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Abstract
This paper introduces and analyzes a linear minimum mean square error (LMMSE) estimator
using a Rician noise model and its recursive version (RLMMSE) for the restoration of diffusion
weighted images. A method to estimate the noise level based on local estimations of mean or
variance is used to automatically parametrize the estimator. The restoration performance is
evaluated using quality indexes and compared to alternative estimation schemes. The overall
scheme is simple, robust, fast, and improves estimations. Filtering diffusion weighted magnetic
resonance imaging (DW-MRI) with the proposed methodology leads to more accurate tensor
estimations. Real and synthetic datasets are analyzed.

Index Terms
Diffusion-weighted imaging (DWI) restoration; linear minimum mean square error (LMMSE)
estimator; magnetic resonance imaging (MRI); noise filtering; Rician distribution

I. Introduction
DIFFUSION weighted magnetic resonance imaging (DW-MRI) allows for the measurement
of water diffusivity. In particular, the directionality of water diffusion may be studied with
appropriately selected gradient directions for diffusion measurements. Application areas for
DW-MRI include neuroimaging studies [1] (where it can be used to determine the direction
of white matter fibers and thus to determine brain connectivity), ischemic stroke detection
[2], or the investigation of muscle fibers, e.g., within the heart [3], to name but a few.
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Unlike structural MRI, where white matter appears as a region of uniform intensity, DW-
MRI leads to diffusion direction dependent image intensities. In the case of anisotropic
water diffusion, image intensities will be low if the measurement gradient direction is
aligned with the major direction of diffusion and image intensities will be high for diffusion
directions orthogonal to the measurement gradient direction.

Frequently, one aims at measuring the major diffusion direction as an indication of fiber
orientation [4] and thus as a way to measure connectivity for example by tractography
methods. Unfortunately, large diffusion causes low signal intensity, which results in a low
signal-to-noise (SNR) ratio. If scanning time is not an issue, the SNR can be improved by
repeated acquisitions and appropriate spatial averaging (assuming the subject does not move
during the scan to avoid registration issues). However, high angular resolution DWI, where
many gradient directions need to be acquired, may result in prohibitive scan durations for
such physical averaging procedures. A postprocessing method to remove noise from DW
images is thus desirable. Of note, besides noise influences, measurement data may for
example be corrupted due to magnetic field inhomogeneities or subject motion. A
comprehensive restoration methodology needs to account for such effects. This is beyond
the scope of this paper, which focuses solely on the restoration of signals corrupted by
measurement noise.

Various postprocessing methods to improve signal to noise ratios in MRI have been
proposed.1 One of the first attempts to estimate the magnitude MR image from a noisy
image is due to Henkelman [5] who investigated the effect of noise on MR magnitude
images, showed that the noise influence leads to an overestimation of the signal amplitude
and provided a correction scheme based on image intensities. The conventional approach
(CA) was proposed by McGibney et al. [6] utilizing the noise properties of the second image
moment. Sijbers et al. [7]–[9] estimate the Rician noise level and perform signal
reconstruction using a maximum likelihood (ML) approach. A similar method is used by
Jiang and Yang [10]. Expectation maximization formulations with Rician noise assumptions
have been used in synthetic aperture radar (SAR) imaging [11], [12]. Other approaches use
wavelet-based methods for noise removal, as Nowak’s [13]—in which the authors assume
an underlying Rician model—or the one due to Pižurica et al. [14]. McGraw et al. [15] use a
weighted total-variation-norm denoising scheme, Ahn et al. [16] propose a template-based
filtering procedure, and Martin-Fernandez et al. [17] propose an anisotropic Wiener-filter
approach; all without using a Rician noise model. Basu et al. [18] use a Perona-Malik-like
smoothing filter combined with a local Rician data attachment term (effectively trying to
remove the intensity bias locally), assuming a known noise level for the Rician noise model.
Recently, Koay and Basser [19] developed a correction scheme to analytically estimate the
signal, also assuming the Rician model.

The method proposed in this paper is closest to the Wiener-filter approach by Martin-
Fernandez et al. [17]. However, it assumes a Rician noise model and is paired with an
automated method to estimate the Rician noise level.

Section II discusses the theory of the approach and gives some background on alternative
estimation methods and Section III presents results. The conclusion is presented in Section
IV.

1For diffusion tensor imaging, there are also many approaches that aim at noise-removal in the tensor domain. This paper will focus
on approaches doing filtering directly on the diffusion weighted images, where noise can be modeled more easily.
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II. Restoration of MR Data
A. Model of Noise in MRI

Noise in magnitude MRI images is usually modeled following a Rician distribution [7], [20],
[21], due to the existence of uncorrelated Gaussian noise with zero mean and the same

variance  in both the real and imaginary parts of the complex k-space data. Given the
magnitude image M and the original signal amplitude A, the probability distribution
function (PDF) of such an image is

(1)

with I0(·) being the 0th order modified Bessel function of the first kind, u(·) the Heaviside

step function and  the variance of noise. Mij is the magnitude value of the pixel (i, j) and
Aij the original value of the pixel without noise.

In the image background, where the SNR is low, the Rician PDF reduces to a Rayleigh
distribution [22] with PDF

(2)

Most signal estimation procedures rely on a given noise variance . Methods performing
noise estimation from magnitude data may roughly be divided into two groups: 1)
approaches estimating the noise variance using a single magnitude image and 2) approaches
using multiple images. Noise estimation using a single image is usually based on
background intensities (which need previous segmentation), where the true signal amplitude
should vanish. Using the Rayleigh distribution, estimators based on the mean and the second
order moment [23] can be defined as

(3)

where N is the number of points considered for the estimation. Other estimators are based on
the method of moments [10] and on the mode of the histogram [24].

B. Signal Estimation Methods
A number of techniques have been proposed to estimate the noise-free signal A from the
noisy measurement signal M. Methods may be subdivided by the noise-model assumed.
Basic filtering strategies include Gaussian smoothing and Wiener [25] filtering (also
assuming a Gaussian noise model). More recently, estimators taking the Rician noise model
into account have been developed. Since the approach proposed in this paper relates to this
class of estimators, we briefly list and review some of the methods in what follows.

