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Abstract
Twin imaging studies have been valuable for understanding the relative contribution of the
environment and genes on brain structures and their functions. Conventional analyses of twin
imaging data include three sequential steps: spatially smoothing imaging data, independently
fitting a structural equation model at each voxel, and finally correcting for multiple comparisons.
However, conventional analyses are limited due to the same amount of smoothing throughout the
whole image, the arbitrary choice of smoothing extent, and the decreased power in detecting
environmental and genetic effects introduced by smoothing raw images. The goal of this article is
to develop a two-stage multiscale adaptive regression method (TwinMARM) for spatial and
adaptive analysis of twin neuroimaging and behavioral data. The first stage is to establish the
relationship between twin imaging data and a set of covariates of interest, such as age and gender.
The second stage is to disentangle the environmental and genetic influences on brain structures
and their functions. In each stage, TwinMARM employs hierarchically nested spheres with
increasing radii at each location and then captures spatial dependence among imaging
observations via consecutively connected spheres across all voxels. Simulation studies show that
our TwinMARM significantly outperforms conventional analyses of twin imaging data. Finally,
we use our method to detect statistically significant effects of genetic and environmental variations
on white matter structures in a neonatal twin study.
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1 Introduction
The typical design of a twin study compares the similarity of monozygotic twins (MZ), who
share the same genetic polymorphisms, to that of dizygotic twins (DZ), who share an
average of 50% of their genetic polymorphisms. Under the equal environment assumption
across zygosities, the known differences in genetic similarity allows us to dissect the effects
of genes and environment on a known phenotype, such as total brain volume and volumes of
subcortical structures. Thus, twin neuroimaging studies have been a valuable source of
information for evaluating the inheritance of brain structure and function by disentangling
genetic factors from environment [1, 2, 3, 4, 5, 6, 7, 8]. For instance, high heritability was
found in different brain volumes including intracranial volume, total brain volume, and
global gray and white matter volumes [9, 3, 10]. Moreover, cortical thickness in the
sensorimotor cortex, middle frontal cortex, and anterior temporal cortex were found to be
influenced by genetic factors [5, 11].

The voxel-wise methods for analyzing twin neuroimaging data on a two-dimensional (2D)
surface (or in a three-dimensional (3D) volume) are sequentially executed in three steps. The
first step is to use standard smoothing methods to spatially smooth the imaging data [5, 6, 7].
These smoothing methods are commonly independent of the imaging data and apply the
same amount of smoothing throughout the whole image. See, for example, [12] for
overviews of some smoothing methods in the neuroimaging literature. The second step
involves fitting statistical models to imaging measures from all twin pairs at each voxel or
surface location separately to generate a parametric map of test statistics (or p–values) [13,
14]. The most commonly used models are structural equation models, which primarily
decompose the observed phenotypic variance into additive genetic, dominant genetic,
common environmental components, and random noise [15, 16]. The third step is to
compute adjusted p-values in order to correct for testing multiple hypotheses across
thousands to millions of locations using multiple comparison correction methods (e.g.,
random field theory (RFT), false discovery rate (FDR), or permutation methods)[17, 18, 19,
20, 21, 22].

The existing voxel-wise methods based on Gaussian kernel smoothing and structural
equation models have two major limitations for analyzing twin neuroimaging data, which
underscore the great need for further methodological development. It is well known that the
commonly used Gaussian kernel for smoothing imaging data usually blurs the image data
near the edges of the significant regions, which can dramatically increase the numbers of
false positives and negatives. As shown in [23, 24], the existing voxel-wise methods can
suffer from the arbitrary choice of smoothing extent in the initial smoothing step, which
leads to the large number of false positive and false negative results. An overview of
different smoothing methods that are used in the neuroimaging literature can be found in
[12]. Generally, most methods for smoothing raw twin imaging data take a weighted average
of the imaging data at voxels in the neighborhood of each voxel, thus are primarily
associated with the mean structure of imaging data. Such a way of smoothing raw twin
imaging data can change the variance structure of imaging data, which is primarily
associated with genetic and environmental factors [25, 16, 15, 13, 14]. Thus, directly
smoothing twin imaging data can introduce substantial bias in estimating these factors and
lead to a dramatic increase of the numbers of false positives and negatives. We will
investigate the consequence of smoothing twin imaging data by theoretical arguments in the
Appendix and using simulated data in Section 3. Recently, [26] examined how the overall
significance of voxel-wise effects varied with respect to full width at half
maximum(FWHM) of the Gaussian smoothing applied to the fractional anisotropy (FA)
images. Their results have shown that raw FAmaps with no smoothing yielded the greatest
sensitivity to detect gene effects. Our results give a theoretical justification for their results.
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In general, directly smoothing raw twin imaging data by using Gaussian kernel should be
avoided in practice.

As pointed out by [20] and many others, these voxel-wise methods essentially treat all
voxels as independent units in the modeling stage, and they explicitly model the spatial
coherence and incorporate the information that spatially contiguous regions of effect with
rather sharp edges may exist in neuroimaging data. At least two groups of statistical methods
have been developed to characterize spatial dependence in neuroimaging data. The first
group of methods is to explicitly incorporate the spatial non-independence in the p-value or
testing statistic images. These methods usually combine strength from both the magnitude of
testing statistic and cluster extent, where the cluster is defined as the number of contiguous
signiificant voxels above a specific threshold [20, 21, 22].

