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Abstract
Methods for the analysis of brain morphology, including voxel-based morphology and surface-
based morphometries, have been used to detect associations between brain structure and covariates
of interest, such as diagnosis, severity of disease, age, IQ, and genotype. The statistical analysis of
morphometric measures usually involves two statistical procedures: 1) invoking a statistical model
at each voxel (or point) on the surface of the brain or brain subregion, followed by mapping test
statistics (e.g., t test) or their associated p values at each of those voxels; 2) correction for the
multiple statistical tests conducted across all voxels on the surface of the brain region under
investigation. We propose the use of new statistical methods for each of these procedures. We first
use a heteroscedastic linear model to test the associations between the morphological measures at
each voxel on the surface of the specified subregion (e.g., cortical or subcortical surfaces) and the
covariates of interest. Moreover, we develop a robust test procedure that is based on a resampling
method, called wild bootstrapping. This procedure assesses the statistical significance of the
associations between a measure of given brain structure and the covariates of interest. The value
of this robust test procedure lies in its computationally simplicity and in its applicability to a wide
range of imaging data, including data from both anatomical and functional magnetic resonance
imaging (fMRI). Simulation studies demonstrate that this robust test procedure can accurately
control the family-wise error rate. We demonstrate the application of this robust test procedure to
the detection of statistically significant differences in the morphology of the hippocampus over
time across gender groups in a large sample of healthy subjects.
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I. Introduction
Various methods for modeling the morphology of the brain, including voxel-based, surface-
based, and tensor-based morphometries, provide invaluable tools for understanding
neuroanatomical differences in brain structure across subjects [1]-[7]. Statistical analysis of
these morphometric measures can subsequently be used to understand normal brain
development, the neural bases of neuropsychiatric disorders, and how environmental and
genetic factors interact to determine brain structure and function. For instance, a joint
analysis of brain morphometry and genotype may reveal brain regions with strong
heritability in healthy subjects [8], [9]. Moreover, some measures of brain structure may be
used as an endophenotypic marker for a disease if statistical analyses show that they are
associated with behavioral, cognitive, or clinical outcomes [6], [10]-[14]. Studies of brain
morphology have been conducted widely to characterize differences in brain structure across
differing populations, such as patients with schizophrenia and healthy subjects [7], [15]-
[19].

The statistical analysis of morphometric measures usually involves two procedures executed
in sequence. The first procedure entails fitting a general linear model (LM) to the
morphometric data from all subjects at each voxel and generating a statistical parametric
map that contains a statistic (or a p value) at each voxel [20]. The second procedure entails
using various statistical methods (e.g., random field theory, false discovery rate, permutation
method) to calculate adjusted p values that account for the multiple statistical tests that are
conducted across the many voxels of the brain region [21], [22]. All these statistical methods
are implemented in existing neuroimaging software platforms, such as SPM, FSL, and
SnPM.

The existing methods for these two procedures, however, have at least three limitations.
First, the general linear model used in the neuroimaging literature usually involves two key
assumptions: that the variance of the imaging data are homogeneous across subjects and that
the data conform to a Gaussian distribution at each voxel. These two assumptions are
critically important for the valid calculation of parametric distributions (e.g., t, F, and T) in
conventional tests (e.g., t test) that assess the statistical significance of parameter estimates
in the general linear model [3], [23]. Diagnostic procedures have been proposed to test these
assumptions of the general linear model [24], [25], yet few statistical methods have been
developed to analyze imaging data when these two assumptions are not satisfied. Second,
the methods of random field theory that account for multiple statistical comparisons depend
strongly on these assumptions of the general linear model, as well as several additional
assumptions (e.g., smoothness of autocorrelation function) [21]. Third, permutation methods
require the so-called “complete exchangeability” [26]-[28]. Complete exchangeability,
however, is in fact a very strong assumption. For instance, consider two diagnostic groups
(healthy controls and a disease group) and suppose that the null hypothesis is that the
morphometric measures in all voxels from the two groups have the same mean. A
permutation null distribution actually enforces equal distributions in the two groups in all
voxels, which is a much stronger assumption than that of equal means across groups [26],
[28].
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The aim of this paper is to use new statistical methods to address these three limitations of
extant methods for morphometric analyses. Specifically, we propose to apply two statistical
techniques to the analysis of brain morphology: a heteroscedastic linear model, which avoids
the two key assumptions of the general linear model, and a robust test procedure to correct
for multiple statistical tests.

First, we use a heteroscedastic linear model together with a Wald-type statistical test to test
linear hypotheses of brain morphology. The heteroscedastic linear model does not assume
the presence of homogeneous variance across subjects, and it allows for a large class of
distributions in the imaging data. These extensions are desirable for the analysis of real-
world imaging data (e.g., anatomical and functional magnetic resonance imaging (fMRI)
data, positron emission tomography measures), because between-subject and between-voxel
variability in the imaging measures can be substantial [29]-[31]. Moreover, the distribution
of the imaging data often deviates from the Gaussian distribution (see example in Sections
III and IV) [2], [6], [23]. Under the heteroscedastic linear model, we calculate the ordinary
least squares (OLS) estimator (denoted by β̂) to estimate the associations (denoted by β)
between the measures of a brain region and the covariates of interest. We then use a Wald-
type test statistic based on a consistent estimator of the covariance matrix (CECM) for β̂
under the null hypothesis [32], [33]. Although the Wald-type test statistic does not have a
simple parametric distribution, we can use a wild bootstrap method to improve the finite
performance of the Wald-type test statistic. The wild bootstrap method has been shown to
have good theoretical properties and excellent performance in practice [34], [35].

