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Abstract
Quantitative modeling and analysis of structural and functional brain networks based on diffusion
tensor imaging (DTI) and functional MRI (fMRI) data have received extensive interest recently.
However, the regularity of these structural and functional brain networks across multiple
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neuroimaging modalities and also across different individuals is largely unknown. This paper
presents a novel approach to inferring group-wise consistent brain sub-networks from multimodal
DTI/resting-state fMRI datasets via multi-view spectral clustering of cortical networks, which
were constructed upon our recently developed and validated large-scale cortical landmarks -
DICCCOL (Dense Individualized and Common Connectivity-based Cortical Landmarks). We
applied the algorithms on DTI data of 100 healthy young females and 50 healthy young males,
obtained consistent multimodal brain networks within and across multiple groups, and further
examined the functional roles of these networks. Our experimental results demonstrated that the
derived brain networks have substantially improved inter-modality and inter-subject consistency.

Index Terms
DTI; fMRI; multimodal brain connectome; multi-view clustering

I. Introduction
Studying structural/functional brain networks via diffusion tensor imaging (DTI)/functional
magnetic resonance imaging (fMRI) has attracted increasing interest recently due to their
potential in elucidating fundamental architectures and principles of the brain [1], [2]. Taking
brain regions as nodes and the structural connections or functional correlations between
these regions as edges, the brain can be viewed as a graph, and thus can be analyzed using
graph theory principles in computer science [3]. For instance, a variety of recent analysis on
brain networks via graphical approaches have shown that both functional and structural
networks of human brain share multiple properties with common complex networks (e.g.,
social network), including small-worldness, scale free (a few highly-connected hubs) and
modularity [1], [4–10]. Furthermore, it is reported that the structural network modularity
plays a key role in generating persistent and dynamic functional patterns [11] and also
determining the hierarchical functional architectures [12], [13]. Thus, constructing brain
networks that are structurally and functionally meaningful and consistent is crucial to
unveiling the brains' fundamental principles [14], [15].

Among tremendous efforts in exploration of brain networks, many of them adopt the single
MRI imaging technique, although their approaches may be different. For instance, some
studies used information from MRI to obtain brain modules. In [16], six structural modules
in brain that have the firm correspondences with brain functional regions were revealed by
comparing brain cortical thickness measured by MRI. In addition, more studies used the
advanced diffusion imaging technique such as diffusion tensor imaging (DTI) and diffusion
spectrum imaging (DSI) to construct brain structural networks and obtain corresponding
structural clusters. In [8], an analysis on large-scale brain structural networks constructed by
DSI reveals a structural core in the posterior medial and parietal cerebral cortex, together
with several modules. On the other hand, thanks to the powerful technique of fMRI, in vivo
analysis of human brain functional network becomes possible. For instance, in [17], the
resting state module of human brain has been analyzed by comparing fMRI BOLD signals
under task with the ones in resting state (R-fMRI).

Essentially, these studies might be substantially improved by integrating multimodal
information [2]. It has been shown that anatomical structural network connections play a key
role in determining and maintaining functional patterns [1]. In general, better quantitative
characterization of the relationship between multimodal brain networks and its consistency
across individuals could significantly advance our understanding of the human brain
architectures. However, this important issue has been rarely investigated due to the
following challenges. First, the variability across individuals makes it difficult to define
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reliable regions of interest (ROIs) that has group-wise consistency. In general, most brain
parcellation approaches have difficulty in establishing across-subjects correspondences. This
problem has been overcome by warping brains into an atlas space via image registration
algorithms and further use the manually-segmented regions in the atlas as ROIs despite of its
limitations in accuracy and robustness [18]. Another set of methods from the functional
perspective is using task-based fMRI to detect functionally-corresponding ROIs [17].
Nevertheless, the cost and time in fMRI data acquisition, is the major restriction in obtaining
data for large-scale networks and for large populations. Thus, it is very challenging to
acquire large-scale group-wise consistent ROIs upon which to construct brain networks.
Second, it is also very challenging to achieve the consistency between structural and
functional brain networks that are derived from different imaging modality, i.e., DTI and R-
fMRI, respectively. As shown in Fig. 1, and also as reported by Honey et al.[19], there is
significant variability between functional and structural networks which makes it difficult to
define and detect common networks between modalities.