Instead of solely utilizing information in the p-value or testing statistic images, the other
group of methods explicitly incorporates the spatial dependence in their models. It is
common to use conditional autoregressive (CAR), Markov random field (MRF), and other
spatial correlation priors to characterize spatial dependence among spatially connected
voxels [27, 28, 29, 30, 31, 32]. In addition, a wealth of image denoising and restoration
methods has been developed for pre-processing a single image in the literature. An overview
of image denoising and restoration methods has been given in [33, 34] and references
therein. For instance, Polzehl et al.[35, 36] developed a propagation separation(PS) approach
to adaptively and spatially smooth images from a single image without detecting edge
curves/surfaces explicitly. In Qiu et al.[37, 38], novel three-dimensional (3D) denoising
procedures were proposed to nonparametrically estimate a 3-D jump surface from noisy
data. In Tabelow et al. [39, 40, 41], the original PS idea was adapted to develop a multiscale
adaptive linear model to adaptively and spatially denoise functional magnetic resonance
imaging (fMRI) and diffusion tensor images (DTI) from a single subject. Under the linear
model for fMRI, In Polzehl et al.[42], a structural adaptive segmentation algorithm was
developed to integrate the signal detection with noise detection in one procedure. In Li et al.
[43], a multiscale adaptive regression model(MARM) was proposed to integrate the PS
approach [35, 36] with general statistical modeling at each voxel for spatial and adaptive
analysis of neuroimaging data from multiple subjects in various study designs.

The aim of this article is to develop a pipeline, called TwinMARM, for the spatial and
adaptive analysis of twin neuroimaging data. TwinMARM integrates adaptive estimation
and testing in a single framework. TwinMARM consists of two stages of multiscale adaptive
regression models (MARM). Each stage of TwinMARM constructs hierarchical nested
neighborhoods with increasing radii at all voxels, adaptively generates weighted quasi-
likelihood functions, and efficiently utilizes available information to estimate parameters.
Particularly, in the first stage, weighted quasi-likelihood functions are constructed to capture
the mean structure of imaging data in order to establish the relationship between twin
imaging data and a set of covariates of interest, such as age and gender. Subsequently, in the
second stage, a set of new weighted quasi-likelihood functions is built that utilizes the
variance structure of imaging data to disentangle relative contributions of environment and
genes on brain structures and their functions.

Compared to all existing methods including MARM and PS, we make several major
contributions. TwinMARM represents a novel generalization of MARM and PS.
Specifically, PS has been primarily used to solely average imaging intensity, which
improves the accuracy in estimating the mean structure of imaging data [42, 39, 40, 41], but
we are more interested in variance structure of imaging data in Twin studies. One may
directly apply MARM to the structural equation model (SEM) described in Section 2, but we
have found that it is computationally difficult to directly optimize the weight likelihood
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function for SEM. Moreover, the existing MARM and PS methods can only smooth all
unknown parameters (or a subset of parameters) simultaneously, since the weights used in
MARM and PS depend the weighted distance of the whole parameter vectors. However, we
cannot estimate the mean and variance structure of twin imaging data simultaneously. At the
same time, extending MARM and PS to smoothing individual parameters is an unsolved
problem, since it is very difficult to approximate the covariance matrix of the smoothed
parameter estimates obtained from MARM and PS. Fortunately, due to the special model
structure for twin data, we are able to find a novel approach, which allows us to apply
MARM twice to independently smooth the mean and variance structure of twin imaging
data. Theoretically, we have shown in the Appendix that our approach is valid
asymptotically. TwinMARM slightly increases the amount of computational time in
computing parameter estimates and test statistics, whereas it substantially outperforms the
voxel-wise approach in increasing the accuracy of parameter estimates and the power of test
statistics. Practically, TwinMARM developed here is applicable to different imaging
modalities including DTI, fMRI, and MRI among many others. Particularly, TwinMARM
gives a solution to the issue raised in [26]. Due to the importance and popularity of twin
imaging studies, TwinMARM will have wide and important applications in the analysis of
imaging, genetic, and clinical data collected from twin studies.

2 Methods
2.1 Structural Equation Model

Suppose we observe imaging measures and clinical variables from n1 MZ twin pairs and n2
= n − n1 DZ twin pairs. Imaging measures can be volumes of anatomical regions, the shape
representation of the surfaces of cortical or subcortical structures, fMRI signals, diffusion
tensors, and tensor-derived measures [44, 45, 46, 47, 48, 49, 50, 5, 6, 7, 8]. Clinical
variables may include demographic and environmental variables. Specifically, for the j-th
subject in the i-th twin pair, we observe an NV × 1 vector of imaging measures, denoted by
Yij = {yij(v) : v ∈ }, and a k × 1 vector of clinical variables xij = (xij1, ···, xijk)T for i = 1, ·,
n and j = 1, 2, where xij1 is commonly set as 1 and  and v, respectively, represent a specific
brain region and a voxel in . For notational simplicity, we only consider univariate
measure.