To test multiple hypotheses across all voxels of a brain region, we propose a robust test
procedure to control the family-wise error rate. Specially, we perform the Wald-type test
statistic using the wild bootstrap method simultaneously at all voxels of the brain region,
while preserving the dependence structure among the test statistics. In addition, the wild
bootstrap method does not involve repeated analyses of simulated datasets and therefore is
not computationally intensive. Specifically, the wild bootstrap method requires neither
complete exchangeability nor a Gaussian distribution for the imaging data. The robust test
procedure is, thus, widely applicable to other imaging modalities, including fMRI and
positron emission tomography (PET) data.

II. Methods
Here, we formally introduce the heteroscedastic linear model and use a Wald-type test
statistic for testing linear hypotheses of β. We then present a robust test procedure based on
the wild bootstrap as a method for correcting p values for multiple statistical comparisons.

A. Heteroscedastic Linear Model and a Wald-Type Test Statistic
In a particular voxel d on the brain structure, we consider the following heteroscedastic
linear model:

(1)

for t = 1, … , n, where t represents the tth subject, yt represents a measure of brain
morphology (e.g., signed Euclidean distance, grey matter density), Xt is an exogenous k × 1
vector (e.g., age, gender, and genotype), β is a k × 1 vector of unknown parameters, and εt is
a random error term. Let Y = (y1, … , yn)T, X = (X1, … , Xn)T, ε = (ε1, … , εn)T, and

, where the superscript T represents transpose. Then, (1) can be rewritten
as
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(2)

Here, without loss of generality, we assume that X is a column full rank matrix, i.e. rank(X)
= k. The ordinary least squares estimate of parameter β, given by β̂ = (XT X)−1 XT Y, has
been implemented in SPM1 and widely used in many neuroimaging studies, because of its
computational simplicity. In contrast, if Ω were known, we could use the generalized least
squares estimate of β, which is more efficient than β̂ [36]. However, except for a few special
cases (e.g., fMRI), we rarely have prior information to consistently estimate Ω [32], [34].

Let In be an n × n identity matrix, PX = X(XT X)−1 XT, and  for t = 1, … ,
n. The covariance matrix of β̂ is given by

while a consistent estimator of the covariance matrix (CECM) of β̂ in model (2) has the
following form:

(3)

where , at = 1/(1−ht), and ε̂t is the tth component of ε̂ = Y − Xβ̂ = (In
− PX)Y [34]. It should be noted that Ω̂ is not a consistent estimate of Ω, whereas because

n−1XT(Ω̂−Ω)X converges to zero,  is a CECM [32].

Ignoring heteroscedasticity in model (1) leads to using σ̂2(XT X)−1 as an estimate of the
covariance matrix for the OLS estimator β̂, where σ̂2 = YT(I − PX)Y/(n − k). However,
failure to account for interindividual variance can lead to the following consequences: 1)
σ̂2(XT X)−1 may be inconsistent; 2) conventional statistics for testing linear hypotheses of β
do not follow t and F distributions; 3) invalid inferences based on σ̂2(XT X)−1 lead to large
Type I and/or Type II error rates for testing linear hypotheses of β [32], [34], [37].

We consider testing the linear hypotheses

(4)

where R is an r × k matrix of full row rank and b0 is an r × 1 specified vector. We test the
null hypothesis H0 : Rβ = b0 using a Wald-type test statistic

(5)

where ΣΩ̃ is a consistent estimate of the covariance matrix of Rβ̂ − b0 under H0. Explicitly,
ΣΩ̃ is given by

1Available: http://www.fil.ion.ucl.ac.uk/spm/
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(6)

where  and ε̃t is the tth component of ε̃ as given in (8). Various
simulation studies have shown that the use of ε̃ leads to a better control of Type I error rates
[34], [38].

Under H0, a restricted least squares (RLS) estimate of β, denoted by β̃, is given by
(Appendix I)

(7)

and a restricted residual vector ε̃ = Y − Xβ̃ is calculated to be

(8)

Because Wn is asymptotically distributed as χ2(r), a chi-square distribution with r degrees-
of-freedom, under the null hypothesis H0, an asymptotically valid test can be obtained by
comparing sample values of test statistic with the critical value of the right-hand tail of χ2(r)
distribution at a prespecified significance level α [32]. That is, we reject H0 if

, and do not reject H0 otherwise, where  is the upper α-percentile of the
χ2(r) distribution. However, for small n, numerical results have shown that Wn may yield
misleading results (large Type I and/or Type II error rates) [34], [35], [37], [39].

B. Wild Bootstrap
We present a wild bootstrap method to improve the finite performance of Wn in testing the
null hypothesis H0. This wild bootstrap method has been extensively studied in the literature
[34], [35]. To use wild bootstrapping to test H0 : Rβ = b0 we generates bootstrap samples
that conform to the null hypothesis. Thus, we estimate the unknown parameters of β under
the constraint Rβ = b0, which is exactly the RLS estimator of β, β̃. Then, a p value can be
calculated based on the generated bootstrap samples.

To produce a bootstrap sample , we use the following data-generating
process (DGP):

(9)

where β̃ and ε̃ are, respectively, defined in (7) and (8), and  are independently and
identically distributed as a distribution F. Following Flachaire [34], F is chosen as

(10)

Thus, a bootstrap sample  can be obtained using the data-generating

process (9). Let , and . Equation (9) can be rewritten as
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(11)

We now calculate the Wald-type test statistic for the bootstrap sample. It follows from (11)
that the ordinary and restricted least squares estimates of β are, respectively, given by

(12)

Thus, the ordinary residual vector of model (11) is given by

Furthermore, the restricted residual vector of model (11), denoted by ε̃*, is given by

(13)

where RX = X(XT X)−1 RT. Let , where  is the tth element of ε̃*.
Since Rβ̂* − b0 = R(XT X)−1 XT Ω̃1/2 ε*, the Wald-type test statistic  based on the
bootstrap sample is given by

(14)

where ΣΩ̃* = R(XT X)−1 XT Ω̃* X(XT X)−1 RT.

