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study question: Are STAT3 signaling molecules differentially expressed in endometriosis?

summaryanswer: Levels of phospho-STAT3 and HIF1A, its downstream signaling molecule, are significantly higher in eutopic endomet-
rium from women with endometriosis when compared with women without the disease.

what is known already: Endometriosis is an estrogen-dependent inflammatory condition. Interleukin 6 (IL-6) is an inflammatory
survival cytokine known to induce prolonged activation of STAT3 via association with the IL-6 receptor.

study design, size, duration: Cross-sectional measurements of STAT3 and HIF1A protein levels in eutopic endometrium from
women with endometriosis versus those without.

participants/materials, setting, methods: Levels of phospho-STAT3 (pSTAT3) and HIF1Awere examined in the endomet-
rium of patients with and without endometriosis as well as in a non-human primate animal model using western blot and immunohistochemical analysis.

main results and the role of chance: Levels of pSTAT3 were significantly higher in the eutopic endometrium from women with
endometriosis when compared with women without the disease in both the proliferative and secretory phases. HIF1A is known to be stabilized by
STAT3 and IL-6. Our immunohistochemistry results show abundant HIF1A expression within the eutopic endometrial epithelial cells of women
with endometriosis. Furthermore, pSTAT3 and HIF1A proteins are co-localized in endometriosis. This aberrant activation of pSTAT3 and HIF1A is
confirmed by sequential analysis of eutopic endometrium using a baboon animal model of induced endometriosis. Lastly, we confirmed this IL-6 induc-
tion of both STAT3 phosphorylation and HIF1A mRNA expression in Ishikawa human endometrial adenocarcinoma cell line.

limitations, reasons for caution: Ishikawa cancer cell line was used to study a benign disease. The peritoneal fluid contains various
inflammatory cytokines in addition to IL-6 and so it is possible that other cytokines may affect the activity and expression of STAT3 signaling molecules.

wider implications of the findings: Our results imply that aberrant activation of STAT3 signaling plays an important role in the
pathogenesis of endometriosis. Our findings could progress in our understanding of the etiology and pathophysiology of endometriosis and potential
therapeutic interventions by targeted pharmacological.
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Introduction
Endometriosis is a major cause of infertility and chronic pain, affecting 1 in
10 women of reproductive age and 35–50% of infertile women (Bulun,
2009; May et al., 2011). With an estimated annual societal cost of $22
billion, the economic impact of this disease is profound in the USA
(Xiong et al., 2013). Because of a dearth of reliable biomarkers and
considerable symptom overlap with other gynecological pathologies,
this disease is difficult to diagnose. Time from onset to clinical diagnosis
averages 8–11 years (Bulun, 2009). Surgical resection of ectopic lesions
and hormonal suppression are currently the current gold standards for
treatment, but both approaches are associated with a high incidence of
relapse and adverse side effects. Although several theories have been
proposed for causality, the etiology of this disease is still unclear. Re-
search examining the molecular mechanisms which permit the establish-
ment of this disease at onset will enable earlier and more effective
treatment interventions.

Endometriosis is an estrogen-dependent inflammatory condition
associated with elevated tissue-, peripheral- and peritoneal-cytokines
(Bulun, 2009). Interleukin-6 (IL-6) is a well-characterized pro-inflammatory
cytokine previously implicated with this disease (Heinrich et al., 2003).
Recent in vitro studies have shown that levels of IL-6 are greater in human
endometrial stromal cells (hESCs) derived from the endometrial biopsies
of women with endometriosis when compared with women without the
disease (Tsudo et al., 2000). IL-6 is known to signal via the Signal Transducer
and Signal transducer and activator of transcription (STAT) family of tran-
scription factors, specifically STAT3 (Wang et al., 2013).