At a specific voxel v, we consider the structural equation model

(1)

for j = 1, 2 and i = 1, ···, n = n1 + n2, where β(v) = (β1(v), ···, βk(v))T is a k × 1 vector
representing unknown regression coefficients, aij(v), dij(v), ci(v) and eij(v) are, respectively,
the additive genetic, dominance genetic, common environmental, and residual effects on the
i-th twin pair. It is common to assume that aij(v), dij(v), ci(v) and eij(v) are independently

normally distributed with means 0 and variances , and , respectively

[16, 15, 13, 14, 51]. Moreover, Cov(ai1(v), ai2(v)) equals  for MZ twins and  for

DZ twins, while Cov(di1(v), di2(v)) equals  for MZ twins and  for DZ twins
[52]. See a path diagram of model (1) in Figure 1. Due to an identifiability issue, we may not
be able to dissect the additive genetic effect, the dominance genetic effect, and the common
environmental effect from the residual environmental effect [16, 15, 13, 14]. It is common to
consider two simpler models. One is the ACE model, which only includes additive genetic,
common environmental, and residual effects. The other is the ADE model, which includes
additive and dominance genetic, and residual effects.
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Without loss of generality, we focus on the ACE model and drop the assumption of
normality for aij(v), dij(v), ci(v) and eij(v) from now on, since TwinMARM is independent of
such assumption. For the ACE model, if we are able to estimate all variances

, we can disentangle relative contribution of environment and
genetic polymorphisms. Specifically, the genetic heritability at voxel v, denoted by g(v), is
defined as the ratio of the genetic variance to the total variance of yij(v) given by

2.2 TwinMARM
We propose the two-stage multiscale adaptive regression method (TwinMARM) for the
analysis of twin imaging data and behavioral data as follows. The first stage is to estimate β
= {β(v) : v ∈ }, while the second stage is to estimate η = {η(v) : v ∈ }. In each stage, we
reformulate the problem of estimating β (or η) as a regression model and then apply the
multiscale adaptive regression model (MARM) in [43], which can be regarded as a
generalization of the propogation-seperation (PS) procedure in multiple subjects [35, 53, 36,
39, 40, 41]. The key ideas of MARM and PS are to construct hierarchical nested
neighborhoods with increasing radii at all voxels, to adaptively construct weighted quasi-
likelihood functions to estimate parameter estimates, and to increase the power of test
statistics in detecting subtle changes of brain structures and their functions. A path diagram
of TwinMARM is presented in Figure 2.

2.2.1 TwinMARM: Stage I—The first stage is to estimate β(v) and carry out statistical
inference on β(v). Specifically, we consider a bivariate regression model given by

(2)

where  and fi(v) = (fi1(v), fi2(v))T, in which fij(v) = aij(v) + ci(v) + eij(v) for
the ACE model. Although fi(v) has different covariance structures for MZ and DZ,
respectively, we assume that fi(v) has mean zero and covariance Σf (v) for all i to avoid

estimating variance components ( ) in Stage I, which leads a simple
procedure for estimating β. We will appropriately account for the misspecification of
covariance of fi(v) in our statistical inference on β(v).

Since all components of β(v) are the parameters of interest and Σf (v) can be regarded as
nuisance parameters, we first estimate Σf (v) across all voxels and then fix them at their
estimated values. Specifically, let ℓ(Yi(v)|xi, β(v), Σf (v)) be the pseudo-likelihood of Yi(v)
given by

(3)

We calculate the maximum pseudo-likelihood estimate of (β(v), Σf (v)) given by
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(4)

Let a⊗2 = aaT for any vector a and (β̂(v)(t), Σ̂f (v)(t)) be the estimate of (β(v), Σf (v)) at the t-
th iteration. Computationally, at each voxel v, by setting Σ̂f (v)(0) = I2, a 2 × 2 identity
matrix, we iteratively update

(5)

until that the difference between (β̂(v)(t+1), Σ̂f (v)(t+1)) and (β̂(v)(t), Σ̂f (v)(t)) is smaller than a
prefixed constant, say 10−6. From now on, Σf (v) will be fixed at Σ̂f (v) across all voxels v.
Statistically, it can be shown that such a substitution has a negligible effect on statistical
inference of β.

To estimate β(v) at voxel v, we construct a weighted quasi-likelihood function by utilizing
all imaging data in a sphere with radius h at voxel v, denoted by B(v, h). Let ω(v, v′; h) ∈
[0, 1] be a weight function of two voxels and a radius h, which characterizes the similarity
between the data in voxels v and v′ such that ∑v′∈B(v,h) ω(v, v′; h) = 1 for all h > 0. If ω(v,
v′; h) ≫ 0, it represents that the data in voxels v and v′ are similar to each other, whereas
ω(v, v′; h) ≈ 0 indicates that the data in voxel v′ do not contain too much information on
β(v). The adaptive weights ω(v, v′; h) play an important role in preventing oversmoothing
the estimates of β(v) as well as preserving the edges of significant regions. We utilize all the
data {Yi(v′) : v′ ∈ B(v, h)} to construct the weighted log-likelihood function at voxel v at
scale h, which is given by

(6)

By directly maximizing ℓobs(β(v); h), we can obtain the maximum pseudo-likelihood
estimate of β(v), denoted by β̂(v; h), which is given by

(7)

where . The covariance matrix of β̂(v; h) can be
approximated by

(8)

where . Although [39] have
obtained the same β̂(v; h) as in expression (7), the covariance estimate of β̂(v; h) in
expression (8) has a simple form compared to the corresponding one in [39] with an
additional spatial correlation assumption. We have found that such spatial correlation
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assumption is unnecessary since Σn,2(v; h) has implicitly incorporated the spatial correlation
in the data.

Based on β̂(v; h), we can further construct test statistics to examine scientific questions
about β(v). For instance, such questions may compare brain structure across different groups
(MZ versus DZ) or detect change in brain structure across time [3, 4, 5, 6, 7, 8]. These
questions can be formulated as the linear hypotheses about β(v)

(9)

where μ = R1β(v), R1 is a r × k matrix of full row rank and b0 is a r × 1 specified vector. We
test the null hypothesis H0,μ : R1β(v) = b0 using the Wald test statistic

(10)

Under H0,μ, Wμ(v; h) is asymptotically distributed as χ2(r) [43].