We can approximate the p value of Wn as follows:

Step 1) Independently generate S bootstrap samples  for s = 1,
… , S using the bootstrap DGP (11).

Step 2) Calculate  for each bootstrap sample.

Step 3) Approximate the p value of Wn by

where I (·) is an indicator function.

We may consider other bootstrap methods, such as the pairs bootstrap, and other
distributions F, such as the two-point distribution of Mammen [34], [40], [41]. For instance,
we may use the pairs bootstrap method, but bootstrap samples generated by the pairs
bootstrap method may not come from model (2) conforming to the null hypothesis Rβ = b0.
Thus, some appropriate modifications of the pair bootstrap are needed and these
modifications lead to the use of the wild boostrap [34]. In addition, the use of the pair
bootstrap can lead to a loss of power [34]. Various simulation studies have clearly shown
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that the wild bootstrap outperforms the pairs bootstrap in the literature [34], [42], [43]. The
noise distribution (10) is justified by theoretical underpinnings and numerical simulations
[34], [35].

The above heteroscedastic linear model and the wild bootstrap method can be used to
analyze {(yt, Xt) : t = 1, … , n} in each voxel d of the brain region. Henceforth, we use d in

our notation if necessary, such as .

C. Robust Test Procedure
To test whether H0 : Rβ = b0 holds in all voxels of the brain region under investigation, we
consider a maximum statistic, the maximum of the Wald-type test statistics, as

(15)

The maximum statistic WD plays a crucial role in controlling the family-wise error rate. In
order to use WD as a test statistic, we need to approximate the distribution of WD under the
null hypotheses in all voxels of the brain structure. We may apply random field theory for
χ2 processes to approximate the upper tail of WD, because Wn(d) converges to a χ2(r)
distribution under certain conditions as the number of subject n is sufficiently large [44]-
[46]. However, the random field theory for χ2 processes may be conservative because the
asymptotic test of Wn(d) leads to large Type I (and/or Type II) error rates in a single voxel
d[37].

We propose a robust test procedure based on the wild bootstrap method to approximate the
distribution of WD. This procedure is implemented as follows.

Step 1) In each voxel d of the brain structure, calculate the Wald-type test statistic
Wn(d) given in (5) based on the observed data {(yt(d), Xt) : t = 1, … , n}. Compute WD
= maxd Wn(d).

Step 2) Generate a random sample  from the distribution F. In all voxels
d, generate observations  from model (11) using the same sample

.

Step 3) Calculate the Wald-type test statistic  based on the bootstrap sample

 and .

Step 4) Repeated Steps 2–3 S times and calculate . Finally, the p
value is approximated by

(16)

We reject that the null hypothesis H0 : Rβ = b0 is true in all voxels of the brain structure
if pD is smaller than a prespecified value α.

Step 5) Calculate adjusted p value in each voxel d according to

(17)
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We note here at least four important advantages of this test procedure compared with
existing procedures:

i) the wild bootstrap method performs well at each point d even for relatively
small n (e.g., n ≤ 40);

ii) the above test procedure asymptotically preserves the dependence structure
among the Wn(d);

iii) the above test procedure is not computationally intensive, because it does not
involve the repeated analysis of simulated datasets;

iv) the above test procedure does not require complete exchangeability.

We can show that the robust test procedure asymptotically preserves the dependence
structure among the Wn(d). According to  in (14), the correlation between  and

 is primarily determined by the correlation between  and .
We can show that

holds for any two points d and d′. Similarly, the correlation between Wn(d) and Wn(d′) is

primarily determined by the correlation between  and , which is given by

Thus, under some conditions [32]

converges to zero in probability, and thus we have proved the advantage (ii).

III. Simulation Studies and Real-World Studies
We conducted two sets of Monte Carlo simulations. The first examined the finite
performance of the wild bootstrap method for Wn at the single-voxel level. In particular, we
compared its performance to the F test, the asymptotic test for Wn, and the permutation
method based on the t test statistic. The second set of Monte Carlo simulations was to
evaluate the family-wise error rate and power of the robust test procedure at the level of the
whole surface (or brain). Then, we compared its performance to the permutation method
based on the t test statistic and random field theory for F and χ2 fields.

A. Monte Carlo Simulations: Set I
1) Design—For the first set of Monte Carlo simulations, we simulated data from the
heteroscedastic linear model
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(18)

for t = 1, … , n, where ∈t is a random error with zero mean, β is a k × 1 vector of unknown
parameters, and Xt is a k × 1 vector of covariates of interest. Because of prior extensive
simulations reported in the literature [34], [35], [37], [39], we chose a simple Xt as follows:
Xt = (1, 0)T for t = 1, … , [n/2] and Xt = (1,1)T for t = [n/2] + 1, … , n, where [n/2], denotes
the largest integer smaller than n/2. We set n = 10, 20, and 40.

2) Random Errors—We considered the effects of three differing distributions of ∈t to
examine the effects of these distributions on the finite performance of the four test statistics
at the single-voxel level, including the wild bootstrap method for Wn, the F test, the
asymptotic test for Wn, and the permutation method based on the t test statistic, at the single-
voxel level. First, ∈t is a Gaussian error from N(0,1), where N(μ, σ2) denotes a Gaussian
distribution having a mean μ and standard deviation σ. The Gaussian errors with unit
variance were generated to meet the assumptions of the general linear model. Second, we
assumed ∈t = χ2(2) − 2, in which χ2(2) represents a chi-squared random variable with 2
degrees-of-freedom. The skewed distribution χ2(2) − 2 differs substantially from any
Gaussian distribution. Third, we assumed that ∈t = σtz and z were independently generated
from a N(0,1) distribution. Moreover, σ(t) = exp(u) when Xt,2 = 0 and σ(t) = exp(u + 1)
when Xt,2 = 1, where u were independently generated from a N(0,1) distribution.
Conditional on u, the variances of ∈t were highly heterogeneous.