1. Conventional Approach (CA) [6]. Taking into account the relation between noise
and signal of the second order moment in a Rician distribution, the signal can be
estimated as
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(4)

where 〈M2〉 is the sample second order moment. The sample estimator 〈.〉 is
defined

(5)

with η a square neighborhood. This estimation may also be performed using
nonsquare weighted windows, such as Gaussian functions.

2. ML estimator [7]–[10]. The signal is estimated by maximizing the likelihood
function

(6)

with

(7)

where N is the number of samples considered for the likelihood function.

3. Expectation-maximization (EM) method [11], [12]. EM is a recursive method that
aims at estimating the noise variance and the signal simultaneously trough
maximization of the expected log likelihood

(8)

(9)

N is again the number of samples. The initial values are computed as

(10)

(11)

4. Analytically exact solution, proposed by Koay and Basser in [19]. Assuming a
Rician noise model and given a measured sample mean 〈M〉 and a sample variance
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〈M2〉 − 〈M〉2, the signal and noise level are computed based on analytical relations.
Given the correction factor

and the root θ0 of

the signal estimation and the noise variance estimation may be computed as

In all the cases, 〈.〉 is the sample estimator as defined in (5).

C. LMMSE Estimator for the Rician Model
The estimation method proposed in this paper (to estimate the signal from the noisy
magnitude image) is based on the linear minimum mean square error (LMMSE) estimator.
Instead of modeling the signal Aij as an unknown constant, we consider it as a realization of
a random variable which is functionally related to the observation. This way a closed-form
analytical solution is achievable. This is in contrast to many other estimation techniques
which find the solution via an iterative optimization scheme; this is for example the case for
the ML and EM approaches. The closed-form solution of the LMMSE estimator makes the
method computationally more efficient than optimization-based solutions, which is a major
advantage when dealing with the frequently large data volumes of DWI.

The LMMSE estimator of a parameter θ from data x is defined as [26]

(12)

where Cθx is the cross covariance vector and Cxx is the co-variance matrix of the data.
Rewriting (12) for the 2-D Rician model, and computing statistics locally, we define

(13)

where Mij is the magnitude value of the pixel (i, j) in a 2-D MR image. In order to achieve a
closed-form expression, we use A2 instead of A, as the even-order moments in a Rician
distribution are simple polynomials, and therefore easier to calculate [7], [13]. The
covariance matrices in this case are just scalar values for each pixel—for the matrix case see
[27].

In the case of a Rician distribution, the (square) signal LMSSE estimator for the 2-D case is
then
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If the expectations are replaced by their sample estimators 〈·〉, and after some algebra, the
estimator becomes

(14)

where Kij is defined as

(15)

The operator 〈.〉 is the sample estimator of the expectation, defined as in (5).

The LMMSE estimator can be easily extended to N-D volumes. In the 3-D case, it is defined
as

with

and

The noise variance  must be estimated from the given data. Usually, this estimation is
based on a set of background intensities of a selected subregion, assuming that the noise-free
signal vanishes in this region. This region is frequently manually selected and noise level
estimations are sensitive to imaging artifacts such as ghosting [24]. Some automatic
estimators have been previously reported. We proposed two automatic estimators based on
local statistics of the image [28]. If there is a background where the distribution of noise
may be assumed to be Rayleigh, the noise may be estimated as
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(16)

If this assumption does not hold, the estimation may be performed using the local variance

(17)

where  is the (unbiased) local sample variance, that may be computed as

The size of the neighborhood is a parameter that must be chosen by the user. However, since
both estimators [(16) and (17)] use the mode of the distribution for estimation, the effect of
this size is minimized; a greater value will make the distribution narrower, but the mode
remains at the same value [28]. As an example, see Fig. 21. For further details see Appendix
B.

D. Recursive LMMSE Filter
Once the image is filtered with the LMMSE estimator the output model may no longer be
considered Rician. However, we can still use the filter recursively. If the noise is
dynamically estimated in each iteration, the filter should reach a steady state as the estimated
noise gets smaller and smaller. We define the 3-D recursive LMMSE filter (RLMMSE) as

(18)

with

where I[n] is the magnitude image after n iterations of the filter. By definition I[0] = M For
further details see Appendix A.

III. Experiments
To illustrate the behavior of the LMMSE and the RLMMSE filters, we test and compare
their restoration performance for structural magnetic resonance images (Section III-A) and
for diffusion weighted images (Section III-B). Further, we investigate the behavior on
subsequent tensor estimation (Section III-C) and for the LMMSE estimator the behavior for
diffusion analysis methods: tractography, fractional anisotropy and color by orientation
calculations (Section III-D).
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A. Filtering of Structural MR Images
This section focuses on the restoration of structural MR images using the proposed LMMSE
estimator with automatic noise estimation. To be able to compare the results to a ground
truth, we work with synthetic images and artificially add noise. We evaluate our method
quantitatively on synthetic structural MR data, quantitatively using synthetically created (but
nonanatomical) diffusion weighted MR data, as well as qualitatively on real DW-MRI data.
A structural MR slice with 256 gray levels, originally noise-free, from the BrainWeb
database [29] [Fig. 1(a)], is corrupted with synthetic Rician noise with different values of σn.
We define the SNR [30] as

(19)

where S is a measure for the signal intensity and  is the noise variance. The signal to noise
ratios considered for the following experiments are given in Table I.

The noisy image is processed using eight different techniques (see Section II-B for details
on these techniques); techniques taking into account the Rician Model: 1) the conventional
approach by McGibney et al. [6]; 2) the ML estimator [7]–[10]; 3) the EM method [11],
[12]; 4) the analytically exact solution, proposed by Koay and Basser in [19]; 5) the
LMMSE estimator, as proposed in (14); 6) the RLMMSE estimator using 8 and 50 iteration
steps, as proposed in (18); and (to compare the filters with other well-known techniques)
techniques using a Gaussian noise model: 7) Gaussian smoothing, using a 11×11 kernel with
σ = 1.5; and 8) adaptive Wiener filtering [25], using a 5×5 neighborhood. In order to achieve
the best performance of the filter, σn is manually set to the actual value.