In response to the abovementioned challenges, this paper presents a novel approach to infer
group-wise consistent brain networks from multimodal DTI/R-fMRI datasets via multi-view
spectral clustering of large-scale cortical landmarks and their connectivity graphs.
Specifically, we defined network nodes by our recently developed and validated brain
landmarks, namely DICCCOL (Dense Individualized and Common Connectivity-based
Cortical Landmarks) [20]. As shown in Fig. 1, the DICCCOL system at the current stage is
composed of 358 cortical landmarks, each of which was optimized to possess consistent
group-wise DTI-derived fiber connection patterns across populations [20], [21]. The
neuroscience basis is that each cortical region's cytoarchitectonic area has an unique set of
extrinsic inputs/outputs (called the “connectional fingerprint” [22]), which generally predicts
the function that each cortical area could possibly possess. According to our extensive
structural and functional validations [20], these landmarks possess structural and functional
consistency and preserve correspondences across individuals. Based on these landmarks, we
constructed both structural and functional brain networks using multimodal DTI/R-fMRI
data for 150 healthy young adult brains (aged 17-28 years old, with 100 females and 50
males) [23]. We equally separated these subjects into three groups (2 groups of females and
1 group of male) for the purpose of comparison and reproducibility examination. Then, we
developed and applied an effective multi-view spectral clustering algorithm to derive the
consistent multimodal brain networks. Specifically, we considered each structural or
functional network in a subject as a separate view of the studied large-scale network, and
then modeled the clustering of group-wise consistent multimodal brain sub-networks in an
unified multi-view clustering framework, by which the substantial variability of large-scale
brain networks across modalities (DTI and R-fMRI) and different individuals (50 subjects in
each training group) can be modeled and handled by the powerful multi-view spectral
clustering method. The prominent advantage of multi-view spectral clustering methodology
is that it can effectively deal with heterogeneous features by maximizing the mutual
agreement across multimodal clusters in different views [24]. This is actually the major
methodological novelty and contribution of this paper.

II. Method
In this section, we will introduce our computational pipeline of the proposed algorithm,
which is summarized in Fig. 2. First, after obtaining 358 whole-cortex dense landmarks
based on our recently developed DICCCOL [20], we constructed the functional connections
and structural connections between these DICCCOL landmarks with the R-fMRI and the
DTI, which will be detailed in section II.A. Based on this, we trained each pair of
connectivity matrices, subject by subject, to obtain the common connections across
modalities while retaining individual information of each subject, and then trained and

Chen et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 April 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



combined these pair-wise common matrices group-wisely. The respective co-training
algorithms will be introduced in section II.C. In the end, the final group-wise multi-modality
common connectomes are obtained using spectral clustering, as will be described in section
II.B.

A. Multimodal Brain Network Construction
In response to the first challenge, i.e., to acquire large-scale group-wise consistent ROIs
upon which to construct brain networks, we recently developed and validated 358 cortical
landmarks that have intrinsically-established structural and functional correspondences in
different brains [20], which provides the natural and ideal nodes for brain network
construction. Based on these 358 cortical landmarks/ROIs (Fig. 1), we constructed both
structural (Fig. 1a) and functional (Fig. 1b) networks for 150 healthy brains with multimodal
DTI/R-fMRI data. Specifically, to construct structural connection matrix, the connection
strength between each pair of ROIs is defined as the average FA (fractional anisotropy)
value along the fiber bundle connecting these two ROIs. If there is no connecting fiber
bundle between two ROIs, the connection strength is set to 0. As for the connectivity matrix
of functional networks, they are constructed based on R-fMRI data as follows. First, we
performed brain tissue segmentation directly on DTI data [25], and used the gray matter
segmentation map as a constraint for R-fMRI BOLD signal extraction. A principal
component analysis was then conducted for the R-fMRI time series of all gray matter voxels
within an ROI, and the first principal component was adopted as its representative R-fMRI
BOLD signal. Finally, the functional connection strength between ROIs is defined as the
Pearson correlation of their R-fMRI BOLD signals. An example of the constructed structural
and functional networks is shown in Fig. 1.