3) Hypothesis—We assumed β = (β0, β1)T = (1, 0)T and set the null hypothesis H0 : β1 =
0 to assess the Type I error rates for the four test statistics. Furthermore, we assumed β =
(β0, β1)T = (1, 2)T and test the hypothesis H0 : β1 = 0 against H1 : β1 ≠ 0. Then, we
examined the Type II errors for the four test statistics (e.g., F test). In both cases, R = (0,1)
and b0 = (0).

For each simulation, the significance level was set at α = 5%, and 20 000 replications were
used to estimate the rejection rates. For a fixed α, if the Type I rejection rate is smaller than
α, then the test is conservative, whereas if the Type I rejection rate is greater than α, then
the test is anticonservative, or liberal [57].

B. Monte Carlo Simulations: Set II
1) Basic Design—We used a heteroscedastic linear model to generate data in all m = 2064
points on the surface of a reference sphere for all n subjects (or objects) (Fig. 1). For the tth
subject, Y(t) denotes an m × 1 vector that contains all morphometric measures (e.g., signed
Euclidean distance, grey matter density) in all m points, B denotes an m × k matrix of
unknown parameters, and x(t) is a k × 1 vector of covariates of interest. The heteroscedastic
linear model can be written as

(19)

for t = 1, … , n, where e(t) is an m × 1 vector of independent Gaussian errors with zero mean
and unit variance and C is an m × m correlation matrix. In addition, x(t), C, and σ2(t) are
specified below.

2) Covariates of Interest—Our choice of statistical covariates was motivated by two
scientific aims. The first was to compare brain structure across diagnostic groups (e.g.,
healthy controls (HC) and persons with schizophrenia) [8], [50]. To compare the
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performance of our robust test procedure with that of the permutation test, we choose a
simple x(t) given by

(20)

where HC denotes the healthy control group. Moreover, the first [n/2] subjects were
assumed to be healthy controls, and the rest were assumed to be patients.

The second scientific aim was to understand differences in brain structure across genders in
the sample of healthy controls [19]. We choose x(t) as

(21)

where Gender equals 0 for males and 1 for females. We assumed that the first [n/2] subjects
were males, and the rest were females. The Age variable was uniformly generated from the
interval [1, n].

3) Variance Structure—We considered two types of variance structures: a homogeneous
case and a heterogeneous case. For the homogeneous case, we assumed that σ(t) ≡ 1 for all t
= 1, … , n. However, for the heterogeneous case, we assumed that we observed larger
variability from the male group as compared with the female group. Thus, for the covariates
of interest in (20) and (21), we set σ(t) = exp(z) and generate z from a N(0,1) distribution for
each man, and from a N(1,1) distribution for woman.

4) Correlation Structure—We considered a stationary and exponential correlation matrix
C, in which the correlation between any two points d and d′ on the surface was given by
ρ‖d–d′‖, where ρ ∈ [0, 1] and ‖d–d′‖ represents Euclidean distance between d and d′ [51]. We
denote such an exponential correlation matrix by C(ρ). We simulated images based on C(ρ)
using, ρ = 0, 0.25, 0.5, and 0.75 in order to mimic the differing degrees of smoothness in the
simulated images [52].

5) Hypotheses—For x(t) in (20), we first assumed β = (β0, β1)T = (1, 0)T in all points on
the reference sphere to assess the family-wise error rate. In addition, to assess both the
power and family-wise error rate, we selected a region-of-interest(ROI) with 64 points on
the reference sphere and set β1 = 5 for any point d in ROI [Fig. 1(a) and (b)]. In this case, k,
the dimension of β, was 2. We were interested in testing the null hypothesis H0 : β1 = 0 at all
points on the surface of the reference sphere. In this case, R = (0, 1) and b0 = (0).

For x(t) in (21), we first assumed β = (β0, β1, β2)T = (1, 0, 0)T in all points on the surface of
the reference sphere to assess the family-wise error rate. Furthermore, we used the same
ROI on the reference sphere and set β2 = 5 for any point d in ROI [Fig. 1(a) and (b)]. In this
case, the dimension of β was 3. We were interested in testing whether any differences of
morphology changes existed across gender groups, that is, H0 : β3 = 0. In this case, R = (0,
0, 1) and b0 = (0).

6) Type I Error Rate and Average Power—For each simulation study, we calculated
the family-wise error rate (FWER = P(V ≥ 1) for the Type I error rates [26], [55]. The
significance level was set at α = 5%, and 1000 replications were used to estimate the
FWER. For a fixed α, if the FWER is smaller than α, then the test is conservative, whereas
if the FWER is greater than α, then the test is anticonservative, or liberal [57]. We also
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calculated an average power, that is, the average of the probabilities of rejecting each of the
64 vertices in ROI.

7) Test Procedures—We evaluated the family-wise error rate of the four test procedures
as follows. First, we considered the robust test procedure based on the maximum statistic
WD (Section II-C), in which S = 699 boostrap samples were generated to calculate the
adjusted p value. Second, we also used the Wald-type test statistics Wn(d) and WD, but we
calculated the p value of WD and the corrected p values of Wn(d) using the theoretical
results of χ2(1) field [21], [22], [56]. Third, we calculated the F statistic for the general
linear model at each voxel and the maximum of the F statistics across those voxels. Then,
we approximated the adjusted p values of all F statistics using the results of the F field [22],
[56]. Finally, we only applied the permutation test based on the maximum of absolute values
of the t statistics with 699 permutations to model (19) with x(t) given in (20), because the
permutation method based on the t statistic may not be applicable when x(t) given in (21)
has multiple covariates.