In all the cases where the variance of noise is needed, it is manually set to its optimal value.
Note that the ML and EM estimators, as well as the method by Koay and Basser are
designed to work with several samples of the same image. As in the present experiment we
suppose only one sample is available, the statistics are computed using local neighborhoods.
In all cases 5×5 neighborhoods have been used.

To compare the restoration performance of the different methods, two quality indexes are
used: the structural similarity (SSIM) index [31] and the quality index based on local
variance (QILV) [32]. Both give a measure of the structural similarity between the ground
truth and the estimated images. However, the former is more sensitive to the level of noise
in the image and the latter to any possible blurring of the edges. Both indexes are bounded;
the closer to one, the better the image. The mean square error (MSE) is also calculated.
These three quality measures are only being applied to those areas of the original image
greater than zero [see Fig. 1]; this way the background is not taken into account when
evaluating the quality of each method.

Table II shows the experimental results. Some graphical results for σn = 10 are shown in
Fig. 2.

When compared with other schemes considering a Rician noise model, the LMMSE and the
RLMMSE show a better performance in terms of noise cleaning (a larger SSIM) while the
edges are preserved (the QILV value gets better). The noise cleaning performance of the
ML, EM, and Koay schemes are good, but, as the QILV index points out, they cause image
blurring. Consequently, image information is lost at the border and the image edges. This
performance is not due to the schemes themselves, but to the fact that they are originally
designed to estimate the signal from multiple samples. When only one image is available,
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the statistics must be calculated locally. Consequently this local estimation produces some
edge smoothing, in some cases similar to the one produced by a Gaussian filter. LMMSE,
although it is also based on local statistics does not show this edge-blurring behavior.

The Gaussian smoothing, as expected, improves the quality of the image from an SSIM
point of view, but the QILV suggests structural distortion due to blurring. In our
experiments we also observed some numerical stability problems with EM and ML when the
level of noise is low. Strikingly, all schemes, except for the proposed LMMSE approaches
and the Wiener filter, fail when the level of noise is low: in this case, the quality indexes are
lower than the corresponding quality indexes for the noisy image.

It is interesting to study the performance of the Wiener filtering; although it slightly blurs
the image, it shows an overall good performance. Its performance is worse than the
LMMSE, because the Wiener filter is based on a Gaussian noise model. This mismatch
between the Rician model and the Gaussian model is not too large in structural MRI, but
becomes more important for diffusion weighted images, where dark regions (where the
mismatch is greatest) indicate large diffusion.

Finally, the RLMMSE results shows very good performance, when compared with the other
schemes. There is a good balance between noise cleaning (SSIM index) and edge and
structural information preservation (see QILV values). In addition, the filter shows great
numerical stability: after 50 iterations the results are similar to those after eight iteration,
indicating that the filter reaches a steady state.

One main advantage of the LMMSE filter (and to some extent for the RLMMSE filter) is
that the solution can be computed in one single step (or a few steps for the RLMMSE filter),
making it computationally efficient for large data sets as frequently encountered in DWI.
This is in contrast to the EM and ML schemes, as well as to the approach by Koay and
Basser, where the solution is found by numerical optimization and thus iteratively. As an
illustration, in Table III runtimes for the LMMSE, the RLMMSE, and the EM algorithm as
well as for the method by Koay are compared. All algorithms were implemented in Matlab.
Reported execution times are measured by Matlab. Of note, while implementations of the
LMMSE, the RLMMSE, and the EM algorithm could easily take advantage of Matlab’s
efficient matrix computations, we used loops in the implementation of Koay’s method which
may have increased computational time slightly. The timing experiments clearly
demonstrate the efficiency of the LMMSE and the RLMMSE approach. An in-depth
execution profile analysis shows the evaluation of Bessel functions (as required by the EM
algorithm and the approach by Koay) to be costly.

A subset of the analysis is performed using real structural MR images. Since in this case the
ground truth is unknown, the comparison is done strictly visually. A coronal slice from a 3-
D structural MRI volume2 was selected. The original image, see Fig. 3(a), exhibits noise.
See Fig. 4 for a zoomed-in view. The image is filtered using the LMMSE and the RLMMSE
estimators using the noise estimator given in (6). Results are shown in Fig. 3, details in Fig.
4. For comparison the same image is filtered using the conventional approach, EM
estimation, and the method proposed by Koay and Basser. In all the cases adaptive noise
estimation is performed using (16) with a 5×5 window.

2Data set 1: Scanned in a 1.5-T GE Echospeed system. Scanning Sequence: Maximum gradient amplitudes: 40 mT/M. Six images,
four with high (750 s/mm2), and two with low (5 s/mm2) diffusion weighting. Rectangular field-of-view 220×165 mm. 128×96 scan
matrix (256×192 image matrix). 4 mm slice thickness, 1 mm interslice distance. Receiver bandwidth 6 kHz. TE (echo time) 70 ms; TR
(repetition time) 80 ms (effective TR 2500 ms). Scan time 60 s/slice.
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As expected, the visual results are much better for the LMMSE and the RLMMSE
estimators. The behavior shown for the other schemes is consistent with the synthetic
experiments: noise is attenuated at the cost of blurring the image.

B. Filtering of Diffusion Weighted MR Images
This section investigates the performance of the proposed scheme when filtering DWI data.
We use a SENSE EPI data set [33]: Scanned in a 3.0-T GE system, with 51 gradient
directions (distributed on the sphere using the electric repulsion model with antipodal pairs),
and eight baselines; voxel dimensions: 1.7 × 1.7 × 1.7 mm.

In areas with high diffusion along the gradient direction, the DWIs show a low signal level.
Frequently, these areas are of great interest, since the direction of high diffusion is related to
tissue structure [4]. However, they are also the most prone to noise effects and have the
lowest signal to noise ratios. While Gaussian noise assumptions may suffice largely for
nondiffusion-weighted images with high signal intensities (and consequentially high SNR),
Rician noise models become more important for DWI, where dark signal areas are of higher
importance.