B. Spectral Clustering
Taking a graph G=(V,E) with ‖V‖=n nodes, the objective of clustering problem is to find
cluster indicator matrix C=ℜn×k such that for the ith column of C, cij = 1 iff. the jth node
belongs to the ith cluster. Otherwise, cij = 0. The spectral clustering algorithm solves this
problem by solving the following equation [26]:

(1)

where W = ℜn×n is the affinity/similarity matrix of G, which is a semi-positive definite

matrix. D is a diagonal matrix with the degree  for the corresponding vertex vi
on its diagonal. Meanwhile, Eq. 1 can be formulated as eigen problem of Laplacian matrix L
= I−D−1W [27]. When the eigenvalue of L equals to 0, the corresponding eigenvector y is the
cluster indicator vector c of the graph. For the non-zero eigenvalue of L, the first k
eigenvectors of L, corresponding to the k smallest eigenvalues, is the approximation of C
that partitions the graph into k components. The objective of this solution is to partition the
graph by the normalized cut (Ncut) [27], which is defined as:

(2)

where A∪B = V, and A∩B = Φ. cut(A,B) = Σu∈A,v∈Bwuv is the sum of edges connecting
partitions A and B, which is called cut in graph theory. assoc(A,V) = Σi∈Adi is the total
connections from nodes in A, and assoc(B,V) is defined in a similar way. By minimizing
Ncut value, one tends to obtain a balanced partition with relatively low cut.

Chen et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 April 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In practice, the second eigenvector of graph Laplacian is often used to bi-partition the graph.
As shown in Fig. 3, we can partition the nodes by their signs in the second eigenvector – that
is, assigning the nodes with the positive value in the eigenvector to one cluster and the rest
to the other. However, to achieve more meaningful result, k-means algorithm is applied to
bi-partition the graph based on the second eigenvector. Then, the sub-graph can be further
partitioned by recalculating the eigenvector of the graph Laplacian of sub-graph if
necessary. By doing so recursively, the graph will be partitioned into multiple clusters.
Specifically, we applied Ncut as determinant condition for bi-partitioning. We will stop bi-
partitioning sub-graph if Ncut value is larger than the pre-set threshold. Thus, the number of
clusters will be determined by the threshold we set. The outline of this partition algorithm is
listed below, by following [26].

Algorithm 1. Spectral Clustering

Input: Connectivity matrix W with size n×n, and the threshold T of Ncut for partitioning.

Output: Clusters of nodes.

1. Compute the normalized Laplacian L of W.

2. Solve eigenvectors of L with the smallest eigenvalues.

3. Use the eigenvector with the second smallest eigenvalue to bi-partition the graph, and then compute the
corresponding Ncut value.

4. If Ncut < T, bi-partition the graph, and repeat the algorithm on two bi-partitioned sub-graphs.

5. Else Return without bi-partitioning the graph.

C. Co-Training Approach Based on Spectral Clustering
In our research problem, we have both structural connectivity and functional connectivity
for large-scale brain network clustering. To find common brain sub-networks across
different modalities, an intuitive way is to assign a weight to each view or modality and then
combine them together. However, it is difficult to define optimal weights, especially when
there exists significant variability across modalities – the common connection obtained may
be biased when the connection is strong in one modality but absent in the other modality.
Thus, how to fuse these multimodal networks to achieve the relatively consistent sub-
networks becomes an important issue. Recently, a clustering methodology called multi-view
clustering has been developed to solve this type of problem [24], [28]. In this paper, we
designed a co-training approach based on spectral clustering to maximize, first, the
agreement between the structural network and functional network, and then the agreement
between subjects, to find the group-wise consistent multimodal connectomes of the human
brain.

As shown in the previous section, when the eigenvalue is 0, the corresponding eigenvector
of normalized Laplacian of a graph is the cluster indicator vector. For a fully-connected
graph, spectral clustering solved a relaxed solution of min cut problem. That is, the top
eigenvectors carry the most discriminative information for graph clustering. In [24], the
authors have shown that, by projecting the affinity matrix to the eigenspace of the first k
eigenvectors corresponding to the k smallest eigenvalues, the inter-cluster details will be
discarded and only the essential information required for clustering retains. Thus, we can
achieve the agreement between two views by projecting the affinity matrix of one view to
the eigenspace of the other view. As the eigenvectors are orthogonal, the affinity matrix in
eigenspace can be easily projected back by multiplying the transpose of eigenvectors matrix.
It should be mentioned that the post-projected affinity matrix obtained in this way is not
symmetric. To make it symmetric, we added the post-projected affinity matrix with its
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transpose and then divide it by 2. The whole projection process can be summarized as
follows:

(3)

where U = ℜn×k is the first k eigenvectors corresponding to the top k smallest eigenvalues of
graph Laplacian of affinity matrix.