8) Random Field Theory—We applied the results for the χ2 and F fields to the
calculation of the corrected p value of the local maxima of the F statistics (or Wn(d)) and the
adjusted p value in each point of the reference sphere. Explicitly, for the second test
procedure, the corrected p value of WD in a 2-D search region D is well approximated by

(22)

where Reselsc and ECc, respectively, represent the resels of the search region and the Euler
characteristic density of the χ2(1) field in c dimension. Equation (22) can be used to
calculated the adjusted p value for large Wn(d) in each vertex of the reference sphere. For
the triangular mesh on the reference sphere (2-D), we have Resels0 = 2, Resels1 = 0, and

(23)

Moreover, let u0, u1, and u2 be three n × 1 vectors of the normalized residuals at each vertex
of a triangular of the reference sphere, we define Δu = (u1 − u0, u2 − u0) [56]. Expressions
of the Euler characteristic densities for the χ2 field and d ≤ 2 can be found in [22]. Similarly,
we used (23) to calculate the resels of the search region D and then applied the expected
Euler characteristic for the F field to calculate the corrected p value of the local maxima of
the F statistics [22], [56].

C. Real-World Example
The robust test procedure was used to model morphological changes in the hippocampus
over time across gender groups.

1) Subjects—All 123 healthy subjects were recruited from a telemarketing list of families
in southern Connecticut. The ages of all subjects range from 7 to 62 years (mean 20.14, SD:
13.2 years). The sample was similarly distributed across gender (males: 67; female: 56).
Subjects were predominantly right handed (93.5%).

2) Image Acquisition Protocol—Head positioning in the head coil of the magnetic
resonance imaging (MRI) scanner was standardized using cantho-meatal landmarks. We
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acquired high-resolution T1-weighted MRIs on a single 1.5-T scanner (GE Signa; General
Electric, Milwaukee, WI) using a sagittal 3-D volume spoiled gradient echo sequence.
Parameters included repetition time = 24 msec, echo time = 5 msec, 45° flip angle,
frequency encoding superior/inferior, no wrap, 256 × 192 matrix, FOV = 30 cm, 2
excitations, slice thickness = 1.2 mm, and 124 contiguous slices encoded for sagittal slice
reconstruction, voxel dimensions 1.17 × 1.17 × 1.2 mm3.

3) Selection of the Reference Structure—We first selected a preliminary brain of one
subject (a 32.5 year-old right-handed, Caucasian male). Then, we registered the brains of
other subjects in this study to this preliminary reference brain. We determined the point
correspondences across their surfaces according to the methods described below and
calculated the distances of those points from the corresponding points on the preliminary
reference. Finally, we selected the brain for which all points across its surface were closest
(in the least squares sense) to the average of the distances across those points for the entire
sample as the final reference.

4) Morphological Descriptions of the Surface of the Hippocampus Surface—A
four-step procedure described below was developed to obtain the morphological
descriptions of the hippocampus surface. First, we registered the brains of all subjects to the
cerebrum of the selected reference subject by using a rigid-body similarity transformation.
The method of mutual information [58] was employed to calculate seven parameters (three
translations, three rotations, and a global scale). Second, we rigidly coregistered to one
another the hippocampus within the coregistered brains using a rigid-body transformation.
Third, we identified correspondences between the points on the surfaces of the hippocampus
by deforming these structures into the hippocampus of the reference brain using an
algorithm based on fluid dynamics [59], [60]. Fourth, we calculated signed Euclidean
distances of each point in the hippocampus of each subject from the corresponding point in
the reference hippocampus. Distances of the points on the undeformed surface of the
hippocampus of each subject that were positioned inside the boundary of the reference
structure were labeled as negative, whereas distances for points positioned outside of the
reference structure were labeled as positive.

5) Heteroscedastic Linear Model—To control the effects of covariates (age and
gender) on our models of surface morphology, we considered a heteroscedastic linear model
in each point on the reference surface

(24)

where xt and gt denote the log(age) and gender of the tth subject, respectively, and yt(d) is
the signed Euclidean distance for the tth subject in the dth point. In model (24), we do not
include an adjustment term for overall intracranial volume, because the effects of brain size
already have been taken into account by first coregistering the cerebrums of different
subjects to the cerebrum of a reference subject (see Section III-C-4).

We are primarily interested in testing the morphological changes of the hippocampus over
time across gender groups, i.e., we are testing the null hypotheses H0 : β4 = β5 = 0 at all
points on the surface of the hippocampus. Thus, we have
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6) Smoothing the Surface of Hippocampus—We smoothed the signed Euclidean
distance measures of all 123 subjects using the heat kernel smoothing with parameters σ = 1
and 16 iterations, which gave an effective smoothness of about 4 mm [53].

IV. Results
A. Simulation Studies: Set I

1) Type I Error Rates—Overall, the rejection rates for the permutation test and wild
bootstrap method were accurate for all sample sizes (n = 10, 20, or 40) and for the three
differing distributions of error terms [Fig. 2(a)–(c)]. In particular, the wild bootstrap
performed well even when the data were Gaussian distributed with heterogeneous variances,
because Wn in the wild bootstrap accounted for inhomogeneity of variance across subjects.
Although the F test was accurate in the presence of Gaussian N(0, 1) errors Fig. 2(a), Type I
error rates associated with application of the F test declined for error terms that followed
either the skewed distribution χ2(2) − 2 Fig. 2(b) or the Gaussian distribution with
heterogeneous variances Fig. 2(c). This decline in Type I error was caused by applying the
upper percentile of the F distribution to the F test, whereas when not assuming that the data
were Gaussian distributed with homogeneous variance, the distribution of the F test was not
in fact F distributed. Moreover, in all cases, the asymptotic χ2 test for Wn was highly
conservative because it was applied in the context of a small sample size.