All the DWIs are filtered using the RLMMSE filter and the noise estimator of (16). One of
the advantages of this noise estimator is that no segmentation of the background is needed,
neither manually nor automatic. This advantage is important when processing MR data in
which an artificial background has been added.

Fig. 5(a) shows an EPI slice image. Fig. 5(b) shows in black all pixels with intensities equal
to zero. Comparing both images, it is clear that there is a small area between the skull and
the zero-background which corresponds to the actual background, and a greater area where
an artificial zero background has been added. If the noise is estimated over the whole
background there will clearly be a bias.

We can overcome this problem by using the local mean distribution. For the whole baseline
volume, this distribution is depicted in Fig. 6(a). Due to the intensities that have been set to
zero in the background, the maximum of the distribution is at the origin. However, it is still
possible to identify a second maximum due to the noise itself. If the zero value pixels are not
considered for the distribution, the histogram changes shape as shown in Fig. 6(b), and its
maximum clearly reflects the noise level, in the same way as in (16). We will thus not
consider zero value pixels for the noise estimation. (Note that alternatively, the estimation
may be done using (17) for the pixels inside the head.)

The whole EPI data set is filtered using this noise estimator and the RLMMSE filter. The
noise is reestimated in each iteration. Fifteen iterations are considered (in all the cases with
15 iterations, the output reaches a steady state). Results of this filtering for different
neighborhoods are shown in Fig. 7 (baseline) and Fig. 8 (DWI). For both, the baseline and
the DWIs, the RLMMSE filter performs well in terms of noise removal while preserving
image structure. The filtering effect is stronger for low signal intensity areas of the DWIs,
since these are the areas most prone to noise according to the Rician noise model.

C. Tensor Estimation
Diffusion weighted images are acquired to investigate the diffusion characteristic of water
molecules which is in turn related to the underlying tissue microstructure. One of the
simplest diffusion models is the diffusion tensor model which assumes a multivariate
Gaussian probability density function for the water displacement. Since tensor estimation
results are noise-dependent, noise removal before tensor estimation should lead to improved
tensor estimation results.3
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Assuming a multivariate Gaussian probability density distribution for the water
displacement, the set of diffusion weighted images {Ak} acquired with gradient directions
{gk}, using a b-value b, is related to the nondiffusion-weighted baseline image A0 through
the Stejskal–Tanner equation [35], [36]

(20)

where T denotes the diffusion tensor. This images are corrupted with Rician Noise. If we
further assume that our proposed estimation method removes (or at least significantly
reduces) the noise from the diffusion weighted images, (20) may be written as

and subsequently to

which is linear in T and can be solved by least-squares. (We will only use least-squares
tensor estimation in this paper, since it is unclear at this point what noise model should be
used for tensor estimation after noise “removal” in the DWI domain.)

A variety of scalar measures have been defined for diffusion tensors [36], most prominently
fractional anisotropy, which is proportional to the ratio of the Frobenius norms of the tensor
deviatoric and the tensor itself [37]. While some of the measures may be computed without
an explicit computation of the tensor eigenvalues, rotationally invariant measures may be
written in terms of the tensor eigenvalues. To study the effect of the filtering on these
eigenvalues, we created two different synthetic data sets, one 2-D and the other 3-D.

A synthetic 128×128 2-D tensor field was created; see Fig. 9(a) where tensors are depicted
using ellipses [36]. The eigenvalues were chosen as

and the diffusion weighted images were simulated using the Stejskal–Tanner (20). We
consider different numbers of gradients (antipodal pairs uniformly distributed on the unit
circle) and use a constant baseline image with signal intensity 1000. The DWIs are corrupted
with Rician noise, Fig. 9(b), and the tensors are reestimated, using the least squares
approach. Different values of σn were used.

Four restoration methods were applied to the noisy DWIs.

3Note that many different ways for tensor estimation exist [34], including schemes incorporating a Rician noise model. However, in
this paper the approach is to reconstruct the noise-free signal before tensor estimation. Since the noise is removed at an early stage in
the preprocessing pipeline any subsequent processing steps will benefit from this noise reduction.
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1. Gaussian smoothing, using a 11×11 kernel with σ = 1.5. This method was chosen
to illustrate the effect of the smoothing on the DWI. As it was shown in Section III-
A, some Rician-based methods also exhibit this behavior.

2. Adaptive Wiener filtering, using a 7×7 neighborhood, and manually setting σn to
its actual value. This method was chosen because it showed a similar behavior to
the LMMSE in structural MRI filtering.

3. LMMSE estimation, using a 7×7 neighborhood and manually setting σn to its
actual value.

4. RLMMSE filtering with a 7×7 neighborhood, five iterations. As there is no
background present, the noise is estimated over the DWIs using (17).

For the experiments we consider 3, 5, and 15 gradient directions and σn ∈ [30, 210]. To
calculate the SNR we use (19), and define the power of the signal as

We obtain S2 = 1.83 · 104. The error is defined as the absolute distance of the estimated
eigenvalues to the original values. For each number of gradients and each σn the average of
100 experiments is considered. In Fig. 10 the mean and the standard deviation of the error
are shown. In all cases, the estimation bias is smaller when using the LMMSE filter. The
variance of the estimation, though also small is slightly larger than for the Wiener filtering,
though the latter shows a greater bias. The RLMMSE shows a smaller bias but a greater
variance than the other filtering methods.

As an illustration, results for σn = 100 (SNR = 2.62 dB) and five different gradients are
shown in Fig. 9 (tensor field) and in Fig. 11 where the distribution of the eigenvalues is
depicted in a 2-D histogram. The original eigenvalues are depicted as a green dot. These
figures lead to similar conclusions. Notice that the LMMSE histogram is practically centered
in the original values, while the Wiener and Gaussian ones are biased, i.e. there is an
underestimation of the principal eigenvalue. In addition, the Gaussian output [Fig. 11(b)]
shows more clusters than centroids, as a consequence of the soft transition at the boundaries.
These soft transitions (banding artifacts) can be observed in Fig. 9 and are caused by the
Gaussian smoothing which tries to reconcile tensors that are spatially close, but have vastly
different shapes and orientations.

