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Abstract
Longitudinal imaging studies are frequently used to investigate temporal changes in brain
morphology and often require spatial correspondence between images achieved through image
registration. Beside morphological changes, image intensity may also change over time, for
example when studying brain maturation. However, such intensity changes are not accounted for
in image similarity measures for standard image registration methods. Hence, (i) local similarity
measures, (ii) methods estimating intensity transformations between images, and (iii)
metamorphosis approaches have been developed to either achieve robustness with respect to
intensity changes or to simultaneously capture spatial and intensity changes. For these methods,
longitudinal intensity changes are not explicitly modeled and images are treated as independent
static samples. Here, we propose a model-based image similarity measure for longitudinal image
registration that estimates a temporal model of intensity change using all available images
simultaneously.

Index Terms
Longitudinal registration; deformable registration; non-uniform appearance change; magnetic
resonance imaging (MRI)
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I. Introduction
Longitudinal imaging studies are important to study changes that occur during brain
development, neurodegeneration, or disease progression in general. Spatial correspondences
almost always need to be established between images for longitudinal analysis through
image registration. Most image registration methods have been developed to align images
which are similar in appearance or structure. If such similarity is not given (e.g., in case of
pathologies or pre- and post-surgery images) cost function masking [4] is typically used to
discard image regions without correspondence from the registration. Such strict exclusion is
not always desirable. When investigating brain development (or neurodevelopment) for
example (our target application in this paper) valid correspondences for the complete brain
are expected to exist. However, brain appearance changes continuously over time (see
Figure 1) due to biological tissue changes, such as the myelination of white matter [2], [24],
and adversely affects image registration results [17].

The effect of appearance change on the result of an image registration depends on the
chosen transformation model and the chosen image similarity measure. Generally,
transformation models with few degrees of freedom (such as rigid or affine transformations)
are affected less by local changes in image appearance than transformation models which
can capture localized spatial changes, such as elastic or fluid models. In particular, in
Section IV-C we show that affine methods perform well even in the presence of strong non-
uniform appearance change, while deformable methods introduce erroneous local
deformations in order to resolve inconsistencies in appearance. However, transformation
models which can capture local deformations are desirable for many longitudinal studies as
changes in morphology tend to be spatially non-uniform.

For longitudinal registration, temporal regularization of the transformation model has been
explored recently. This is motivated by the assumption that unrealistic local changes can be
avoided by enforcing temporal smoothness of a transformation [10], [12], [31]. It has been
shown that various anatomical structures in the brain follow distinct growth patterns over
time [16]. Temporal regularization can introduce bias by smoothing the deformation of all
anatomical structures equally at all time-points. This can be especially problematic during
periods of rapid growth at the early stages of development. The longitudinal processing
stream in Freesurfer [22] aims to avoid such over-regularization by initializing the
processing for each time-point with common information from a subject template without a
temporal smoothness constraint on the deformation therefore allowing for large temporal
deformations. However, it is developed for MR images of adult subjects with minimal
appearance change compared to brain maturation studies.

The longitudinal registration algorithm 4-dimensional HAMMER [27] establishes alignment
by searching for corresponding regions with similar spatio-temporal attributes. While this
method is less sensitive to appearance change, it suffers from the previously mentioned
problems associated with the temporal smoothness constraint of the deformation. DRAMMS
[20] further improves attribute based registration by choosing more discriminative attributes
that reduce matching ambiguity. The longitudinal segmentation algorithm CLASSIC [33]
jointly segments a longitudinal image sequence and estimates the longitudinal deformation
of anatomy using HAMMER. The spatial and temporal segmentation constraints are
adaptive and can accommodate relatively local intensity changes, but the temporal
smoothness constraints are the same as in HAMMER.

Several methods have been developed for the longitudinal registration of the cortical
surfaces in developing neonates. In [32] the difficulty due to appearance change is
circumvented by registering pairs of inflated cortical surfaces. The method establishes
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correspondence for the cortex and not the whole brain volume. The authors in [14] propose a
registration method that combines surface based and tissue class probability based
registration. The method relies on tissue class priors and surfaces of the tissue boundaries
and the cerebellum. While this method defines a transformation over the whole brain it does
not address the problem of aligning the unmyelinated and myelinated white matter at
different time-points.

In [25] the authors construct a spatio-temporal atlas capturing the changes in anatomical
structures during development. The atlas provides the missing anatomical evolution between
two time-points. The source image is registered to the closest age snapshot of the atlas and
transformed to the age of the target image using the atlas information. The transformed
image is then registered to the target image. The method relies on an atlas with dense
temporal sampling. Constructing the spatio-temporal atlas during early brain maturation,
however, requires the registration of longitudinal images at different stages of myelination.
The atlas construction [26] relies on normalized mutual information and B-spline based free-
form deformation to align the longitudinal image sequence, but the appropriateness of the
method for aligning images undergoing contrast inversion is not addressed.