2) Type II Error Rates—We observed that Type II error rates for the F test, the
permutation test, and the wild bootstrap method were similar under N(0, 1) errors and for all
sample sizes [Fig. 2(d)–(f)]. Compared with the rates of Type II error during application of
the permutation test and the wild bootstrap method, however, the power of the F test to
reject the null hypothesis declined modestly when the distributions of errors either were
skewed Fig. 2(e) or were Gaussian with heterogeneous variance Fig. 2(f); this increase in
Type II error when noise was not Gaussian distributed reflected the consequence of applying
the F test when the F test was not F distributed. Under all sample sizes and distributions of
errors, the asymptotic test for Wn produced the highest rates of Type II error, because the
upper 95th percentile of the χ2-distribution was much higher than the upper 95th percentile
of the sample distribution of Wn when the sample size was small. Consistent with our
expectations, the statistical power for rejecting the null hypothesis increased with the sample
size n.

B. Simulation Studies: Set II
1) Family-Wise Error Rates—In the presence of random errors with homogeneous
variance, the permutation test based on the t statistic performed very well for all sample
sizes [Fig. 3(a)–(c)]. In the presence of random errors with heterogeneous variance, in
contrast, the permutation test was excessively liberal under all sample sizes [Fig. 3(d)–(f)],
though less so as n increased [Fig. 3(d)-(f)]. In the presence of random errors with
heterogeneous variance, the distributions of data in the two groups differed substantially
from one another, invalidating the assumption of complete exchangeability, and causing the
inflation of family-wise error rates during application of the permutation test.

For model (19) with two covariates, our robust test procedure worked well for relatively
small sample sizes (n = 10, 20, and 40) and in the presence of random errors with either
homogeneous or heterogeneous variance [Fig. 3(a)–(f)]. Under model (19) with three
covariates, however, the family-wise error rates for our robust test procedure were not
particularly accurate in the presence of random errors with either homogeneous or
heterogeneous variance for the smallest sample size, n = 10 [Fig. 4(a) and (d)]; in contrast,
they approximated the 5% significance level at the larger sample sizes of n = 20 and 40.
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Thus, sample size and the number of covariates can influence somewhat the finite
performance of our robust test procedure.

The F field for the F statistic and the χ2 field for Wn were highly conservative for relatively
small sample sizes (n = 10, 20, and 40), when including two or three covariates, and in the
presence of random errors with either homogeneous or heterogeneous variance (Figs. 3 and
4). Differing distributions of random errors significantly influenced the family-wise error
rates of the F field for the F statistic and the χ2 field for Wn. Larger correlations (or heavier
smoothing) improved the performance of the F field for the F statistic when we compared its
family-wise error rates with the 5% significance level. Overall, the F field for the F statistic
yielded a highly conservative test, even with sample sizes as high as 40 and when the
correlation of errors across two neighboring voxels on the reference sphere was as high as
0.75.

2) Average Power—For model (19) with two covariates, compared with our robust test
procedure, the permutation test based on the t statistic had slightly larger average power in
detecting statistically significant vertices in an ROI [Fig. 5(a) and (d)–(f)], and both the
permutation test and our test procedure had much larger average power than did the F field
for the F statistic and the χ2 field for Wn [Fig. 5(a), (b), and (d)–(f)].

For model (19) with three covariates, the robust test procedure had larger average power
than did the F field for the F statistic and the χ2 field for Wn under heterogeneous variances
[Fig. 6(d)–(f)]. However, under homogeneous variance, large correlations (e.g., ρ ≥ 0.5), and
n = 10, the F field for the F statistics was more sensitive than was the robust test procedure
Fig. 6(a).

C. Real-World Example
1) Assessing Assumptions of the Model—We investigated whether the general linear
model was appropriate for this study. We calculated test statistics for assessing the validity
of the two assumptions of the general linear model: normality and homogeneous constant
variance of the data. Based on the residuals after fitting the general linear model, we
calculated the Shapiro–Wilk and Cook–Weisberg statistics to test the assumptions of a
Gaussian distribution and the homogeneous variance for the error terms [61], [62]. These
statistics rejected the assumptions of normality (Fig. 7) and homogeneous variance (not
presented here) at many points on the surfaces of the both left and right hippocampus for
both the original distance measures [Fig. 7(a)–(d)] as well as the smoothed distance
measures [Fig. 7(e)–(h)]. The application of smoothing techniques, however, improved the
normality of the random errors [Fig. 7(e)–(h)].

Because the assumptions of the general linear model are invalid, the use of random field
theory to analyze these imaging data is inappropriate, at least without prior spatial
smoothing of the data [2], [6], [23]. Moreover, the permutation method based on the statistic
cannot be applied directly to the model (24), which contains multiple covariates.

2) Analysis of Hippocampal Surface—We used the signed Euclidean distances to
detect and localize statistically significant differences in the morphology of the hippocampus
over time across gender groups. We tested these differences using gender-by-log(age) and
gender-by-[log(age)]2 interactions in model (24) at each point of the surface of the
hippocampus. The p-values based on the asymptotic χ2 test were color-coded in each point
of the reference hippocampus [Fig. 8(a), (b), (f) and (g)]. To correct for multiple
comparisons, we applied our robust test procedure to calculate the adjusted p value at each
point on the surface of the reference hippocampus [Fig. 8(c), (d), (h), and (i)]. Color-coded
maps of p value maps using either the uncorrected χ2 test alone or the corrected resampling
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method indicated large-scale differences in surface morphology across gender groups. The
resampling method, however, captured far fewer points of differences in morphology of the
hippocampus mainly in the head portion of the hippocampus (Fig. 8) [63].