2.2.2 Propagation-Seperation procedure—Following the propagation-seperation (PS)
procedure proposed in [35, 53, 36], [39, 40, 41] and [43], we adaptively determine {ω(v, v′;
h) : v, v′ ∈ } and then calculate β̂(v; h) and Wμ(v; h) as h increases from 0 to a preset
value r0. Since PS and the choice of its associated parameters have been described in details
in [35, 53, 36] and [43], we briefly disscuss them here for the sake of simplicity.

The key idea of PS is to build a sequence of nested spheres with increasing radii h0 = 0 < h1
< ··· < hS = r0 at each voxel v ∈ . When h = h1, we extract features from the imaging data
as well as {β̂(v) : v ∈ } and compute weights ω(v, v′; h1) at scale h1 for all v, v′ ∈ .
Then, we adaptively determine ω(v, v′; hs) and update β̂(v; hs) from h1 to hS = r0. A path
diagram of the multiscale strategy is given below:

The four key steps of PS including weights adaptation, estimation, stop checking, and
inference are presented as follows.

• In the weights adaptation step (i), we prefix a series{ } of radii
with ch ∈ (1, 2), say ch = 1.15. We then set s = 1 and h1 = ch. The adaptive weights
are given by

(11)

where Kloc(u) = (1−u)+ and Kst(u) = min(1, 2(1−u2))+ according to our experience
and previous literature [39, 43], and || · ||2 denotes the Euclidean norm of a vector.
Moreover, Dβ(v, v′; hs−1) is set as

(12)
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Following Li et al (2010), we choose Cn = n1/3χ2(k)0.95 for Dβ(v, v′; hs−1) defined
in (12), where χ2(k)0.95 is the upper 0.05-percentile of the χ2(k) distribution. The
adaptive weight Kst(Dβ(v, v′; hs−1)/Cn) downweights the role of a voxel v′ ∈ B(v;
hs) in ℓobs(β(v); hs) if the value of Dβ(v, v′; hs−1) is large. The weight Kloc(||v − v
′||2/hs) gives less weight to a voxel v′ ∈ B(v; hs) whose location is far from the
voxel v. Since the theoretical justification for choosing various parameters in ω(v,
v′; hs) has been discussed in [35, 53, 36] and [43], we omit them here for the sake
of simplicity.

• In the estimation step (ii), for the radius hs, we calculate β̂(v; hs) given in (7) at
each voxel v ∈ .

• In the stop checking step (iii), after the S0–th iteration, we calculate a stopping
criterion based on a normalized distance between β̂(v; hS0) and β̂(v; hs) given by

(13)

Then, we compare D(β̂(v; hS0), β̂(v; hs)) with a benchmark, denoted by C̃(s), for s
> S0. If D(β̂(v; hS0), β̂(v; hs)) is greater than C̃(s), then we set β̂(v, hS) = β̂(v; hs−1),
and s = S. If s = S, we go to the inference step (iv). If s ≤ S0 or D(β̂(v; hS0), β̂(v;
hs)) ≤ C ̃(s) for S − 1 ≥ s > S0, then we set hs+1 = chhs, increase s by 1 and continue
with the weights adaptation step (i). Throughout the paper, we set S0 = 3 and C̃(s) =
χ2(p)0.8/(s−2)0.9

.

• In the inference step (iv), when s = S, we compute Wμ(v; hS) for all v ∈  and then
apply either FDR or RFT correction to obtain the corrected p-values of Wμ(v; hS)
in order to detect significant voxels [19, 20, 21, 22]. Otherwise, we set hs+1 = chhs
and continue with the weights adaptation step. The maximal step S can be taken to
be relatively small, say 10, and thus the largest spherical neighborhood of each
voxel only contains a relatively small number of voxels compared to the whole
volume. Throughout the paper, we have used the false discovery rate method under
the positive dependency in [17], since the test statistics obtained from MARM
satisfy such dependency condition.

2.2.3 TwinMARM: Stage II—The second stage is to estimate 
and carry out statistical inference on η(v). Given {β̂(v; hS) : v ∈ } obtained from Stage I,

we compute residuals  for all i, j across all v ∈ . Then, we consider
a trivariate regression model given by

(14)

where εi(v) = (εi1(v), εi2(v), εi3(v))T and , in which zi1 = zi2 = (1, 1, 1)T

and zi3 equals (0.5, 1, 0)T for DZ and (1, 1, 0)T for MZ. We have given the detailed
derivation of model (14) in the Appendix. Moreover, εi(v) is assumed to have mean zero and
covariance Σε(v) for all i. Although the homogeneous variance of εi(v) may not be realistic,
we can appropriately account for such a misspecified assumption as we did for Σf (v) in
Stage I. Since models (2) and (14) are similar in nature, most developments for model (2)
can be directly applied to model (14) and then we omit them for the sake of simplicity.
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There are several minor differences between models (2) and (14). In model (14), all
regression coefficients in η(v) are constrained to be non-negative. Without loss of
generality, Σε(v) is assumed to be known since it can be replaced by a consistent estimate.
The quasi-likelihood function for η(v) is given by

(15)

Let  be an unconstrained estimate of η(v) in
model (15). By discarding these terms independent of η(v), we can show that ℓobs(η(v); h0)
can be simplified into

The constrained estimate of η(v), denoted by η̂(v), is given by

(16)

Since the set [0, ∞)3 = [0, ∞) × [0, ∞) × [0, ∞) is a convex cone, η̂(v) is unique [54]. To
compute η̂(v), we employ a hinge algorithm for cone projection [54].