The next experiment tests the ability of the filter to correct the eigenvector direction.
Specifically in this experiments we focus on the direction of the first eigenvector. A new
synthetic 128 × 128 2-D tensor field was created—now without isotropic areas; see Fig. 12
where tensors are depicted using ellipses. We consider five gradients, a constant baseline
image with signal intensity 1000 and Rician noise with σn = 100. The tensors are estimated,
using the Least Squares approach. The noisy DWIs are filtered using a LMMSE filter and
Gaussian smoothing. Results are shown in Fig. 13; 100 different realizations have been
considered. The histogram normalized by its maximum value is depicted. The LMMSE is
able to reduce the variance of estimation in the direction of the eigenvector. Notice that the
Gaussian filter distribution shows some lobules between the actual vales. They are due to the
fact that this filtering makes soft transitions between vectors that translate into intermediate
orientations.

To validate the method on a 3-D dataset, we created a synthetic diffusion weighted image
volume modeling a 3-D logarithmic spiral. The core of the created bundle is parametrized by
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(21)

with a = 40, b = −0.05, c = 3. This results in a spiral with radius 40 for p = 0 which gets
tighter and tighter with increasing p and thus models fiber bundles of different curvatures
(see Fig. 14). At every point p of (21) we use the Frenet trihedron induced by the Frenet
equations [38] to orient a tensor T in space (where the tangent direction is aligned with the
major eigenvector of T and the binormal direction is associated with the minor eigenvector
of T). The eigenvalues of T were chosen as λi = {6 · 10−3, 2 · 10−3, 10−3} and the diffusion
weighted images were simulated using the Stejskal–Tanner equation. We used the same 51
gradient directions and eight baseline scheme as for the real echo planar images. The
resulting synthetic volume is of dimension 128 × 128 × 100 with isotropic voxels of side
length 1 mm. To create tensor values away from the core parametrized by (21), voxels were
assigned the closest tensor on the core. The trace of the tensors was scaled based on this
closest distance to the core. Voxels at a distance larger than 5 mm were assigned the zero
tensor, voxels closer than 3 mm were assigned the original closest tensor on the core. Voxels
in between were weighted using a Gaussian with standard deviation of one.

Rician noise with σ = 70 was added to the noise-free diffusion weighted images. The
diffusion weighted images were then filtered for 15 iterations with the RLMMSE filter (with
7×7 axial filtering and estimation neighborhoods), as well as with a Gaussian filter with a
standard deviation of 1.5.

Figs. 15 and 16 show the spectral deviations (i.e., the differences of the estimated
eigenvalues to the nominal eigenvalues) to the synthetic groundtruth for the proposed
method and the Gaussian filter. All results were obtained after applying a mask, removing
all tensors with a trace smaller than 0.001. The RLMMSE results are clearly superior to
Gaussian smoothing. The estimation of the principal eigenvalue is greatly improved and the
overall estimation is less biased.

D. DWI Filtering and DTI Applications
To conclude the results section we show some examples of the qualitative performance of
the LMMSE estimator for different DTI applications. We use the real data volume of
Section III-B. The following experiments were performed.

• Fractional anisotropy and main eigenvector computation. In Fig. 17 we show the
FA and the main eigenvector scaled by the main eigenvalue of both the original
data set and the data set after 10 iterations of the RLMMSE using a 7×7
neighborhood. The RLMMSE filter results in a regularization of the vector
directions.

• Color by orientation computation. Fig. 18 shows the orientation of the first
eigenvector using color coding, for two different slices of the volume, for both the
original data and the data after an LMMSE filtering using a 7 × 7 neighborhood. In
this case RED means anterior–posterior direction (X axis), GREEN left–right (Y
axis), and BLUE inferior–superior (Z axis). Results indicate a clear reduction of the
noise without significant loss of structure.

• Tractography computation. We performed tractography for the Uncinate
Fasciculus, starting in the same seed-point for both the original data set and the data
set filtered using LMMSE (7 × 7 neighborhood). Results are shown in Fig. 19. Fig.
19 demonstrates the advantage of the noise reduction procedure in tracing the
Uncinate Fasciculus. Anatomically, this fiber bundle has a U-like shape, and
connects orbital frontal with anterior temporal regions. Fig. 19(a) shows results of
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tractography on unfiltered data, where tracts originating from the frontal lobe are
mostly terminating before they curve and cross the temporal stem into the temporal
lobe. Fig. 19(b) shows that after noise reduction, the Uncinate Fasciculus tracts are
continuing all the way into the temporal lobe. Not only are fibers on average longer
and have a more homogeneous distribution after filtering, but they are also more
anatomically correct.

IV. Conclusion
This paper introduces a one-step and a recursive LMMSE estimator for signal estimation
and noise removal in magnetic resonance images assuming a Rician noise model. Unlike
other existing schemes, the LMMSE has a closed-form expression, is computationally
efficient, easy to use and easy to implement.

Various validation experiments have been performed and the filter has been tested against a
number of competing techniques. Diffusion information is based on the interplay between
diffusion weighted images with a corresponding baseline image, thus validation was
performed using real and synthetic data for diffusion weighted magnetic resonance images
as well as for structural magnetic resonance images.

Structural similarity and quality index tests revealed superior image denoising results for the
LMMSE estimators in comparison to a set of competing methods: overall noise was reduced
while keeping structural information and minimizing blurring effects. All testing was
performed assuming that only one measurement realization is available for each voxel, a
scenario that the LMMSE estimators are designed for, but which puts methods designed for
multiple acquisitions at a disadvantage. However, this is an important scenario, especially
when considering diffusion weighted image acquisitions with high angular and spatial
resolution where overall acquisition time may become an issue. The LMMSE estimators led
to qualitatively good results for the diffusion weighted images themselves as well as for
derived quantities (such as FA images and tractography results). Further, a testing of the
proposed filtering methodology on synthetic DWI datasets showed significant reductions in
estimation bias for the tensor spectrum as well as a beneficial smoothing effect on the tensor
field.

