Sparse + DisPatch), and 4) the proposed method by further enforcing the hierarchical
labeling strategy.
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Fig. 15.
Difference of the Dice ratio of different treatment days of the first 12 patients by using the
proposed method with and without using the online update mechanism.
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Fig. 16.
Difference of the Dice ratio of different treatment days of the other 12 patients by using the
proposed method with and without using the online update mechanism.
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Fig. 17.
Average Dice ratio of each patient obtained by the proposed method with and without using
the online update mechanism.
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Fig. 18.
Centroid distance between the prostate volume estimated by the proposed method and the
segmentation ground truth along the (a) lateral, (b) anterior–posterior, and (c) superior–
inferior directions, respectively, on the additional prostate CT image dataset.
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Fig. 19.
Whisker plots of (a) average surface distance, (b) true positive fraction, and (c) Dice ratio
between the estimated prostate by the proposed method and the segmentation ground truth
for each patient on the additional prostate CT image dataset.
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Fig. 20.
Typical performance of the proposed method on six slices of the eighth treatment image of
the second patient (first row) and the third treatment image of the third patient (second row)
in the additional prostate CT image dataset. The corresponding Dice ratios of these two
treatment images are 90.16% and 88.82%, respectively. The red contours denote the
manual-delineated prostate boundaries, and the yellow contours denote the prostate
boundaries estimated by the proposed method.
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TABLE I

Mean Values of Fisher Score for Different Types of Feature Signatures on the 330 Prostate CT Image
Volumes, to Reflect Their Discriminative Power in Separating Prostate and Nonprostate Voxels

Features Intensity Intensity Patch Patch in Feature Space Patch in Feature Space + Logistic Lasso

Fisher Score 2.15 5.83 8.89 12.14
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TABLE II

Comparison of Different Approaches With Different Evaluation Metrics, Where N/A Indicates That the
Corresponding Result was Not Reported in the Respective Paper. The Best Results Across Different Methods
are Bolded. The Last Four Rows Show the Results Obtained by the Proposed Method by Using 1) Only the
Discriminative Patch Based Representation (DisPatch), 2) the Discriminative Patch Based Representation
With Sparse Coding (S + DisPatch), 3) the Discriminative Patch Based Representation With Sparse Coding
and Hierarchical Labeling Strategy (HS + DisPatch), and 4) the Proposed Method by Further Adopting the
Online Update Mechanism, Respectively

Methods Mean Dice Ratio Min Dice Ratio Mean ASD (in
mm)

Mean CD (x/y/z) (in mm) Median PD Median FA

Davis el al. [8] 82.0 N/A N/A −0.26/0.35/0.22 N/A N/A

Feng el al. [3] 89.3 42.4 2.08 N/A N/A N/A

Chen et al. [4] N/A N/A 1.10 N/A 0.84 0.13

Liao el al. [13] 89.9 86.1 1.08 0.21/−0.12/0.29 0.89 0.11

Li el al. [14] 90.8 75.3 1.40 0.18/−0.02/0.57 0.90 0.10

FFD + MV [22] 79.4 57.6 3.18 −0.32/0.28/0.37 0.78 0.21

Intensity LP [31] 77.7 51.4 3.47 0.48/−0.31/0.51 0.76 0.23

DisPatch 85.4 67.3 2.26 −0.27/−0.25/0.23 0.85 0.14

S + DisPatch 87.6 76.7 1.54 0.23/0.22/−0.25 0.86 0.13

HS + DisPatch 88.3 82.4 1.23 0.21/0.21/−0.24 0.88 0.12

Proposed Method 90.9 86.9 0.97 0.17/0.09/0.18 0.90 0.08
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TABLE III

Overall Segmentation Accuracies of Different Approaches With Different Evaluation Metrics on the
Additional Prostate CT Image Dataset. Best Results Across Different Methods are Bolded

Methods Mean Dice Ratio Min Dice Ratio Mean ASD (in
mm)

Mean CD (x/y/z) (in mm) Median PD Median FA

FFD + MV [22] 82.8 58.9 2.84 −0.35/ − 0.31/0.38 0.81 0.17

Intensity LP [31] 80.6 43.2 3.15 0.53/ − 0.42/0.46 0.78 0.21

Proposed Method 88.7 85.2 1.02 −0.24/0.12/−0.19 0.87 0.10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 December 02.