To further illustrate how this approach works, we assume that there exist two discriminate
clusters A and B in a graph G, and also that the affinity matrix of G has been rearranged by
clusters as follows:

(4)

where WA = (ℜ)‖A‖×‖A‖ are the edges between nodes in cluster A, with WB defined similarly.
WAB = ℜ‖A‖×‖B‖ are the edges between clusters A and B. Then the corresponding cluster
indicator matrix C is:

(5)

where IA = 1‖A‖, IB = 1‖B‖. As WA and WB are the symmetric matrices, let's define

 and . Then, we can get:

(6)

We can see that the element wij of  is the average degree of entry i and entry j of sub-

matrix WA, which are similarly done for  and . This indicates that the projection
process tends to fuse and smooth the inter-cluster connections or intra-cluster connections
independently. As we know, the intra-cluster connections tend to be high and inter-cluster
connections are relatively low. By smoothing inter/intra-cluster connections separately, we
can expect the increase in intra-cluster connection strength and vice versa. However, in
practice, the eigenvectors obtained are approximations of cluster indicators, and the clusters
are indicated by their signs approximately as shown in Fig. 3. Then, for the above affinity
matrix W, the corresponding second eigenvector should be:
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(7)

where P = ℜ‖A‖ is containing the positive real numbers and N = ℜ‖B‖ is a vector containing
the negative real numbers. Then we will have:

(8)

In the above equation,  can be separated into two parts. The first part

 is the fuse of connections within cluster A, and the second part

 is the fuse of connections between clusters A and B. It should be

noted that the first part is all positive and the second part is all negative, which means  is
the sum of intra-cluster connections of cluster A minus the inter-cluster connections between

A and B. Similarly,  is the sum of connections in B minus the inter-cluster connections.

And  is the sum of inter-cluster connections minus the intra-cluster connections. As we
know, WA and WB are the matrices that are relatively dense with large values, and WAB is

sparser with low values. Thus, we can expect high positive values evenly distributed in 

and,  while low or even negative values in . Since the negative values in W∗ are
caused by strong inter-cluster connections which are the disagreed part between the matrices
and are in conflict with the definition of the affinity matrix, we set all negative values in W∗

to 0 after projection.

Let  be the combination of the first k eigenvectors, and
then we will have:

(9)

Thus, by projecting the graph affinity matrix to the eigenspace of top eigenvectors of
corresponding graph Laplacian matrix, we can smooth and thus increase the intra-cluster

connections and also decrease or remove inter-cluster connections. Let  be the
projecting matrix. For pair-wise co-training of functional and structural connectivity
matrices, we can project functional matrix to the spectral eigenspace of structural matrix and
vise versa at the same time by using above steps iteratively. While for group-wise co-
training process, we can project the matrices of one subject to the spectral eigenspace of the
rest subjects. The group-wise co-training step for p subjects with single view for each
subject is defined as follows:
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(10)

where Wi is the affinity matrix of subject i; Uj is the spectral eigenvector matrix of subject j;

 is the corresponding projecting matrix of subject j. When we have both structural

matrix and functional matrix for each subject, Mj is re-defined as , where
Usj is the eigenvector matrix of structural matrix spectrum, and UFj is the eigenvector matrix
of functional matrix spectrum. Wi is then either the functional matrix or structural matrix.
The detailed algorithm for pair-wise co-training is as Algorithm 2.

As shown previously, during the projection process, the within-cluster connection will be
smoothed (increasing the positive agreement between matrices) and the disagreed
connections will be broken (increasing the negative agreement between matrices). As a
result, only the agreed connections will be retained during the iterative projection. As the
algorithm will converge when no more agreement could be further achieved, the
convergence could be assessed by the measurement of similarity between matrices.
Particularly, we applied different measurements for different scenarios and will discuss this
important issue in details in section I.A.

Algorithm 2

Input: Connectivity matrices of two views ,  , and the number of eigenvectors to consider k.

Output: Co-trained connectivity matrices , .

1.

Compute the initial normalized Laplacian  , of each connectivity matrix, and the first k eigenvectors  ,

 with the k smallest eigenvalues of  , .

2. for i = 1 to iter

3.

  

4.

  

5.

 Compute Laplacian and the corresponding first k eigenvectors  ,  of  , .

6.

 If converge, return .