A possible future extension would be an anisotropic Rician LMMSE scheme in analogy to
the recent approach by Martin–Fernandez et al. [17] as well as an in-depth investigation into
the noise-properties of the filtered image data.

Acknowledgments
The authors would like to thank Dr. G. Kindlmann for providing the Teem software used to create Fig. 9 tensors
(http://www.teem.sourceforge.net/). S. Aja-Fernández would like to thank Dr. J. Solis-Martin and Dr. E. Peña for
their valuable comments.

This work was supported in part by a Department of Veteran Affairs Merit Award (MES), in part by the VA
Schizophrenia Center (MES), the National Institutes of Health under Grant R01 MH50747 (MES), Grant K05
MH070047 (MES), Grant U54 EB005149 (MN,MES,MK), and Grant R01 MH074794 (CFW), in part by a MEC/
Fulbright Commission for Research Grant FU2005-0716 (SAP), and in part by Comisión Interministerial de
Ciencia y Tecnología (SAF) under Research Grant TEC2007-67073.

References
1. Kubicki M, McCarley RW, Westin CF, Park HJ, Maier S, Kikinis R, Jolesz FA, Shenton ME. A

review of diffusion tensor imaging studies in schizophrenia. J Psychiatry Res. 2005; 41(1–2):15–30.

2. Srinivasan A, Goyal M, Azri FA, Lum C. State-of-the-art imaging of acute stroke. Radio Graph.
2006; 26:S75–S95.

Aja-Fernández et al. Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 October 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.teem.sourceforge.net/


3. Hsu EW, Muzikant AL, Matulevicius SA, Penland RC, Henriquez CS. Magnetic resonance
myocardial fiber-orientation mapping with direct histological correlation. Amer J Physiol Heart
Circulatory Physiol. 1998; 274:1627–1634.

4. Beaulieu C. The basis of anisotropic water diffusion in the nervous system—A technical review.
NMR Biomed. 2002; 15:435–455. [PubMed: 12489094]

5. Henkelman RM. Measurement of signal intensities in the presence of noise in MR images. Med
Phys. 1985; 12(2):232–233. [PubMed: 4000083]

6. McGibney G, Smith MR. Unbiased signal-to-noise ratio measure for magnetic resonance images.
Med Phys. 1993; 20(4):1077–1078. [PubMed: 8413015]

7. Sijbers J, den Dekker AJ, Scheunders P, Van Dyck D. Maximum-likelihood estimation of Rician
distribution parameters. IEEE Trans Med Imag. Jun; 1998 17(3):357–361.

8. Sijbers, J.; Jden Dekker, A.; Van Dyck, D.; Raman, E. Estimation of signal and noise from Rician
distributed data. Proc. Int. Conf. Signal Process. Commun., Las Palmas de Gran Canaria; Spain.
Feb. 1998; p. 140-142.

9. Sijbers J, den Dekker AJ. Maximum likelihood estimation of signal amplitude and noise variance
form MR data. Magn Reson Imag. 2004; 51:586–594.

10. Jiang, L.; Yang, W. Adaptive magnetic resonance image denoising using mixture model and
wavelet shrinkage. Proc. VIIth Digital Image Comput.: Tech. Appl.; Sydney, Australia. Dec. 2003;

11. DeVore, MD.; Lanterman, AD.; O’Sullivan, JA. ATR performance of a Rician model for SAR
images. Proc. SPIE 2000, ISSU 4050; Orlando, FL. Apr 2000; p. 34-37.

12. Marzetta TL. EM algorithm for estimating the parameters of multivariate complex Rician density
for polarimetric SAR. Proc ICASSP. 1995; 5:3651–3654.

13. Nowak R. Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans
Image Proccess. Oct; 1999 8(10):1408–1419.

14. Pižurica A, Philips W, Lemahieu I, Acheroy M. A versatile wavelet domain noise filtration
technique for medical imaging. IEEE Trans Med Imag. Mar; 2003 22(3):323–331.

15. McGraw T, Vemuri BC, Chen Y, Rao M, Mareci T. DT-MRI denoising and neuronal fiber
tracking. Med Imag Anal. 2004; 8:95–111.

16. Ahn CB, Song YC, Park DJ. Adaptive template filtering for signal-to-noise ratio enhancement in
magnetic resonance imaging. IEEE Trans Med Imag. Jun; 1999 18(6):549–556.

17. Martin-Fernandez M, Aberola-Lopez C, Ruiz-Alzola J, Westin CF. Sequential anisotropic Wiener
filtering applied to 3-D MRI data. Magn Reson Imag. 2007; 25:278–292.

18. Basu S, Fletcher T, Whitaker R. Rician noise removal in diffusion tensor MRI. Proc MICCAI.
2006; 1:117–125.

19. Koay CG, Basser PJ. Analytically exact correction scheme for signal extraction from noisy
magnitude MR signals. J Magn Reson. 2006; 179:317–322. [PubMed: 16488635]

20. Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med. 1995;
34:910–914. [PubMed: 8598820]

21. Drumheller DM. General expressions for Rician density and distribution functions. IEEE Trans
Aerosp Electron Syst. Apr; 1993 29(2):580–588.

22. Simon, MK. Probability Distributions Involving Gaussian Random Variables. Norwell, MA;
Kluwer: 2002.

23. Sijbers J, den Dekker AJ, Van Audekerke J, Verhoye M, Van Dyck D. Estimation of the noise in
magnitude MR images. Magn Reson Imag. 1998; 16(1):87–90.

24. Sijbers J, Jden Dekker A, Poot D, Verhoye M, Van Camp N, Van der Linden A. Robust estimation
of the noise variance from background MR data. Proc SPIE Med Imag 2006: Image Process.
2006:6144.

25. Lim, JS. Two Dimensional Signal and Image Processing. Engle-wood Cliffs, NJ: Prentice Hall;
1990.

26. Kay, SM. Fundamentals of Statistical Signal Processing: Estimation Theory. Englewood Cliffs,
NJ: Prentice Hall; 1993.