Furthermore, similar to (6), we can utilize weights ωe(v, v′; h) to construct a weighted
quasi-likelihood function as follows:

(17)

Similarly, η̂(v; h) is given by

(18)

where η̃(v; h) equals

(19)

The same hinge algorithm [54] is used to calculate η̂(v; h).

The second focus common in twin study research is the testing of genetic and environmental
influences on brain structures and their functions. See for example, [2], [55, 11], [5], [6], [7],
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and [8], among many others. Such questions of interest can be formulated as the linear
hypotheses about η(v) as follows:

(20)

where R2 is an m × 3 matrix. For instance, in an ACE model, R2 equals (1, 0, 0) for genetic
effect and (0, 1, 0) for environmental effect. Similar to testing H0,μ, we test H0,A using the
Wald test statistic

(21)

where Σn(η̂(v; h)) is the covariance matrix of η̂(v; h). The statistic WA(v; h) is
asymptotically distributed as a mixture of χ2(1) and χ2(0) distributions under the null
hypothesis H0,A, where χ2(0) = 0. However, to test the joint genetic and environmental
effects, R2 takes the form of [(1, 0, 0)T(0, 1, 0)T] and WA(v; h) is asymptotically distributed
as a mixture of χ2(2), χ2(1) and χ2(0) distributions with the weights depending on the ratio
of MZ over DZ [51, 56].

3 Simulation Studies
We carried out some simulation studies to examine the finite-sample performance of Twin-
MARM. We first simulated MRI measures from n pairs of siblings according to the ACE
model, in which β(v) = (β1(v), β2(v), β3(v))T and xij = (x1ij, x2ij, x3ij)T for j = 1, 2. Each
family contains only two siblings. Among the n pairs of twins, 60% are identical twins. We
set x1ij ≡ 1, generated x2ij independently from a Bernoulli distribution with probability of
success 0.5 and generated x3ij independently from the Gaussian distribution with zero mean
and unit variance. The x2ij and x3ij were chosen to represent gender identity and scaled age,

respectively. We set  across all voxels v. For

( ), we divided the 64×64 phantom image into five different regions of interest

(ROIs) with different shapes and then varied ( ) as (0, 0), (0.3, 0.5), (0.6, 1), (0.9,

1.5) and (1.2, 2.0) across these five ROIs. The true ( ) was displayed for all ROIs
with black, blue, red, yellow, and white colors representing

( and (1.2, 2.0) (Fig. 3(A)). We independently
generated ei(v) = (ei1(v), ei2(v))T, ai(v) = (ai1(v), ai2(v))T, and ci(v) from multivariate
Gaussian distributions with zero means and covariance matrices as specified in Fig. 1. We
set n = 100 and 400.

To carry out the analysis, we first fit the structural equation model

 , in which the correlation pattern of aij(v), ci(v) and eij(v)
was specified according to Fig. 1. We calculated the maximum likelihood estimates (MLEs)

of  at each pixel by using the expectation-maximization (EM)
algorithm [57]. Then, we applied the TwinMARM procedure described in Section 2.2 to
calculate adaptive parameter estimates across all pixels at 11 different scales. We also
smoothed the subjects’ images by using an isotropic Gaussian kernel with FWHM 3 pixels

and then applied the EM algorithm to the smoothed data. Furthermore, for (β1(v), ), we
calculated the bias, the empirical standard error RMS, the mean of the standard error
estimates SD, and the ratio of RMS over SD, abbreviated as RE, at each pixel of all five
ROIs based on the results obtained from the 1000 n = 100 and 400 simulated data sets.
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For simplicity, we present some selected results for β̂1(v; h) and  and their
corresponding MLEs obtained from the EM algorithm with smoothed and unsmoothed data.

We first considered . The biases of σa(v; h)2 are almost the same for TwinMARM at
h10 and EM with unsmoothed data (Fig. 3(B), (C), (E) and (F)), while the bias from EM
with smoothed data is greatly increased (Fig. 5(A) and (C) and Fig. 3(D) and (G))).
Inspecting the results from the EM algorithm reveals that SD is consistently larger than that

obtained from TwinMARM at h10 (Fig. 5(B) and (D)). Overall, for , TwinMARM
outperforms EM in terms of smaller RMS (Fig. 3(B), (C), (E) and (F)).

Secondly, we examine β̂1(v; h). The biases of β̂1(v; h) are almost the same for TwinMARM
at h10 and EM with unsmoothed data (Fig. 6(A) and (C) and Fig. 4(B), (C), (E) and (F)),
while the bias from EM with smoothed data is greatly increased (Fig. 6(A) and (C) and Fig.
4(D) and (G)). Inspecting the results from the EM algorithm reveals that SD is consistently
larger than that obtained from TwinMARM at h10 (Fig. 6(B) and (D)). For β̂1(v; h),
TwinMARM outperforms EM in terms of smaller RMS (Fig. 4(B), (C), (E) and (F)).

To assess both Type I and II error rates of WA(v; h) at the pixel level, we tested the

hypotheses  and  across all pixels. We applied the same PS procedure
and computed the p-values of WA(v; h) at each scale. The 1,000 replications were used to
calculate the estimates and standard errors of rejection rates with significance level α = 5%.

For the test statistic WA(v; h), the Type I rejection rates in ROI with  were relatively
small for all scales, while the statistical power for rejecting the null hypothesis in ROIs with

 significantly increased with larger radius h (Fig. 7). For all ROIs with ,
WA(v; h10) outperforms the likelihood ratio test statistic (LRT) based on the EM algorithm
without smoothing and EM algorithm with smoothing in terms of power (Fig. 7).