Approaches which address non-uniform intensity changes have mainly addressed
registration for image-pairs so far and either rely on local image uniformities [17], [29] or
try to estimate image appearance changes jointly with an image transform [13], [18], [21],
[23]. Often (e.g., for bias field compensation in magnetic resonance imaging), image
intensity changes are assumed to be smooth. This assumption is not valid for certain
applications, including longitudinal magnetic resonance (MR) imaging studies of
neurodevelopment.

In this paper we focus on the complementary problem of determining an appropriate image
similarity measure for longitudinal registration in the presence of temporal changes in image
intensity.

In [3] the authors derive a Bayesian similarity measure for simultaneous motion correction
and pharmacokinetic model parameter estimation in dynamic contrast-enhanced MR image
sequences. The intensity model parameters are estimated individually for each voxel. In our
method we spatially regularize the model parameters and show that it is beneficial to
mitigate errors during parameter estimation and improves registration accuracy (Section IV-
D1).

The changes seen on the MR images during neurodevelopment result from a variety of
parallel biological processes. Changes in various factors of tissue composition, such as
myelin and water content, are coupled with both tissue generation and tissue loss [6]. The
majority of the changes seen on MR images, however, can be attributed to the myelination
of the neuronal axons and morphological changes due to growth. In a simplified model of
neurodevelopment, these two processes can be decoupled and modeled separately as shown
in Figure 2. Our goal is to register the images in the bottom row. Existing deformable
registration algorithms can resolve the morphological differences between source and target
images if the image intensities within tissue classes remain constant or vary slowly.
Therefore, if the model of intensity change is known the intensity change can be modded out
and the only remaining task of the registration method is to recover the spatial
transformation (middle row), reducing the original problem to registering each source image
in the bottom row to the corresponding intensity adjusted target image in the top row.

Our proposed approach estimates local longitudinal models of intensity change using all
available images. Once the intensity model is known, existing deformable registration
methods can be used to find the spatial transformation between the images. Our approach
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alternates between parameter estimation for the local models of intensity change and
estimation of the spatial transformation. Image similarities are computed relative to the
estimated intensity models, hence accounting for local changes in image intensities. While
our motivating application in this paper is studying brain maturation, the proposed method is
general and can be applied to any longitudinal imaging problem with non-uniform
appearance change (for example, time-series imaging of contrast agent injection).

This paper is an extension of our previous conference papers [7], [8]. In [8] we showed
derivation of the model-based similarity measure with a quadratic intensity model and
region based spatial regularization of the model parameters. The method was compared to
commonly used global similarity measures on 2D synthetic data sets. In [7] we introduced
the logistic intensity model with improved spatial regularization of the model parameters.
We validated our method against mutual information (MI) on real data with manually
chosen landmarks. In this paper, we extended the previous conference papers with (i) a
simplified model of neurodevelopment for motivating our similarity measure, (ii) an
experimental section comparing various polynomial and logistic intensity models (Section
IV-B), (iii) a longitudinal deformation model between time-points for the synthetic test data
sets to better approximate the deformations during development, (iv) an experimental
section on the effect on the registration accuracy of the median filter size used for the spatial
regularization of the intensity model parameters (Section IV-D1), (v) and an experimental
section on the effect of the white matter segmentation accuracy on the registration (Section
IV-D2).

Section II introduces the model-based image similarity measure, sum of squared residuals
(SSR). Section III discusses parameter estimation. Section IV describes the performed
experiments and discusses results. The paper concludes with a summary and outlook on
future work.

II. Model-Based Similarity Measure
Assume we have an image intensity model Î(x, t; p) which for a parameterization, p,
describes the expected intensity values for a given point x at a time t (x can be a single voxel
or a region). This model is defined in a spatially fixed target image. Then, instead of
registering a measured image Ii at ti to a fixed target image IT we can register it to the
corresponding intensity-adjusted target image Î(x, ti; p), effectively removing temporal
intensity changes for a good model and a good parameterization, p. Hence,

where Sim(·, ·) is any chosen similarity measure (e.g., sum of squared differences (SSD),
normalized cross correlation, or mutual information), and Φi is the map from image Ii to the
spatially fixed target space. Since our method aims to create an intensity adjusted model Î
that matches the appearance of the source image, we use SSD in this paper. We call the
intensity-adjusted SSD similarity measure a sum of squared residual (SSR) model, where the
residual is defined as the difference between the predicted and the measured intensity value.