Aja-Fernández et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 October 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



27. Aja-Fernández, S.; Alberola-López, C.; Westin, C-F. Proc MICCAI. New York: Springer; 2007.
Signal LMMSE estimation from multiple samples in MRI and DT-MRI; p. 4792Lecture Notes
Computer Science

28. Aja-Fernández S, Alberola-López C, Westin CF. Noise and signal estimation in magnitude MRI
and Rician distributed images: A LMMSE approach. IEEE Trans Image Proccess. Aug; 2008
17(8):1383–1398.

29. Collins DL, Zijdenbos AP, Killokian V, Sled JG, Kabani NJ, Holmes CJ, Evans AC. Design and
construction of a realistic digital brain phantom. IEEE Trans Med Imaging. Jun; 1998 17(3):463–
468. [PubMed: 9735909]

30. Oppenheim, AV.; Schafer, RW. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice
Hall; 1989.

31. Wang Z, Bovik AC, Sheikh HR, Simonceli EP. Image quality assessment: From error visibility to
structural similarity. IEEE Trans Image Proccess. Apr; 2004 13(4):600–612.

32. Aja-Fernández, S.; San-José-Estépar, R.; Alberola-López, C.; Westin, C-F. Image quality
Assesment based on local variance. Proc 28th IEEE Int. Conf. Eng. Med. Biol. Soc. (EMBC); New
York. Sep. 2006; p. 4815-4818.

33. Bammer R, Auer M, Keeling SL, Augustin M, Stables LA, Prokesch RW, Stollberger R, Moseley
ME, Fazekas F. Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med. 2002;
48:128–136. [PubMed: 12111940]

34. Koay CG, Chang LC, Carew JD, Pierpaoli C, Basser PJ. A unifying theoretical and algorithmic
framework for least squares methods of estimation in diffusion tensor imaging. J Magn Reson.
2006; 182:115–125. [PubMed: 16828568]

35. Stejskal EO, Tanner JE. Spin diffusion measurements: Spin echoes in the presence of a time-
dependent field gradient. J Chem Phys. 1965; 42:288–292.

36. Westin CF, Maier SE, Mamata H, Nabavi A, Jolesz FA, Kikinis R. Processing and visualization
for diffusion tensor MRI. Med Imag Anal. 2002; 6:93–108.

37. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by
quantitative-diffusion-tensor MRI. J Magn Reson B. 1996; 111(3):209–219. [PubMed: 8661285]

38. do Carmo, MP. Differential Geometry of Curves and Surfaces. New York: Prentice Hall; 1976.

39. Beaulieu NC. An infinite series for the computation of the complementary probability distribution
function of a sum of independent random variables and its application to the sum of Rayleigh
random variables. IEEE Trans Comm. Sep; 1990 38(9):1463–1473.

Appendix A About the RLMMSE
One important issue in the RLMMSE definition is how long the assumption of Rician
distributed data may hold when recursive filtering is considered. A priori, nothing assures
that the data remains Rician once filtered. To test the filter behavior, we corrupted a 256 ×
256 constant image of value 100 with Rician noise with σn = 40. To study the evolution of
the distribution, the image is filtered with a LMMSE estimator using σn/2 instead of σn. This
way, the image is not totally denoised. Five iterations are performed, and after each one the
value of the noise variance is reestimated. Results are depicted in Fig. 20, where the actual
distribution of the data is compared with the Rician distribution and Gaussian distribution
for each iteration.

There is a slight mismatch with increasing numbers of iterations, but the Rician assumption
is still reasonable. Furthermore, when the SNR gets smaller, the Rician and Gaussian
converges as expected for high SNR values.

This is similar to the Gaussian distribution, but not exactly the same.

Another important issue for the RLMMSE is the stability of the K parameter, which is
defined as [see (15)]
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Taking into account that [28]

this equation may be rewritten as a function of the original data

In the uniform areas of the original image the variance is very small or zero, i.e. Var(A2) →
0, and accordingly K → 0 and

The estimator for the uniform areas is just the mean. On the other hand, when the level of

noise is very low, i.e.  then K → 1, and therefore

If no noise is present, the estimator is the image itself. One problem may arise if both

Var(A2) and  tend to 0. However, in that case, both estimators are correct, so, in a uniform
area

In practical experiments, there can be cases in which, due to numerical artifacts, K is
negative; this may be more common when the real image does not completely follow the
Rician model. In this case it is useful to add the following restriction:

Appendix B About the Noise Estimators
Both noise estimators used in this paper have been previously introduced and studied in
[28]. For the sake of completeness, a brief explanation of them is included in this appendix.
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Due to the influence of the pixels in the background of an MR image, the local mean
distribution of a nonnoisy MRI presents a maximum around zero (see Fig. 21(a), solid line).
When the image is corrupted with Rician noise, this maximum is now shifted to a value
related to σn [see the dotted line in Fig. 21(a)]. As the mean of a Rayleigh distribution is

defined as , we can define a σn estimator

where  the distribution of the sample local mean. The maximum may be calculated as
the mode of the distribution

(22)

This assumption can be proved by analyzing the mode of the distribution of the mean of
Rayleigh random variables. The sum of Rayleigh variables is a classical problem in
communications. Some approximations are usually employed, as the one in [39].

The effect of changing the size for the window used for estimation [see Fig. 21(b)] is a
change in the width of the distribution, but in any case, the maximum stays at the same
value. Accordingly, the mode does not change and neither does the estimation.

The starting point of the variance-based estimator is that, if no texture is present, the
distribution of the local variances of an image will have its maximum value around zero.
With this assumption in mind, we will first approximate the variance of a Rician model as

If , and even if  we can say that

and accordingly, if the variance of the signal is estimated locally, the variance of noise can
be estimated as

This is similar to considering the rough approximation of the noise being Gaussian when the
SNR is high. This way, the sample variance has a gamma distribution with mode
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To completely justify this result, the distribution of the sample variance for the Rician model
must be calculated.