The algorithm for group-wise co-training algorithm is similar to the above by replacing the
pair-wise projection function proj() to the group-wise projection function gproj() in Eq. 10.
After co-training, the trained matrices are similar as shown in section IV.A. The final fused
connection matrix can be obtained by calculating the average normalized matrix between
different subjects and views. Base on fused connection matrix, the final multi-modal
connectomes of human brain will be obtained directly by applying spectral clustering
algorithm in section II.B.
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III. Experiment Material and Parameter Selection
A. Experiment Materials

Our experiment was performed on 150 healthy adults (100 females and 50 males) from the
publicly released dataset by the Beijing Normal University, China [23]. Both DTI and R-
fMRI were acquired for each subject. The parameters are as follows. R-fMRI: 33 axial
slices, thickness/gap = 3/0.6mm, in-plane resolution = 64×64, TR = 2000ms, TE = 30ms,
flip angle = 90°, FOV = 200×200mm. DTI: single-shot Echo-Planer Imaging-based
sequence, 49 axial slices, 2.5mm slice thickness, TR = 7200ms, TE = 104ms, 64 diffusion
directions, b-value = 1000s/mm2, matrix = 128×128, FOV = 230×230mm2. Preprocessing
steps include tissue segmentation, surface reconstruction, and fiber tracking, which are
similar to the methods in [20]. Then a set of large-scale, group-wise consistent ROIs were
obtained for each subject using the method in [20]. The structural and functional
connectome matrices were then computed using the method described in section II.A.
Examples of ROIs and connectivity matrices are shown in Fig. 1. To test the reproducibility
of our proposed method, we randomly separated the female subjects into two training
groups: female group 1 and female group 2.

B. Parameter Selection
Normalized mutual information (NMI) [29] and Pearson correlation coefficient (PCC) are
applied as measurements to assess the level of agreement between two affinity matrices.
NMI between two affinity matrices A and B is defined as follows:

(11)

where  is the entropy of A. I(A,B) is the mutual information
between A and B, and is defined as:

(12)

The values of NMI and PCC are both between 0 and 1. The higher the value is, the more the
two matrices agree with each other [29].

Number of eigenvectors—During the co-training process introduced in section II.C, the
affinity matrix will be projected to the first k eigenvectors of the graph Laplacian. In ideal
case, k should be set equal to or larger than the true cluster number. However, due to the
lack of prior knowledge, we tested the result with different k values on the pair-wise training
of single subject networks. As shown in Fig. 4(a)-(b), by using small k value, more
information will be removed and thus the agreement between two views will be higher.
However, small k value will cause the loss of useful information and results in over-training.
Also, small k value may cause oscillation during training process which is vulnerable. On
the other hand, large k value will keep too much information including the uncommon
information between views that we want to remove and thus may cause under-training.
Considering that the number of nodes in our network is 358, we set k to 25 empirically. By
using this k value, we can ensure the useful information retained, and also the accuracy and
smoothness during training process.
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Convergence criterion—During the training process, our goal is to maximize the
agreement between different views. In Fig. 4(e), we can see that the NMI between two
networks is increasing during the training process. In general, PCC between two networks
increases in the first several iterations rapidly and then decreases slowly. This is mainly
because there is a certain amount of disagreement between two networks. Though the intra-
cluster connections will be smoothed to increase the agreement between two matrices, some
connections may still be relatively weak compared with other connections as highlighted by
green arrows in Fig. 4(b)-(c). Also, as highlighted by the blue arrows in Fig. 4(c), we can see
that, after training, certain sets of edges are highly correlated, but there may exist multiple
correlation models between two views and thus the overall correlation is low. This indicates
that, compared with PCC, NMI is a better measurement as the criterion of co-training
convergence. However, the pair-wise trained result will be used for successive group-wise
training. If the training process iterates for too many times, the group-wise information will
also be smoothed out at the same time, although we maximize the agreement between two
matrices of each subject. Thus, we use PCC value as a convergence criterion for pair-wise
training (Fig. 2(b)). The mean NMI between each pair of subjects of each view is used as a
convergence criterion of group-wise training (Fig. 2(c)). As shown in Fig. 5 and
Supplemental Fig. 1, it takes about 30 iterations for group-wise co-training algorithm to
converge. For pair-wise training, it takes either 3 or 4 iterations to converge (see
Supplemental Table I).