Finally, we note that there are at least three limitations associated with our simulation
studies. First, it should be noted that the simulated phantom image is 2D, whereas most real
neuroimaging data is 3D. TwinMARM should work better in 3D and the variance reduction
should be larger, since more neighboring voxels are available at each voxel for calculating
adaptive weights and parameter estimation. Secondly, we did not directly simulate ‘real’
functional (or structural) imaging data from twin studies, since it is not straightforward to
simulate real imaging data according to model (1). Thirdly, we did not evaluate the
reconstruction and registration errors in reconstructing and registering real imaging data
from twin studies.

4 Real-World Example
We considered the early postnatal brain development project led by Dr. Gilmore at the
University of North Carolina at Chapel Hill [9]. This study was approved by the Institutional
Review Board. A total of 49 paired twins (36 males and 62 females) were selected. All 49
pairs were scanned as neonates within a few weeks after birth at term. Written consent was
obtained from their parents before imaging acquisition. The mean gestational age at MR
scanning was 246 ± 18.3 days (range: 192 to 270 days). All infants were fed and calmed to
sleep on a warm blanket with proper ear protection and they slept comfortably inside the
MR scanner. None of infants was sedated during the imaging session.

We used a 3T Allegra head-only MR system (Siemens Medical Inc., Erlangen, Germany) to
acquire all the images. The system was equipped with a maximal gradient strength of 40
mT/m and a maximal slew rate of 400 mT/(m·msec). We used a single shot EPI DTI
sequence (TR/TE=5400/73 msec) with eddy current compensation to acquire the DTI
images. The acquisition sequence consists of five repetitions of six gradient scans (b = 1000
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s/mm2) at 6 non-collinear directions and a single reference scan (in total 5×7 = 35 images).
The voxel resolution was isotropic 2 mm, and the in-plane field of view was set at 256 mm
in both directions.

We then employed a nonlinear fluid deformation based high-dimensional, unbiased atlas
computation method to process all 98 DTI datasets [58]. The atlas building procedure started
with an affine registration and was followed by a nonlinear registration of a set of feature
images for all subjects. The feature images are the maximum eigenvalue of the Hessian of
the fractional anisotropy (FA) image, which are sensitive to the geometry of white matter.
Using the computed deformation fields, we warped all tensor images into the unbiased atlas
space via log-euclidean based interpolation [59]. We also averaged all the warped tensor
images to create a study specific DTI atlas.

FA has been widely used as a measurement to assess directional organization of the brain
which is greatly influenced by the magnitude and orientation of white matter tracts. Here,
FA images are employed to identify the spatial patterns of white matter maturation. We
considered a linear model yij(v) = β1(v) + β2(v)Gij + β3(v)Zij + aij(v) + ci(v) + εij(v) for i =
1, ···, 49 and j = 1, 2 at each voxel of the template, where Gij and Zij, respectively, represent
the dummy variables for gender (male=1 and female=0) and zygote (MZ=1 and DZ=0), and
aij(v), ci(v) and eij(v) are, respectively, the additive genetic, common environmental, and
residual effects on the i-th twin pair as specified in Fig. 1. We focused on the major white
matter regions. We calculated the MLE of parameters by using the EM algorithm and then
applied our TwinMARM method with ch = 1.15 and S = 10 to carry out statistical analysis.

We tested  for additive genetic effect across all voxels v in the white matter
regions. To correct for multiple comparisons, we used the raw p-value smaller than 0.05
along with a 20 voxel extent threshold. We found significant regions in the inferior frontal
gyrus, triangular part and mid cingulate cortex regions. We identified more voxels by using

TwinMARM compared to EM (Table 1). We also tested  for common
environmental effect across all voxels v. Several interesting regions identified included the
right precentral gyrus, inferior frontal gyrus, triangular part, supplementary motor area,
insula, hippocampus, right fusiform, and thalamus. Fig. 8 shows some selected slices of –
log10(p) map for environmental effect obtained from the 10th iteration of TwinMARM. The
results show that TwinMARM may have significantly improved sensitivity and reliability as
areas of significance in the TwinMARM results appear larger and smoother compared to the
voxel-wise analysis approach, which is close to the result obtained from the first iteration of
TwinMARM. The FA measure shows strong effects of genetic factors and common
environment in the frontal lobes and in the limbic lobes. The detection of a genetic effect is
partially consistent with many other studies that have detected strong genetic influences on
brain morphology [11, 4, 60, 55].

We also observed the smoother and larger significant clusters of genetic factors and
common environment by using the EM algorithm with smoothed data from FWHM=6mm
and 9mm (Fig. 8(F), (E′) and (F′)). First, based on our simulation studies, we observed that
the EM algorithm for unsmoothed data and TwinMARM do not introduce bias in the

estimates of , whereas we observed the substantial bias in the estimates of  for the
heavily smoothing imaging data (Figs. 3 and 5). Secondly, these smoother and larger
significant clusters do not appear in the results obtained from the unsmoothed data. Thus, we
feel that these smoother and larger significant clusters obtained from the heavily smoothed
data may be false positive results (Fig. 8 and Table 1 and 2). However, a word of caution is
needed in interpreting these significant clusters to be false positive, since two key
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assumptions underlying EM and TwinMARM, including the perfect registration assumption
and the structural equation model (1), may be invalid for this real data set.