Aja-Fernández et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 October 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Synthetic experiments. (a) Original image (from BrainWeb) used in the synthetic
experiments. (b) Mask used in the quality measures.
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Fig. 2.
Experiment with synthetic noise. MRI from Brainweb (Detail). (a) Original Image. (b)
Image with Rician noise with σn = 10. (c) Gaussian filtered. (d) Conventional approach. (e)
ML estimator. (f) EM method. (g) Koay’s method. (h) LMMSE estimator. (i) Recursive
LMMSE (eight iterations). The LMMSE filters with correct noise estimation show the best
performance, as confirmed by the numerical results in Table II.
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Fig. 3.
Coronal slice from a 3-D acquisition. (a) Original image. (b) Conventional approach. (c) EM
method. (d) Koay’s method. (e) LMMSE estimator, adaptive noise estimation using the local
mean and a 5×5 window. (f) RLMMSE estimator, adaptive noise estimation using the local
mean and a 5×5 window (eight iterations).
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Fig. 4.
Detail of the images of the experiment of Fig. 3. (a) Original. (b) CA. (c) EM. (d) Koay. (e)
LMMSE. (f) RLMMSE (eight steps).
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Fig. 5.
(a) Baseline image. (b) Thresholded image; in black all the pixels with intensity value equal
to 0. An artificial black background has been added.
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Fig. 6.
Local mean distribution of a 3-D MR volume. (a) Distribution using all the values. (b)
Distribution using only the points with intensities greater than 0 (the artificial background is
not considered).
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Fig. 7.
Slice 40 of the EPI dataset. Baseline. Original image and images filtered with different
neighborhoods. Noise estimated over a (7,7,1) neighborhood. (a) Original baseline. (b)
(3,3,1). (c) (5,5,1). (d) (7,7,1). (e) (9,9,1). (f) (11,11,1).
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Fig. 8.
Slice 40 of the EPI dataset. DWI. Original image and images filtered with different
neighborhoods. Noise estimated over a (7,7,1) neighborhood. (a) Original DWI. (b) (3,3,1).
(c) (5,5,1). (d) (7,7,1). (e) (9,9,1). (f) (11,11,1).
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Fig. 9.
Synthetic vector field used in the experiments. σn = 100 (SNR = 2.62 dB), five different
gradients. (a) Original tensor field. (b) Noisy. (c) Gaussian. (d) Wiener. (e) LMMSE. (f)
RLMMSE (5).
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Fig. 10.
Mean (left) and standard deviation (right) of the error of estimation of the eigenvalues for 3,
5, and 15 gradient directions. (a) Mean of the error, 3 directions. (b) Standard deviation of
the error, 3 directions. (c) Mean of the error, 5 directions. (d) Standard deviation of the error,
5 directions. (e) Mean of the error, 15 directions. (f) Standard deviation of the error, 15
directions.
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Fig. 11.
Two dimensional histograms of the distribution of the estimated eigenvalues. σn = 100
(SNR = 2.62 dB). Five different gradients. In green the original eigenvalues. The proposed
methods (LMMSE and RLMMSE) show a smaller bias in the estimation. (a) Noisy. (b)
Gaussian. (c) Wiener. (d) LMMSE. (e) RLMMSE (five steps).
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Fig. 12.
Synthetic 2-D tensor field for the eigenvector experiment. (a) Original. (b) Noisy.
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Fig. 13.
Original eigenvector direction (bold). Normalized histogram for the angle distribution of the
eigenvectors of the noisy tensor field (black), after LMMSE estimation (red), and after
Gaussian smoothing (blue).
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Fig. 14.
Logarithmic spiral.
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Fig. 15.
Logarithmic histogram of spectral deviations with respect to the ground truth for different
filtering methodologies (Gaussian and RLMMSE) with subsequent linear tensor estimation.
The proposed method leads to a much better estimation of the tensor eigenvalues. (a)
Largest eigenvalue. (b) Mean of two smallest eigenvalues.
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Fig. 16.
Two-dimensional logarithmic histograms of spectral deviations with respect to the ground
truth for different filtering methodologies (Gaussian and RLMMSE; the axes are mean of
the smallest eigenvalues over the major eigenvalue). The proposed method leads to a much
better estimation of the tensor eigenvalues. (a) Noisy. (b) Filteres. (c) Gauss filtered.
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Fig. 17.
Main eigenvector over fractional anisotropy. The filtered vector field is more homogeneous
than the noisy one. (a) Original volume. (b) RLMMSE (10 iterations).
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Fig. 18.
DTI data, color by orientation of the main eigenvector, two different slices. RED means
anterior–posterior direction (X axis), GREEN left–right (Y axis) and BLUE inferior–
superior (Z axis). Original data (left) and after LMMSE filtering (right), (a) Original, (b)
LMMSE. (c) Original, (d) LMMSE.
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Fig. 19.
Automatic tractography of the Uncinate Fasciculus. Tractography on the filtered data set
follows the shape of the bundle better, (a) Original data, (b) Data after filtering.
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Fig. 20.
Experiment with synthetic noise, (a) Original, (b) One iteration ( ). (c) Two iterations
( ). (d) Three iterations ( ). (e) Four iterations ( ). (f) Five iterations
( ).
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Fig. 21.
(a) Sample local mean distribution of the image without noise (solid-bold) and with noise

(dashed), with σn = 10. (b) Normalized distribution of  of the noisy image with σn
= 10. Window size: 3 × 3 (dashed), 7 × 7 (solid), 11 × 11 (dash–dotted) and 21 × 21
(dotted).

Aja-Fernández et al. Page 40

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 October 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Aja-Fernández et al. Page 41

TABLE I

Values of σn Used in the Synthetic Experiments. For the SNR the Mean Value of S in Each Region has Been
Considered

σn SNR (White Matter) SNR (Gray Matter) SNR (CSF)

5 30 dB 26 dB 17 dB

10 23.6 dB 20 dB 11 dB

20 17.6 dB 13.9 dB 5 dB
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TABLE III

Execution time per slice (in seconds) of some filtering methods

σn = 5 σn = 10 σn = 20

LMMSE 0.06 0.06 0.06

RLMMSE (8) 0.57 0.57 0.57

EM 28.13 28.08 20.61

Koay 145.6 150.4 155.4
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