IV. Results
A. Clustered Multi-modal Networks

We obtained 8 multi-modal clusters upon 358 DICCCOL landmarks using the proposed
methods and the parameters described above. The clustering results are similar when set
threshold of Ncut in spectral clustering algorithm from 0.2 to 0.9, thus we set it 0.5
specifically. We randomly picked 4 subjects in female group 1 and visualized their affinity
matrices before and after training in Fig. 6, where the matrices are all rearranged by clusters.
Each cluster is highlighted by a green box. As the connection strength of edges in certain
cluster may be relatively higher which makes it difficult to visualize other clusters (Fig. 4
(d-e)), the connection strength of co-trained matrices are adaptively normalized for the
purpose of visualization in the following way. First, each row of matrix is scaled
independently such that the largest element in each row is 1 (i.e., by normalizing the largest
connection to each node). Then, add the row-normalized matrix to its transpose to obtain the
adjusted matrix (symmetrizing matrix). By observation, we can see that the connection
matrices vary substantially between subjects and modalities before optimizations (the
second row of each panel). After pair-wise co-training, the structural connection matrix and
functional connection matrix of each subject are more similar to each other, but there still
exists disagreement. However, after group-wise training, the matrices are similar across
subjects and modalities. A clear boundary of eight clusters can be observed (at the third row
of each panel). To validate the performance of the proposed algorithm in identifying
common clusters, the strengths of the original structural/functional connections within each
cluster are measured as shown in Table I. Obviously, both of the average structural
connection and the average functional connection within each cluster are substantially
higher than the average connection strength of the whole brain network. Similar observation
can also be observed in the first rows of the matrices in Fig. 6 that the clusters inferred by
the proposed algorithm have relatively stronger within-cluster connections than the whole
network for both connection matrices.

We visualized the 8 clusters trained from the female group 1 on the cerebral cortex surface
in Fig. 7(a)-(c). By observation, most of the clusters are composed by ROIs that are
geometrically close to each other or structurally/functionally connected. It is interesting that
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the parcellation of the cortical landmarks in Fig. 7(a)-(c) largely coincides with the recently
published clusters obtained via genetic similarity by Chen et al. [32] and is consistent with
current neuroscience knowledge. For instance, the major part of cluster 1 includes the visual
cortex [7], [33–36]. The major part of cluster 4 includes the sensory-motor systems
including pre- and post-central gyrus (BAs 1/2/3/4), and the Supplementary Motor Area
(SMA) (BA 6) [7], [34–36]. Cluster 8 includes the prefrontal cortex (BA 11) and dorsal
anterior cingulate (BA 32) [34]. Fig. 7(d) shows the average structural connections between
clusters. More intra-cluster connections than inter-cluster connections can be observed. We
can also observe connection hubs within each cluster such as DICCCOL #104, #170, #185,
#200 in cluster 4 as highlighted by black arrow. For details of location of these DICCCOL
ROIs on the cerebral cortex, please refer to the website (http://dicccol.cs.uga.edu).

B. Reproducibility and Between-Gender Similarity
The female training group 2 also generated 8 clusters. The visualization of these 8 clusters
on the template cortex surface is shown in Fig. 8(a). The IDs of clusters are calibrated
according to their overlap degree with the clusters of female group 1. The nodes with
consistent cluster labels between two female training groups are shown in Fig. 8(b). By
observation, we can clearly see that these eight clusters are similar to those obtained from
female group 1. Besides, we further computed the Rand Index (RI) [37] and NMI [29]
between clustering results of these two sets of subjects. Both RI and NMI range between 0
and 1. The higher value indicates higher similarity between clustering results. As shown in
Table II, the RI value between these two results is 0.93 and the NMI value is 0.72. These
relatively high RI and NMI values suggest that the proposed method is stable and robust,
and the results are highly reproducible across different training groups.

The training results on male groups also gave eight similar clusters. As shown in Fig. 9, it is
evident that the male's multi-modal clusters are similar to those of females. The RI and NMI
values between the clustering results of male and female groups are also high (Table II).
There are 298 nodes that are consistent in cluster labels between two female training groups
and 282 consistent nodes across all three training groups. As previous neuroscience studies
suggested that there is a certain degree of difference in brain function and structure between
genders [38], it is intriguing that no significant difference can be observed between the
obtained network clusters of male and female. Our interpretation is that the DICCCOLs we
applied as ROIs do not carry much gender-specific information [20]. To further
quantitatively show this point, we measured the NMI between the original connection
matrices and no significant differences between genders can be observed (Supplemental Fig.
III). As for the network disagreement between females and males, it is still not clear whether
they are caused by sexual difference, or by the variability in the data acquisition,
preprocessing and analysis. However, as shown in Fig. 8(b) and Fig. 9(b), the most
inconsistent nodes locate on the boundary region between clusters. It is more likely that the
variability between cluster results is caused by the individual variability. This observation,
together with previous results, suggests that the proposed multi-view spectral clustering
algorithm is robust and powerful in identifying group-wise consistent clusters.