5 Conclusions and Discussion
We have developed TwinMARM for the statistical analysis of twin neuroimaging data.
TwinMARM consists of two stages of multiscale adaptive regression methods. TwinMARM
have three features: being spatial, being hierarchical, and being adaptive. The TwinMARM
procedure is a simultaneous smoothing and estimation procedure. Each stage of
TwinMARM constructs hierarchical nested spheres with increasing radii at all voxels to
adaptively compute weighted quasi-likelihood functions and efficiently utilizes available
information to obtain parameter estimates. This leads to improved accuracy of parameter
estimates and increased statistical power in detecting subtle changes of brain structure and
function.

As shown in the simulation studies, the commonly used Gaussian kernel for smoothing
imaging data can introduce two levels of biases for the analysis of twin imaging data, which
can dramatically increase the numbers of false positives and negatives. The first level of
biases originates from the mean structure, which is associated with the regression
coefficients β(v). Most smoothing methods, which are independent of imaging data, usually
blur the image data near the edges of the significant regions, and consequently introduce
biases in β(v). The second level of biases comes from the variance structure, which is
associated with the genetic coefficients σ2(v). Most smoothing methods are not only
conducted independently of imaging data but also of the statistical model fitted to the
imaging data. Statistically, standard smoothing methods can change the variance structure in
the imaging data which are the focus of twin imaging studies. Thus, the second level of
biases is much more severe than the first level of biases. In practice, we should avoid
directly smoothing twin imaging data.

Several limitations need to be addressed in future research. The TwinMARM procedure is
based on the two key assumptions, including the perfect registration assumption and the
structural equation model (1). A first limitation of our study is that the perfect registration
assumption is demonstrably false for real imaging data from twin studies. It is important and
interesting to integrate the registration method, smoothing method, and TwinMARM into a
single framework in order to appropriately account for registration errors in the statistical
analysis of imaging data from twin studies. A second limitation of our study is that the
structural equation model (1) can be invalid for real imaging data from twin studies.
Heritability estimates used for most twin studies rest on restrictive assumptions in model (1),
which are usually not tested, and if they are, can often found to be violated by the real data
[61].

There are several current topics for our research. We are developing a Graphical User
Interface (GUI) to pack our code for TwinMARM, which will be freely downloadable from
our website at http://www.bios.unc.edu/research/bias. The development of multiscale-
adaptive methods to determine multiscale neighborhoods that adapt to the pattern of imaging
data at each voxel would undoubtedly be a useful resource for neuroimaging researchers.
Further, we will extend TwinMARM from the univariate to multivariate and complex
imaging measures, such as deformation tensors. We will develop a multiscale adaptive
model for neuroimaging data from familial studies [25]. More research is needed for
optimizing the choices of the parameters in TwinMARM. It is interesting to incorporate
other edge-preserving local smoothing methods into TwinMARM and MARM [33, 34, 37,
38].
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6 Appendix: Effect of smoothing twin imaging data
We examined the effect of smoothing twin imaging data on its associated statistical analysis
as follows. As an illustration, we focus on an arbitrary voxel v and its spherical
neighborhood, denoted by {v′ : v′ ∈ B(v, h)}. Standard smoothing methods primarily take a
weighted average of all observations {yij(v′) : v′ ∈ B(v, h)}, denoted by ỹij(v), such that
ỹij(v) = ∑v′ ∈ B(v,h) ω(v, v ′; h)yij(v′), where ∑v′ ∈ B(v,h) ω(v, v′; h) = 1 and ω(v, v; h) > 0.
Under model (1), we can show that

(22)
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where β̃(v) = ∑v′∈B(v,h) ω(v, v′; h)β(v′),

It can be shown that the variance of ãij(v), denoted by , depends on both the variances
of {aij(v′) : v′ ∈ B(v, h)} and their spatial correlations. Specifically, we have

Similar arguments hold for the variances of d̃ij(v), c̃ij(v) and ẽij(v) denoted by ,

and , respectively. Due to the presence of spatial correlations and other factors (e.g., the

inhomogeneity of ) across v′ ∈ B(v, h)), it is common that

Generally, the Gaussian kernel smoothing method can easily modify the variance structure
of twin imaging data. Because such variance structures are often the focus of twin studies,
we thus suggest avoiding directly smoothing twin imaging data in practice.

We show that TwinMARM does not introduce bias in the variance structure of twin imaging
data. This consists of two steps.

• Step (i) As n → ∞, β̂(v; hS) converges β*(v) in probability and 
is asymptotically normal distributed for all v ∈  under the mild conditions given
in [43], where β*(v) is the true value β(v) in voxel v. Please see Theorems 1–3 in
[43] for the details.

• Step (ii) As n → ∞, η̃(v; hS) converges η*(v) and  converges to a
random variable in distribution for all v ∈ . We can essentially use the same idea
in proving Step (i) to prove Step (ii), but there is a complexity in dealing with
substituting β*(v) by β̂(v;hS). We will show that such substitution is negligible
below.

We just highlight the key idea underlying the proof of Step (ii). It follows from Step (i) and
the ACE model that for j = 1, 2,

(23)

Let Δβ(v; hS) = {β̂(v; hS) – β*(v)}. With some simple algebra, for j = 1, 2, we can show that
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in which we have used the results in Step (i) and  (van der Vaart,
1998) and set

(24)

Similarly, we can show that

(25)

where . Based on these results, we can obtain model
(14), in which εi(v) is almost unbiased except an Op(n−1/2) term. We will show that such
Op(n−1/2) term has a negligible effect below.