A. General Local Intensity Model Estimation for SSD
Since SSR is a local image similarity measure, for a given set of N measurement images {Ii}
at times {ti} we can write the full longitudinal similarity measure as the sum over the
individual SSRs, i.e.,
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(1)

where Ω is the image domain of the fixed image. For given spatial transforms Φi, 1 is simply
a least-squares parameter estimation problem given the measurements {Ii ∘ Φi(x)} and the
predicted model values {Î(x, ti; p)}. The objective is to minimize 1 while, at the same time,
estimating the model parameters p. We use alternating optimization with respect to the
intensity model parameters, p, and the spatial transformations Φi to convergence (see
Section III). Note that looking at only two images at a time without enforcing some form of
temporal continuity would lead to independent registration problems and discontinuous
temporal intensity models. However, this potential problem is avoided by using all available
images in the longitudinal set to estimate the intensity model parameters.

B. Logistic Intensity Model with Elastic Deformation
SSR can be combined with any model for intensity change, ranging from a given constant
target image (the trivial model) and linear models to nonlinear models that are more closely
adapted to the myelination process during neurodevelopment. Since the myelination process
exhibits a rapid increase in MR intensity (in T1 weighted images) during early brain
development followed by a gradual leveling off [9], nonlinear appearance models are
justified. In this paper we use the logistic model for the experiments which is often used in
growth studies [11], but also investigate various polynomial models in Section IV-B. The
logistic model is defined as

(2)

where α is a global parameter, β and k are spatially varying model parameters. We can
attribute biological meaning to these parameters, k being the maximum rate of intensity
change, α the maximum increase of white matter intensity during myelination (intensities
are normalized to a zero lower asymptote during the fitting process), and β is related to the
onset time of myelination (see Figure 3). Assuming that both unmyelinated and fully
myelinated white matter intensities are spatially uniform we keep α constant as the
difference between myelinated (upper asymptote) and unmyelinated (lower asymptote)
white matter intensities. This is a simplifying, but reasonable assumption since intensity
inhomogeneities in unmyelinated or myelinated white matter are small compared to the
white matter intensity change due to the myelination process itself [2]. The unmyelinated
and myelinated white matter intensities defining α are estimated from the white matter
voxels (as defined by the white matter segmentation) as the 1st percentile of the first image
(mostly unmyelinated) and the 99th percentile of the last image (mostly myelinated),
respectively.

III. Parameter Estimation
Once the parameters for the local intensity models are known, SSR can be used to replace
the image similarity measure in any longitudinal registration method. Here, we use an elastic
deformation model (Section III-A) and jointly estimate the parameters for the intensity
model (Section III-B).
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A. Registration model
The growth process of the brain not only includes appearance change but complex
morphological changes as well, hence the need for a deformable transformation model. To
single out plausible deformations, we use (for simplicity) an elastic regularizer [5] defined
on the displacement field u as

where μ (set to 1) and λ (set to 0) are the Lamé constants that control elastic behavior, and
the div is the divergence operator defined as ∇·u, where ∇ is the gradient operator. The
behavior of the elastic regularizer might be better understood if we convert the Lamé
constants to Poisson’s ratio ν (=0) and Young’s modulus E (=2). The given Poisson’s ratio
allows volume change such that the change in length in one dimension does not cause
expansion or contraction in the other dimensions. This is a desirable property in our case,
since tissue is both generated and destroyed during development resulting in volume change
over time. Young’s modulus, on the other hand, describes the elasticity of the tissue and was
chosen experimentally to allow large deformations while limiting the amount of folding and
discontinuities.

Registration over time then decouples into pairwise registrations between the intensity-
adjusted target image Î and given source images Ii. This is sufficient for our test of the
longitudinal image similarity measure, but could easily be combined with a spatio-temporal
regularizer which would then directly couple the transformations between the images of a
time-series (instead of only having an indirect coupling through the model-based similarity
measure).

B. Model Parameter Estimation
We estimate the intensity model parameters only within the white matter where image
appearance changes non-uniformly over time; for simplicity, gray matter intensity was
assumed to stay constant. The methods for obtaining the white matter segmentations for
each data set are described in the corresponding experimental sections. In addition, we
investigate the effect of white matter segmentation accuracy on the model-based registration
in Section IV-D2.

Instead of estimating the parameters independently for each voxel, spatial regularization was
achieved by estimating the medians of the parameters from overlapping local 3 × 3 × 3
neighborhoods (the effect of various neighborhood sizes on registration accuracy is
investigated in Section IV-D1).