We compared findings using the linear model and our heteroscedastic linear model for these
data. When testing gender-by-log(age) and gender-by-[log(age)]2 interactions, we calculated
the − log10(p) value of the F statistic and the − log10(p) value of Wn based on the wild
bootstrap method at each point of the surface of the reference hippocampus. We observed
that combining the heteroscedastic linear model with the wild bootstrap method increased
the number of statistically significant points (− log10(p) > 1.3) on the surface of the
hippocampus in each hemisphere [Fig. 9(a) and (b)].

V. Conclusion and Discussion
We have developed a method for the analysis of anatomical imaging data based on a
heteroscedastic linear model and a wild bootstrap method. The use of the heteroscedastic
linear model avoids the assumptions of homogeneous variance across subjects and the
Gaussian distribution of imaging data, that we have shown to be invalid in one real-world
imaging dataset. The robust test procedure not only accounts for multiple comparisons
across all voxels of the brain region under investigation, but it also asymptotically preserves
the dependence structure among the Wald-type test statistics. We have used simulation
studies to show that the robust test procedure provides accurate control of the family-wise
error rate for relatively small to moderate sample sizes. Our analysis of a real-world dataset
demonstrates the applicability of our test procedure to anatomical imaging data, as well as
fMRI and PET data.

Our robust test procedure differs from other multiple comparison procedures for controlling
the Type I error, including random field theory methods, permutation methods, and the false
discovery rate. Computationally simple methods that employ random field theory depend on
the validity of several stringent assumptions, including a Gaussian distribution for the
imaging data and the smoothness of the spatial autocorrelation function [21]. Without
formally assessing the validity of these assumptions, the application of random field theory
can yield a very conservative statistical test (Figs. 3-6) [21]. Permutation methods
outperform those of random field theory methods in various settings, even when the small
sample size is small, although when not accounting for the presence of heterogeneous
variances across subjects, permutation methods can be anticonservative (see the simulation
results in Section IV). Moreover, the permutation methods may not be widely applicable to
neuroimaging studies that require the statistical control of multiple covariates (e.g., age,
gender, diagnoses, or genotype) without invoking stringent assumptions about the data, such
as the presence of identical and independently distributed random errors. However, when the
assumption of complete exchangeability is valid, the permutation test is almost the best.
Methods of statistical analysis based on the false discovery rate can accurately control the
false discovery rate, whereas the robust test procedure can accurately control the family-
wise error rate. Moreover, the false discovery rate requires an accurate estimation of the p
value for each hypothesis at each voxel, and under the heteroscedastic linear model,
calculating the p value accurately for each hypothesis requires a large number of bootstrap
samples in the wild bootstrap method.

We also note several advantages and limitations of our robust test procedure for controlling
Type I error. Type I error rates when using the wild boostrap method are reasonably small in
the presence of either heterogeneous variances across subjects or skewed distributions of
error terms (Fig. 2). The robust test procedure can accurately control the family-wise error
rate under various scenarios examined (Section IV), and it can increase the sensitivity of
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detecting statistically significant differences in brain structure when the variances across
subjects vary significantly across voxels. However, when the homogeneous variance and
Gaussian assumptions underlying the general linear model are truly valid, the use of the wild
bootstrap method yield slightly reduced statistical power (Section IV) [37]. Moreover, for
small significance level, say α = 1%, the number of replications S in the robust test
procedure must be increased in order to accurately estimate pD and pD(d). Running the
robust test procedure for large S can be computationally intensive [42].

Many aspects of this work merit further research. One is to examine the performance of our
robust test procedure in the analysis of data from other imaging modalities, including PET
and fMRI. Another is to extend our robust test procedure to the inclusion of cluster size
inference in controlling the rate of Type I errors [22], [57], [64]-[66]. Our robust test
procedure may lead to a simple test of cluster size in assessing the significance of all

numbers of interconnected voxels greater than a given threshold (e.g., ). We will
formally study the cluster size test elsewhere. Finally, we may use the generalized least
squares estimator of β instead of β̂, when prior information concerning Ω is available.

Appendix I

Proof of the Restricted Least Squares Estimate
The restricted least squares estimate of β under H0 : Rβ = b0 can be obtained by minimizing
the following objective function:

(A.1)

where λ = (λ1, … , λr)T. Taking the first derivative of l(λ, β) with respect to β and λ,
respectively, yields

and ∂λl = 2(Rβ−b0).

Then, β̃and λ̃ satisfy

(A.2)

(A.3)

It follows from (A.2) that

(A.4)
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Substituting the above β̃ into (A.3) yields

(A.5)

Substituting λ̃ into (A.4), we have

Appendix II

Proof of Equation (13)
Following the arguments of Appendix I, the restricted least squares estimate of β in model
(11) can be expressed by

Because β̂* = (XT X)−1 XT Y*, we have

where RX = R(XT X)−1XT. From the above, we can easily prove (13).
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Fig. 1.
Simulation study ROI. ROI is highlighted in red on the surface of a reference sphere: (a)
anterior and (b) right lateral views.
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Fig. 2.
Simulation study: Type I and Type II error rates. Rejection rates of the wild bootstrap
method (WB), the permutation method (PM), the F test, and the χ2 test for Wn are
calculated for sample sizes of 10, 20, 40 subjects and for differing error distributions at the
5% significance level. (a)–(c) The estimated Type I error rates under the null hypothesis.
(d)–(f) The estimated Type II error rates under the alternative hypothesis. Three distributions
of error terms are Gaussian N(0, 1) [(a) and (d)], χ2(2) – 2 [(b) and (e)], and Gaussian with
heterogeneous variances [(c) and (f)].