C. Comparisons between Approaches
For the purpose of comparison, sub-networks obtained by different approaches are
computed. We computed the group-wise sub-networks based only on structural information
or only on functional information. The group-wise consistent connection matrix for each
modality is obtained respectively using the proposed multi-view spectral co-training
approach. The parameters are selected in a way similar to those described in section III.B.
As there is only one connection matrix considered for each subject, group-wise co-training
is performed directly on the original matrices without pare-wise co-training. On average, it
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took 42 iterations for structural matrices to converge and 36 iterations for functional
matrices to converge. The threshold of Ncut in the spectral clustering is set to 0.5. Also, an
average matrix of both modalities' connection matrices of the training group is obtained for
comparison. Based on the average matrix, the cluster is obtained by the spectral clustering
method described in section II.B. As the matrix is more densely connected compared with
the final fuse matrices obtained by proposed approach, the threshold of Ncut is set to 0.9
here. In this section, our analysis will mainly focus on the results of female group 1. For the
results of other training groups, it is referred to supplemental Fig. 2-3.

In total, 14 structural clusters and 11 functional clusters were obtained. These clusters can be
visually observed with clear boundaries in Fig. 10(b)-(c). The visualization of clusters on the
template cortex is shown in Fig. 11. Interestingly, functional regions are symmetric in
certain degree between the left and right spheres. Another intriguing observation is that,
though structure connection matrix generated more clusters, these clusters are highly
reproducible across three training groups we have. As shown in Table III, the average RI
value is 0.97 and average NMI value is 0.83, which are relatively high.

It is evident that the derived brain sub-networks via the multi-view spectral clustering
method have substantially improved inter-modality consistency in comparison with the
clustering results by any single modality. As shown in Fig. 10, the clusters based only on
structural connection matrices failed to give functional meaningful clusters. On the other
side, functional clusters also failed to generate significant structural clusters. During the
multi-modal co-training process, these single modality clusters are split and then
recombined considering the mutual clusters between modalities. Thus, as shown in Fig.
10(a), the multi-modal clusters carry dense intra-cluster connections for both structural and
functional connections.

However, as shown in Fig. 10(d), the average matrix failed to offer meaningful information
for clusters, which might be caused by the following reasons. 1) The variability across
individual connection matrices might be relatively high. Thus, by averaging individual
matrices, useful information might be smoothed out. 2) The structural connection matrix is
too sparse compared with functional connection matrix. Thus, the structural information
may be overwhelmed by functional information. 3) The disagreement between two
modalities is relatively high. For the edges between certain nodes, only the connection in
one modality is strong. But the connection strength of these edges will still remain strong if
taking the average value as the common connection strength.

V. Discussion and Conclusion
We inferred eight group-wise consistent multi-modal brain sub-networks via a novel multi-
view spectral clustering approach based on our recently developed cortical landmark system
- DICCCOL. The DICCCOL system is composed of 358 cortical landmarks, which are
optimized and predicted via brain white matter connection patterns such that they possess
correspondence between individuals. Structural/functional networks are composed of
connections between these landmarks derived from DTI/R-fMRI data. Then a co-training
framework based on the novel multi-view spectral clustering algorithm is applied to obtain
the group-wise consistent and cross-modality common brain network clusters. The
advantage of multi-view spectral clustering methodology is that it can effectively deal with
heterogeneous features by maximizing the mutual agreement across clusters in different
views [24].

Our experiment results have shown that the algorithm converges well on the data used. Eight
multi-modal brain sub-networks that are reproducible across different training groups have
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been identified. They are also shared by both males and females. Compared with clusters
derived from structural connection or functional connection only, the sub-networks obtained
by our proposed method have improved inter-modality consistency significantly.