The algorithm is defined as follows

1. Initialize model Î parameters to p = p0 (constant in time intensity model if no prior
is given).

2. Affinely pre-register images {Ii} to {Î(ti)}.

3. Estimate model parameters p from the pre-registered images.

4. Estimate the appearance of Î at times {ti}, giving {Î(ti)}.

5. Estimate displacement fields {ui} by registering images {Ii} to {Î(ti)}.
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6. Estimate p from the registered images {Ii ∘ ui}.

7. Repeat from step 3 until convergence.

The parameterization p for the logistic intensity model is estimated with generalized linear
regression. The algorithm terminates once the SSR registration energy (1) decreases by less
than a given tolerance between subsequent iterations. In all our experiments only few
iterations (typically less than 5) were required. A more in-depth numerical convergence
analysis should be part of future work. If desired, a prior model defined in the target image
(a form of intensity model parameter atlas) could easily be integrated into this framework.

IV. Experimental Results
The validation of the model-based similarity measure requires a set of longitudinal images
with known ground truth transformations between the source images and the target images.
We used three different types of data sets for validation:

• Synthetic (2D)

• Simulated brain images (3D)

• Real monkey data (3D)

For the synthetic and simulated data sets known longitudinal deformations can be added to
the generated images in order to simulate growth over time. The deformations are generated
as follows. We start with an identity spline transformation with 4 × 5 equally spaced control
points for the target image (thus the target image has the same geometry as the original
synthetic or simulated image). We then generate the deformation for the next time-point by
randomly perturbing the spline control points of the current time-point by a small amount.
We iteratively repeat this step until a new deformation is generated for each time-point. The
deformation between any two time-points is small, but the cumulative deformation between
the first and last time-points is considerable.

Since the ground truth transformations are known the accuracy of the registration method
can be determined by registering each source and target image pair and comparing the
resulting transformations to the ground truth transformations. Registration accuracy was
determined by computing the distance between the ground truth and the recovered
transformation. The root mean squared (RMS) error of the voxel-wise distance within the
mask of the target image then yielded the registration error.

For the real data sets, however, the ground truth transformations are not known and cannot
be easily determined. Therefore, instead of using a ground truth deformation, we use
manually defined landmarks in the source and target images to measure how well they are
aligned after registration. For this data set, registration error was computed as the average
Euclidean distance between the target and the registered landmarks.

Imaging for the monkey data was performed on a 3T Siemens Trio scanner at the Yerkes
Imaging Center, Emory University with a high-resolution T1-weighted 3D magnetization
prepared rapid gradient echo (MPRAGE) sequence (TR = 3,000ms, TE = 3.33ms, flip angle
= 8, matrix = 192 × 192, voxel size = 0.6mm3, some images were acquired with TE =
3.51ms, voxel size = 0.5mm3).

In this section we describe several experiments that test the proposed similarity measure
with progressively more difficult registration problems. In addition, we performed
experiments that compare our method to three of the commonly used similarity measures:
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sum of squared difference (SSD), normalized cross correlation (NCC), and mutual
information (MI).

Image registration was performed with the publicly available registration toolbox, FAIR
[19]. The same elastic regularizer parameters were used for all experiments (described in
Section III-A). The parameters for the similarity measures were chosen to allow
deformations with similar magnitude and smoothness.

A. White Matter Intensity Distributions from Real Data
An important part of the registration experiments is testing the similarity measures on
realistic appearance change while knowing the ground truth deformations. To this end, we
calculated the spatial and temporal intensity changes from the MR images of 9 rhesus
monkeys during the first 12 months of life. The white matter intensity trajectories acquired
from the real monkey data were then used to generate the synthetic images for Experiment 2
(Sect. IV-C).

The spatial white matter distributions were calculated for each time-point (2 week, 3, 6, 12
month) of the 9 monkeys. The early time-points have low gray-white matter contrast,
therefore the white matter segmentation of the 12 month image was transferred to the earlier
time-points (this is often the case for longitudinal studies of neurodevelopment where good
tissue segmentation might only be available at the latest time-point [28]). For the purpose of
a simplified simulation, we averaged the white matter intensity change of the whole brain
orthogonal to the posterior-anterior direction (most of the intensity change is along this
direction [15]). Figure 4 shows the mean and variation of the white matter intensity profiles
from all four time-points. Myelination starts in the posterior and central regions of the white
matter and continues towards the periphery and, dominantly, towards the anterior and
posterior regions. These findings agree with existing studies on myelination [15]. Of note is
the strong white matter intensity gradient in the early time-points due to the varying onset
and speed of the myelination process.