Zhu et al. Page 22

IEEE Trans Med Imaging. Author manuscript; available in PMC 2008 May 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Family-wise error rates with two covariates: family-wise error rates of the robust test
procedure (WB), the permutation method (PM), random field F tests (RF-F), and the χ2

field based on Wn(d) (RF-C) under the linear model (19) with two covariates (Covs) (20).
We consider sample sizes of 10, 20, and 40 subjects, four differing correlations, ρ = 0, 0.25,
0.5, and 0.75, and two differing distributions, including homogeneous variance (HMV) and
heterogeneous variance (HTV), at the 5% significance level. (a) n = 10, 2 Covs, and HMV;
(b) n = 20, 2 Covs, and HMV; (c) n = 40, 2 Covs, and HMV; (d) n = 10, 2 Covs, and HTV;
(e) n = 20, 2 Covs, and HTV; (f) n = 40, 2 Covs, and HTV.
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Fig. 4.
Family-wise error rates with three covariates: family-wise error rates of the robust test
procedure (WB), random field F test (RF-F), and the χ2 field for the Wald-type test statistics
(RF-C) under the linear model (19) with three covariates (Covs) in (21). We consider sample
sizes of 10, 20, and 40 subjects, four differing correlations ρ = 0, 0.25, 0.5, and 0.75, and
two differing distributions, including homogeneous variance (HMV) and heterogeneous
variance (HTV), at the 5% significance level. (a) n = 10, 3 Covs, and HMV; (b) n = 20, 3
Covs, and HMV; (c) n = 40, 3 Covs, and HMV; (d) n = 10, 3 Covs, and HTV; (e) n = 20, 3
Covs, and HTV; (f) n = 40, 3 Covs, and HTV.
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Fig. 5.
Statistical power with two covariates: average powers of the robust test procedure (WB), the
permutation method (PM), the F field F test (RF-F), and the χ2 field for Wn(d) (RF-C)
under the linear model (19) with two covariates (Covs) (20). We consider sample sizes of
10, 20, and 40 subjects, four differing correlations ρ = 0, 0.25, 0.5, and 0.75, and two
differing distributions, including homogeneous variance (HMV) and heterogeneous variance
(HTV), at the 5% significance level. In (b), the lines for PM, WB, and RF-F overlay one
other, while in (c), all four lines overlay one other. (a) n = 10, 2 Covs, and HMV; (b) n = 20,
2 Covs, and HMV; (c) n = 40, 2 Covs, and HMV; (d) n = 10, 2 Covs, and HTV; (e) n = 20, 2
Covs, and HTV; (f) n = 40, 2 Covs, and HTV.
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Fig. 6.
Statistical power with three covariates: average powers of the robust test procedure, the F
field F test (RF-F), and the χ2 field for Wn(d) (RF-C) under the linear model (19) with three
covariates (Covs) (21). We consider sample sizes of 10, 20, and 40 subjects, four different
correlations ρ = 0, 0.25, 0.5, and 0.75, and two differing distributions, including
homogeneous variance (HMV) and heterogeneous variance (HTV), at the 5% significance
level. In (b), the lines for RF-F and WB overlay one other, while in (c), all lines overlay one
other. (a) n = 10, 3 Covs, and HMV; (b) n = 20, 3 Covs, and HMV; (c) n = 40, 3 Covs, and
HMV; (d) n = 10, 3 Covs, and HTV; (e) n = 20, 3 Covs, and HTV; (f) n = 40, 3 Covs, and
HTV.
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Fig. 7.
Assessing normality at the surface of the hippocampus. Color-coded maps display the
uncorrected p values for the Shapiro–Wilk test of normality at the surface of the
hippocampus in data from 123 healthy children and adults registered to a template surface.
Top row shows the unsmoothed images. Bottom row shows the images after smoothing with
a heat kernel. Panels (a and e) right hippocampus dorsal view, with the anterior portion of
the hippocampus located at the top of the figure; (b and f) right hippocampus ventral view,
with the anterior portion of the hippocampus located at the bottom of the figure; (c and g)
left hippocampus dorsal view, with the anterior hippocampus located at the top; (d and h)
left hippocampus ventral view, with the posterior hippocampus located at the bottom.
Smoothing reduces substantially the number of voxels at the surface of the hippocampus that
violate assumptions of the normality of distribution of signed Euclidean distances of points
on the surface of the hippocampus of each subject in the dataset from corresponding points
on the surface of the reference hippocampus.
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Fig. 8.
Significance testing at the surface of the hippocampus: color-coded maps of p values and
adjusted p values for the Wald-type test statistics. Row 1: right hippocampus. Row 2: left
hippocampus. Columns 1 and 2: raw p values of the Wald-type test statistics based on a χ2

distribution. Columns 3 and 4: adjusted p values of the Wald-type test statistics based on our
robust test procedure for the correction of multiple comparisons. Panels (e and j): histograms

of  based on the bootstrap samples. Spatial orientations of the hippocampus are the same
as the corresponding views in Fig. 7. After correction for multiple comparisons, statistically
significant interactions of gender-by-log(age) and gender-by-[log(age)]2 remain in the head
of both the right (c) and left (i) hippocampus.

Zhu et al. Page 28

IEEE Trans Med Imaging. Author manuscript; available in PMC 2008 May 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
Distribution functions of − log10(p) values of test statistics at the surface of the
Hippocampus. Empirical distribution functions of −log10(p) values of the F statistic and −
log10(p) values of Wn based on the wild bootstrap method are shown. Combining the
heteroscedastic linear model with the wild bootstrap increases the number of significant
points (− log10(p) > 1.3) on the surface of the hippocampus in each hemisphere: (a) left
hippocampus; (b) right hippocampus.
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