Then, we need to show that η̂(v; h) converges η*(v) in probability and 
asymptotically converges a random variable in distribution for all v ∈  under some mild
conditions, which are similar to those give in [43]. We focus on h = h0 = 0. For h > 0, we
can generalize the proofs given in [43]. Recall that

. We define

(26)

By using the law of large number [62], we have

in which we have used  obtained from Step (i) and 
converges to zero in probability. Thus, it follows from (14) that

which yields that it is negligible to substitute β*(v) by β̂(v; hS). Furthermore, we calculate
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where . The choice of ωe(v, v′; h)
ensures the convergence of η̂(v; h1). Specifically, if η*(v) ≠ η*(v′), then we have Dη(v, v′;
h) = Op(n1/2) and Kst(Dη(v, v′; h)/Cn) converges to infinity and zero, respectively.
Therefore, ωe(v, v′; h) can give a small weight to voxel v′. Similar to the proof of Theorems
1–3 in [43], we can show that as n → ∞, η̂(v; h) converges η*(v) and

. Finally, we can prove Step (ii) for any fixed S.
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Fig. 1.
Diagram for the structural equation model for twin data. The correlation of additive effects
(a1, a2) is 1 for MZ twin and 0.5 for DZ twin. The correlation of dominant effects (d1, d2) is
1 for MZ twin and 0.25 for DZ twin. The twin share the same common environmental effect
(c). Residual effects (e1, e2) for twin are not correlated.
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Fig. 2.
Diagram for the TwinMARM method for twin data. The first stage is to estimate β = {β(v) :
v ∈ }, while the second stage is to estimate η = {η(v) : v ∈ V}. In each stage, we
reformulate the problem of estimating β (or η) as a regression model and then apply the
multiscale adaptive regression method (MARM) to spatially and adaptively calculate β̂(v;hs)
and η̂(v; hs) and their associated test statistics. Moreover, yij denote imaging measures for
twin pairs, xij is a vector of clinical variables, β is the vector of unknown regression
parameters, rij are residuals obtained from first stage, η include the variances of additive
genetic, common environmental and residual effects, and zij is the design matrix for the
second stage. ω(v, v′; hs) is the weight of the first stage, whereas ωe(v, v′; hs) is the weight
of the second stage.
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Fig. 3.
Results from a simulation study of comparing EM and TwinMARM at 2 different sample

sizes (n = 100, 400). The first row contains the results for  as n = 100: Panel (A) is the

ground truth image of , in which five ROIs with black, blue, red, yellow, and white

color represent  , respectively. Panel (B) is a selected slice of

 obtained from a simulated dataset by using the TwinMARM method. Panel (C) is

a selected slice of  obtained from the same dataset as panel (B) by using the voxel-wise

EM method. Panel (D) is a selected slice of  by using EM, after smoothing the same
simulated data set as panel (B). The second row contains panels (E), (F) and (G) as n = 400,
which are the corresponding results of panels of panels (B), (C) and (D), respectively.
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Fig. 4.
Results from a simulation study of comparing EM and TwinMARM at 2 different sample
sizes (n = 100, 400). The first row contains the results for β1(v), when sample size n = 100:
Panel (A) is the ground truth image of β1(v), in which five ROIs with black, blue, red,
yellow, and white color represent β1(v)=0, 0.5, 1.0, 1.5, and 2.0, respectively. Panel (B) is a
selected slice of β̂1(v; h10) obtained from a simulated dataset by using TwinMARM. Panel
(C) is a selected slice of β̂1(v) obtained from the same simulated dataset as panel (B) by
using EM. Panel (D) is a selected slice of β̂1(v) obtained by using EM, after smoothing the
same simulated data set as panel (B). The second row contains panels (E), (F) and (G) as n =
400, which are the corresponding results of panels of panels (B), (C) and (D), respectively.
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Fig. 5.
Results from a simulation study of comparing EM and TwinMARM at 2 different sample

sizes (n = 100, 400). The first row contains the results for  as n = 100: Panel (A) is the

bias curve of , respectively. Panel (B) is the SD curve of

 obtained from a simulated dataset by using TwinMARM, EM, and EM with
smoothed data. Panel (C) is the ratio of RMS over SD. The second row contains panels (D),
(E), and (F) as n = 400, which are the corresponding results of panels of panels (A), (B), and
(C) respectively.
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Fig. 6.
Results from a simulation study of comparing EM and TwinMARM at 2 different sample
sizes (n = 100, 400). The first row contains the results for β1(v) as n = 100: Panel (A) is the
bias curve of β1(v)=0, 0.5, 1.0, 1.5, and 2.0, respectively. Panel (B) is the SD curve of β̂(v)
obtained from a simulated dataset by using TwinMARM, EM, and EM with smoothed data.
Panel (C) is the ratio of RMS over SD. The second row contains panels (D), (E), and (F) as
n = 400, which are the corresponding results of panels of panels (A), (B), and (C)
respectively.
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Fig. 7.
Simulation results for WA(v; h): rejection rates for pixels inside the five ROIs were reported
by using TwinMARM at the h10 scale, EM, EM after smoothing the same simulated data
and 2 different sample sizes (n = 100, 400) at α = 5%. For each case, 1,000 simulated
datasets were used.
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Fig. 8.
Results from the 49 twin pairs in a neonatal project on brain development on the selected
27th and 30th slices. Panels (A)–(F) : the – log10(p) values for testing genetic effects by
using TwinMARM at the 1st and 10th iterations and EM with FWHM equal to 0mm, 3mm,
6mm, 9mm for the 27th slice; Panels (A′)–(F′) : the corresponding – log10(p) values for
testing environmental effects for the 30th slice.
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