B. Experiment 1: Model Selection
In this experiment we investigated the choice of the parametric intensity model for Î on
registration accuracy given data sets generated with various intensity models. While the
logistic model described in Section II-A is a reasonable model for the intensity change seen
due to myelination, the true intensity model of the data is a result of complex biological
processes and might not be known. The image intensity model therefore is an approximation
of the true underlying model and the choice of this approximation can affect registration
accuracy.

Four intensity models were investigated: constant, linear, quadratic, and logistic. Five 128 ×
128 2D synthetic longitudinal image sets were generated with 10 time-points each (I0, …,
I9). The synthetic images consist of three concentric rings, the outer ring resembling gray
matter, the middle ring white matter going through myelination, and the inner ring
myelinated white matter. The outer and inner rings have constant intensity over time (69 and
143 respectively, based on average tissue intensities from the monkey data) while the
intensity of the ring representing myelinating white matter was set according to one of five
intensity profiles (with unmyelinated white matter = 46 and myelinated white matter = 143):
constant, linear, quadratic, unsaturated logistic, and saturated logistic (see Figure 5 for the
five data sets). The last time-point I9 was designated as the target image and the earlier time-
points as the source images. The source images were then registered to the target image with
deformable elastic registration using one of the four intensity models for the model image Î
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(constant, linear, quadratic, logistic). There is no displacement between the source and target
images thus the ground truth transformation is the identity.

Figure 6 shows an extreme case of the model-based registration experiment with a saturated
logistic intensity model used for generating the original longitudinal images and a constant
model used for the model estimation step. The constant model cannot capture the simulated
logistic intensity change within the white matter, therefore, considerable deformation is
introduced (the correct deformation is the identity).

Table I shows the registration errors for all 20 combinations between the five different
intensity profiles used to generate the longitudinal images and four model types used for the
intensity model estimation. Each row shows the registration error for one of the five
generated data sets (lowest errors for each set are highlighted). The columns show the model
used for estimating the intensity change over time for Î. The results show that quadratic
model is a good choice if the underlying true model is polynomial or the logistic model is
not saturated, however, the logistic model is necessary when the true model is logistic and
the time-points are far enough to saturate the model.

C. Experiment 2: Synthetic Data
In this experiment, we created sets of 64 × 64 2D synthetic images (based on the Internet
Brain Segmentation Repository (IBSR) [1] synthetic dataset). Each set consisted of 11 time-
points (Ii, i = 0, …, 10). I0 was designated as the target image and all subsequent time-points

as the source images. The gray matter intensities of all 11 images were fixed ( ). For
the source images, I1, …, I10, we introduced two types of white matter appearance change:

i. Uniform white matter appearance change over time, starting as dark (unmyelinated)
white matter ( ) and gradually brightening (myelinated) white matter
( ) resulting in contrast inversion between gray and white matter. The
target white matter intensity was set to 100.

ii. White matter intensity gradient along the posterior-anterior direction with
increasing gradient magnitude over time. The target image had uniform white
matter ( ). For the source images the intensity gradient magnitude
increased from 1 to 7 intensity units per pixel (giving  up to

). These gradients are of similar magnitude as observed in the
real monkey data (see Figure 4).

We tested the similarity measures for two types of transformation models: affine; and
deformable with elastic regularization. Figure 7 shows the experimental setup with
deformable transformation model (for the affine registration experiments Φi was an affine
transform; for the deformable registration experiment Φi was a longitudinal spline
deformation with 20 control points). The aim of the experiment was to recover the ground

truth inverse deformation, , by registering the 10 source images to I0 (giving ) with
each of the four similarity measures (SSD, NCC, MI, SSR). We repeated each experiment
100 times for each transformation model with different random deformations giving a total
of 16000 registrations (2 white matter change × 2 transformation model × 10 source image ×
4 measure × 100 experiment). Significance was calculated with Welch’s t-test (assuming
normal distributions, but unequal variances) at a significance level of a = 0.01.

Next, we describe the results of the experiments for each transformation model.

1) Affine transformation model—Affine registration is often appropriate for images
from the same adult subject. In our case, it is only a preprocessing step to roughly align the
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images before a more flexible, deformable registration. Nevertheless, the initial alignment
can greatly affect the initial model estimation and the subsequent deformable solution.
Therefore we first investigate the sensitivity of affine registration to white matter appearance
changes separately from deformable registration.

Figure 8 shows the results for registering I1 through I10 to the target image I0 from multiple
sets (n = 100, giving 1000 pair-wise registrations for each similarity measure) of
longitudinal images with both uniform and gradient spatial white matter intensity profiles.