To conclude, the major technical contribution of this work is the proposed novel clustering
framework for multi-view brain networks. Based on this framework, eight sub-networks are
derived from the DICCCOL system via connection matrices based on DTI/R-fMRI data.
Our experimental results suggest that the derived sub-networks are functionally/structurally
meaningful. Also, we demonstrated the possible usage of DICCCOL system in studying
brain networks patterns. Further and intensive studies based on the DICCCOL system and
those eight inferred multi-modal sub-networks can potentially help elucidate brain functions
and dysfunctions in the future.
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Fig. 1.
An example of the constructed structural (a) and functional (b) brain networks. Both
networks were composed upon the same set of 358 DICCCOL ROIs as nodes. Each sub-
figure shows a joint view of ROIs (orange dots) and their connections (blue lines), along
with the corresponding connectivity matrix on the right.
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Fig. 2.
Illustration of the computational pipeline of the proposed method.
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Fig. 3.
Illustration of spectral clustering. (a) The original graph and the corresponding affinity
matrix. (b) The clustered graph and the corresponding affinity matrix re-arranged by
clusters. (c) The second eigenvector of the graph after sorting.
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Fig. 4.
Illustration of parameter selection for pair-wise training. (a)-(c) Original structural and
functional connections and the co-trained connections in the 3rd and 18th iteration when the
top 25 eigenvectors are considered. In each subfigure, the left figure is structural matrix; the
middle figure is functional matrix; the right figure is functional connection vs. structural
connection with each dot representing an edge. (d) Changes of PCC during co-training
iteration with different numbers of eigenvectors considered. (e) Changes of NMI during co-
training iteration with different numbers of eigenvectors considered.
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Fig. 5.
Changes of average NMI in each iteration of group-wise co-training process for each
training group.
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Fig. 6.
Visualization of original and trained connection matrices of 4 randomly selected subjects
from the first female group. The matrices are re-arranged by group-wise consistent clusters.
Each cluster is highlighted by green box. The matrices are adaptively normalized node by
node to give better visualization.
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Fig. 7.
Visualization of group-wise multimodal brain networks computed based on the female
training group 1. The color-coding of sub-networks is provided in the right side of subfigure
(d). (a)-(c) Visualization of multi-modal sub-networks on template cerebral cortex. The
visualization was generated by ParaView [30]. (d) Visualization of average structural
connections between ROIs. Only the top 9.17% connections (the average connection density
of 150 structural matrices applied) are retained. ROIs are rearranged and color-coded by
sub-networks and listed around the circle. Between sub-networks connections are
represented by gray lines and within sub-network connections are represented by
corresponding color lines. The visualization was generated using the Circos toolkit [31]. It
should be noted that the short distances of the re-arranged connections in this sub-figure do
not necessarily mean that their actual structural connections have short distances, as shown
in (a).
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Fig. 8.
Visualization of group-wise multimodal brain networks computed based on female training
group 2. The visualization is performed on the template brain with Paraview [30].
Corresponding sub-networks are color-coded by the same color. (a) Networks of female
training group 2. (b) Nodes with consistent clusters between two female training groups.
Inconsistent nodes are color-coded by gray.
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Fig. 9.
Visualization of group-wise multimodal brain networks computed based on male training
group. The visualization is performed on the template brain with ParaView [30].
Corresponding sub-networks are color-coded by the same color. (a) Networks of male
training group. (b) Nodes with consistent clusters across three training groups. Inconsistent
nodes are color-coded by gray.
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Fig. 10.
Visualization of clusters on matrices obtained by different approaches from female group 1.
Matrices including adaptively normalized fused matrix (top row), average structure matrix
(middle row), and average functional matrix (bottom row) are visualized and rearranged by
corresponding clusters. Each cluster is highlighted by green box. In each sub-figure, the IDs
of the clusters from top-left to bottom-right are from 1 to n successively. (a) Fused matrix
using the proposed group-wise multi-view co-training approach using multi-modality
matrices. (b) Group-wise co-trained matrix fused by the proposed method with structure
connection matrices only. (c) Group-wise co-trained matrix fused by the proposed method
with functional connection matrices only. (d) Average matrix of both connection matrices of
all the subjects in the training group.
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Fig. 11.
Visualization of group-wise structural/functional brain networks computed based on female
group 1. The visualization is performed on the template brain with ParaView [30]. (a)
Structural networks. (b) Functional networks.
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Table II
RI and NMI Between Clustering Results

Index Type RI NMI

Female 1 VS. Female 2 0.93 0.72

Female 1 VS. Male 0.94 0.77

Female 2 VS. Male 0.93 0.74
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Table III
RI and NMI Between Clustering Results

Structure Function

Index Type RI NMI RI NMI

Female 1 VS. Female 2 0.97 0.84 0.93 0.73

Female 1 VS. Male 0.97 0.83 0.92 0.69

Female 2 VS. Male 0.96 0.82 0.92 0.70
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