With uniform white matter, all four measures performed well when the contrast of the
source image was close to the contrast of the target image (near 0 white matter intensity
difference in the first plot of the median root mean squared registration error). The results
for the gradient white matter profiles show that the performance of both SSD and NCC
declined as the gradient magnitude increased, while MI and SSR aligned the images well
even with the strongest gradient. Overall, SSR significantly outperformed NCC and MI but
not SSD; however, the differences between the overall registration errors are on the order of
0.001 voxels for SSD, MI, and SSR (see Table 1a. in Figure 8).

The experiments suggest that affine registration can be reliably achieved by SSD, MI or
SSR, but for simplicity MI should be used if affine alignment is the only objective.

2) Deformable registration—Similarly to the affine experiment, Figure 9 shows the
error plots for deformable registrations in the presence of white matter intensity change. For
uniform white matter, SSD again produced small registration errors when the contrast
difference was small, but fared worse than MI and SSR in the presence of large intensity
differences between the target and the source images. SSR performed slightly better than MI
for all time-points.

The setup with deformable registration and white matter gradient resembles the real problem
closely and therefore is the most relevant. Here, SSD and NCC introduced considerable
registration errors with increasing gradient magnitude. The registration error of MI remained
under 2 voxels (mean = 1.62 ± 0.45), while SSR led to significantly less error (mean = 1.25
± 0.35) for all time-points.

D. Experiment 3: Simulated Brain Data
The next set of experiments used simulated 3D brain images with white matter intensity
distributions based on the monkey data. The images were preprocessed as described in
Section IV-A. First, we estimated the voxel-wise longitudinal intensity model within the
white matter from the four time-points of a single subject using SSR with a logistic intensity
model. The estimated intensity model was then applied to each white matter voxel of the 12
month image to generate four different time-points I0, …, I3 with the same geometry as the
12 month image, but with different white matter intensity distributions. The time-points
were random perturbations of the original image time-points (0.5, 3, 6, and 12 months) with
normal distribution (μ = 0, σ2 = 1 week). The final source images were obtained by adding
known longitudinal random deformations to the generated images I0, …, I2 (see Figure 10).
100 sets of longitudinal images were generated for the following experiments with different
random time perturbations and spatial deformations.

1) Smoothing filter size—In this experiment we investigated the effect of the smoothing
filter size on the registration accuracy of SSR. In addition to no smoothing, four isotropic
filters with sizes 3, 5, 7, and 9 voxels were used to smooth the model parameters.
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The size of the smoothing filter had no significant influence on the global registration error
(see Figure 13), even though, larger filters tend to over smooth the salient features of the
model, such as the boundary between the unmyelinated and myelinated white matter. No
smoothing, on the other hand, allows areas of poor model estimation, due to misregistration
between the time-points, to remain in the intensity model. Most noticeably, initial
misregistration near the gray matter white matter boundary can lead to a boundary shift.

Next, we illustrate this boundary shift with a 2D synthetic longitudinal data set with a small
misalignment between the time-points shown in Figure 11. Assuming that this is the best
initial alignment between the time-points, the top row of Figure 12 shows the model images
estimated from the data set at time t2 with three different filter sizes; the bottom row shows
the registration results between the source (I2) and model images (Î(t2)). As the filter size
increases, the model better approximates the true tissue intensities near the boundary and the
registration error (boundary shift) decreases. While a large smoothing filter is advantageous
near the boundary, a smaller filter is less likely to smooth out salient features within the
white matter. Finding the best fixed filter size or smoothing with an adaptive filter size will
be investigated as part of future work.

2) White matter segmentation—Since the intensity change over time occurs in the
white matter, the current algorithm estimates the model parameters only within the white
matter segmentation. Reliable white matter segmentations, however, may not be available.
In order to test the registration accuracy with various quality white matter segmentations, we
registered each of the 100 longitudinal sets of the 3D simulated brain images using SSR with
7 white matter masks with varying quality, shown in Figure 14 (from an empty mask (M−3)
through the accurate (M0) white matter mask and a full brain mask). The mask under/over
estimating the white matter were generated by eroding/dilating the accurate white matter
mask (M0) of the 12 month image. Figure 13 shows the registration accuracy for each of the
masks. The registration error is lowest when the white matter mask is accurate or slightly
underestimated, therefore, accurate white matter segmentation is necessary.

E. Experiment 4: Monkey Data
We compared the model-based similarity measure to mutual information and sum of squared
differences (SSR reduces to SSD when a constant in time intensity model used with no
spatial regularization) on sets of longitudinal magnetic resonance images of 9 monkeys, each
with 4 time-points (2 week, 3, 6, and 12 month). Each time-point was affinely pre-registered
to an atlas generated from images at the same time-point (the atlas images for the four time-
points were affinely registered) and intensity normalized so that the gray matter intensity
distributions matched after normalization (gray matter intensity generally stays constant
over time). The tissue segmentation was obtained at the last time-point with an atlas-based
segmentation method [30].

We registered 3D images of the three early time-points I2wk, I3mo, I6mo to the target image
I12mo with an elastic registration method. Here, the target image is I12mo as white matter
segmentation is easily obtained given the good gray matter white matter contrast, but other
time-points could be used. Since the ground truth deformations were not known, manually
selected landmarks (Figure 15) identified corresponding regions of the brain at the different
time-points (10–20 landmarks in a single slice for each of the 4 time-points in all 9 subjects;
the landmarks were selected by IC based on geometric considerations after without
consulting the deformable registration results, but after affine pre-registration). The distance
between transformed and target landmarks yielded registration accuracy. Figure 16 shows
the experimental setup for comparing MI to SSR.
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Note that for the model-based method the target image is not I12mo but the model Î12mo(t)
which is based on the geometry of I12mo but appearance of the white matter is estimated at
time t of the source image. The last time-point I12mo was chosen since white matter
segmentation is easily obtained given the good gray matter white matter contrast, but other
time-points could be used.

With MI, the registration method accounts for both the non-uniform white matter
appearance change and the morphological changes due to growth through large local
deformations. This is not desirable since the registration method should only account for the
morphological changes. These local deformations are especially apparent for registrations
between I2wk (and to a lesser extent I3mo) and the target I12mo and suggests large local
morphological changes contradictory to normal brain development [9]. The landmark
mismatch results (Figure 17) show that both mutual information and the model-based
approach perform well in the absence of large intensity non-uniformity, however, SSR
consistently introduces smaller erroneous deformations than MI.

Table II shows the aggregate results of the landmark mismatch calculations for SSD, MI,
and SSR. The model-based approach SSR can account for appearance change by adjusting
the intensity of the model image (see the estimated model images in Figure 16) and therefore
is most beneficial when the change in appearance between the source and target image is
large (for I2wk SSR significantly outperformed SSD and MI, for I3mo SSR significantly
outperformed MI).

We also compared 1st and 2nd degree polynomial intensity models to the logistic model and
found no significant difference. This agrees with our findings from Section IV-B with only 4
time-points even the 1st degree model can reasonably estimate the local appearance changes.
However, similarly to the earlier model selection experiment, the logistic model should
outperform the simpler models in larger studies with more time-points or when the model
appearance needs to be extrapolated (e.g., if new images are acquired later in a longitudinal
study after the previous time-points have been aligned).

V. Conclusions
We proposed a new model-based similarity measure which allows the deformable
registration of longitudinal images with appearance change. This method can account for the
intensity change over time and enables the registration method to recover the deformation
due only to changes in morphology. We compared the model-based approach to mutual
information and demonstrated that it can achieve higher accuracy than mutual information in
cases when there is a large appearance change between source and target images. We used a
logistic model of intensity change and an elastic deformation model, however, the
formulation is general and can be used with any other appearance or deformation model. In
the future we will investigate the use of prior models to inform the estimation step in regions
with high uncertainty (e.g., due to poor initial alignment) and combine SSR with a
registration method incorporating spatio-temporal regularization of displacements.
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Fig. 1.
Brain slices and magnifications from T1 weighted magnetic resonance images for a monkey
at ages 2 weeks, 3, 6, 12, and 18 months. White matter appearance changes locally as axons
are myelinated during brain development.
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Fig. 2.
Simplified model of neurodevelopment. The outer ring represents gray matter, the bright
central ring is the myelinating white matter surrounded by darker, unmyelinated white
matter. The overall changes (bottom row; age increases to the right) can be decomposed into
intensity changes due to the myelination process (top row) and morphological changes due
to growth (middle row).
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Fig. 3.
Logistic intensity model.
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Fig. 4.
Spatio-temporal distribution of white matter intensities in 9 monkeys. A single slice from
each time-point is shown in order in the left column (2 week at the bottom), and the white
matter segmentation (red) at 12 months is shown in the middle. Plotted, for each time-point,
the mean (line) ± 1 standard deviation (shaded region) of the spatial distribution of the white
matter intensities averaged over the whole brain of each monkey orthogonal to the PA
direction. The images were affinely registered and intensity normalized based only on the
gray matter intensity distributions (gray matter is assumed to stay constant over time).
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Fig. 5.
Synthetic data sets with 10 time-points generated with various intensity models. The outer
ring resembling gray matter and the inner ring resembling myelinated white matter stay
constant over time. The middle ring representing myelinating white matter changes over
time according to the intensity models shown in the first column.
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Fig. 6.
The influence of the intensity model on the registration is shown. Top row: images
generated with the saturated logistic intensity profile. The goal is to register the source
images I0, …, I8 to the target image I9 with SSR. The following rows show the intensity-
adjusted model images {Î (ti)} and the SSR registration results with the deformation field u
overlaid (red grid) for constant, quadratic, and logistic intensity models. Note that the source
images are registered to the corresponding intensity-adjusted model images. The correct
deformation field is the identity, but the constant model cannot capture the logistic intensity
change.
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Fig. 7.
Experimental setup: 1) Increasing white matter intensity gradient is added to the target, I0. 2)
Adding known random longitudinal deformations yields the source images, 3) which are
registered back to the target. 4) Registration error is calculated from the known (Φi) and

recovered ( ) transformations.
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Fig. 8.
Results for Experiment 2 with affine transformation, uniform and gradient white matter
intensity change. For uniform white matter, the line plot shows the median RMS error vs.
the white matter intensity difference between the source and the target images ( )
for each time-point (0 means the images have the same contrast). For the gradient white
matter, the x-axis of the line plot is the magnitude of the gradient. The boxplots and the
tables summarize the aggregate results over all time-points (the box is the 25th and 75th

percentile, the red line is the medium, the whiskers are 1.5 × interquartile range, and the red
marks are outliers). The small boxplots show results for each time-point (S, N, M, and m are
SSD, NCC, MI, and SSR respectively). For each boxplot, the x-label is highlighted in red/
green if SSR performed significantly better/worse than that particular measure. The row of
images shows the target and source images for a single trial. Note that all box plots and the
bottom line plot have log y scales.
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Fig. 9.
Experiment 2 results with deformable transformation. The graphs are set up similarly as in
Figure 8 except all plots have linear y scales. The last setup with deformable transformation
model and gradient white matter intensity is the most challenging and relevant to the real
world problem.
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Fig. 10.
Simulated brain images with white matter intensity distributions estimated from the monkey
data.
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Fig. 11.
Synthetic data set with logistic white matter intensity change and longitudinal deformation
over time. I0, …, I5 are source images, I6 is the target image. The outline shows the white
matter gray matter boundary of the target image.
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Fig. 12.
The effect of various smoothing filter sizes on the intensity model estimation and the
subsequent registration (data set is shown in Figure 11). Top row: shows the estimated
model from the misaligned synthetic longitudinal data set with 1 × 1, 10 × 10, and 20 × 20
voxel filters (the red outline is the correct tissue boundary). Bottom row: shows the results of
elastically registering time-point I2 to the models Î(t2) in the top row (the yellow outline is
the boundary after the registration).
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Fig. 13.
Results for SSR registration with different smoothing filter sizes (left) and varying quality
white matter segmentations (right; x-axis shows the amount of erosion (−) or dilation (+)
applied to the accurate (0) white matter mask).
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Fig. 14.
White matter segmentations used to investigate the influence of segmentation accuracy on
SSR registration (erosion (M−.) and dilation (M+.) are applied to the accurate (M0)
segmentation).
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Fig. 15.
Corresponding target (cyan) and source (red) landmarks for a single subject.
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Fig. 16.
Experimental setup and results for a single subject out of 9. To test MI, the source images
(blue; from bottom: I2wk, I3mo, I6mo) are registered to the latest time-point I12mo (green).
The resulting deformation field and the magnitude of the deformations (in pixels) is shown
in the right panel. For SSR, the source images are registered to the model (red) that
estimates the appearance of I12mo at the corresponding time of each source image (results in
middle panel).
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Fig. 17.
Landmark distance mismatch for 4 subjects out of 9. Each row shows a single subject. The
last column shows the target images and landmarks (cyan). Columns 1–3 are the source
images: each target-source landmark pair is marked as a circle (red: mutual information;
yellow: SSR) with size proportional to the distance (mismatch) after registration between the
landmark pair (the smaller circle is always on top). That is, the size of the circles are
proportional to registration accuracy (smaller is more accurate) in that particular location.
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TABLE I

Model selection experiment results. In each row, the data for the experiment was generated by the type of
intensity model shown. Each column shows the registration error (RMS) obtained when using that model in
the column for the model-based similarity measure (best values are highlighted).

constant linear quadratic logistic

constant 0.04 0.04 0.04 0.04

linear 0.68 0.07 0.07 0.13

quadratic 0.60 0.10 0.05 0.16

logistic (unsaturated) 1.63 0.10 0.09 0.12

logistic (saturated) 2.36 0.16 0.16 0.12
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