The transcription factor, STAT3 is localized in the cytoplasm until
activated by phosphorylation. A variety of cytokines which are leukemia
inhibitory factor (LIF), IL-6, IL-11, and epidermal growth factor (EGF) can
activate STAT3 (Zhong et al., 1994). After STAT3 activation, it translo-
cates to the nucleus with the formation of homodimers or heterodimers
and binds to promoter regions for target gene expression (Darnell,
1997). Using an oligodeoxynucleotide transferred in utero, implantation
and decidualization are interrupted by transient and local suppression of
STAT3 activity (Nakamura et al., 2006), and also phosphorylation of
STAT3 is certainly required for embryonic development (Takeda et al.,
1997). Phosphorylated STAT3 is connected to a number of tumor-
promoting processes including maintenance of the stem cell, block differ-
entiation, promoting growth and angiogenesis, and regulating the
immune response and tumor microenvironment (Carro et al., 2010).

Hypoxia has a pathophysiological effect through the process of disease
and regulation of gene expression (Semenza, 2000a,b). Hypoxia-
inducible factors (HIFs) are a family of transcription factors implicated
in cellular adaptation to low oxygen levels via transcriptional regulation.
HIF1 is the master transcription factor and is composed of HIF1A and
HIF1B subunits (Bulun et al., 2000). HIF1B subunit is constitutively
expressed, whereas HIF1A levels vary in response to hypoxia. HIF1A
is normally present only under hypoxic conditions, but can be stabilized
by STAT3, nitric oxide (NO) and IL-6 via the epidermal growth factor
receptor (EGFR), Ras, mechanistic target of rapamycin (mTOR) and
Phosphatidylinositol-3-Kinase and Protein Kinase B (PI3K/AKT) path-
ways (O’Donnell et al., 2006).

Phosphorylated STAT3 induces HIF1A expression (Couto et al.,
2012) while targeting STAT3 blocks HIF1A and VEGF expression (Xu
et al., 2005). However, there are currently no studies investigating the
correlation between STAT3 and HIF1A-specific signaling in the context

of endometriosis. In the present study, we investigated levels of total
and activated STAT3 and HIF1A in the endometrium from women with
and without endometriosis. Our findings provide new insight into the eti-
ology of endometriosis and provide a new molecular framework useful for
the design of new therapeutic strategies.

Materials and Methods

Human endometrium samples
The study has been reviewed and approved by the Institutional Review
Boards of Michigan State University, Spectrum Health Medical System
(Grand Rapids, MI), Greenville Health System (Greenville, SC), and the
University of North Carolina (Chapel Hill, NC). Written informed consent
was obtained from all human subjects. Human endometrial samples were
obtained through the Michigan State University’s Center for Women’s
Health Research Female Reproductive Tract Biorepository, the Greenville
Hospital System, and the University of North Carolina. To compare
protein expression patterns of eutopic endometrium with and without endo-
metriosis, endometrial biopsies were obtained at the time of surgery from 43
regularly cycling women between the age of 18 and 45. For control eutopic
endometrium, five samples were collected from the proliferative phase,
seven were from the early secretory phase, four were from the mid secretory
phase, and four were late secretory. For endometriosis eutopic endomet-
rium, 10 samples were collected from the proliferative phase, and 13 were
from the secretory phase. The presence or absence of disease was confirmed
during surgery. Women laparoscopically negative for this disease were
placed into the control group, whereas women laparoscopically positive
for this disease were placed in the endometriosis group. The endometriosis
patients consisted of 6 stage I, 9 stage II, 5 stage III and 3 stage IV of endomet-
riosis. Use of an IUD or hormonal therapies in the 3 months preceding
surgery was exclusionary. Histologic dating of endometrial samples was per-
formed by board certified pathologist and subsequently confirmed by an
experienced Fertility specialist (B.A.L.).

Baboon endometrium samples
Use of this animal model was reviewed and approved by the Institutional
Animal Care and Use Committees (IACUCs) of both the University of Illinois
at Chicago and Michigan State University. Endometriosis was induced by
intraperitoneal inoculation of menstrual endometrium on two consecutive
menstrual cycles as previously described (Afshar et al., 2013). For baboon
endometrium, eutopic endometrial tissues were collected from five early
secretory phase baboons at pre-inoculation, and 3, 6, and 9 months of
post-inoculation.

Cell culture and treatment
The uterine endometrial epithelial cell line, Ishikawa (endometrial adenocar-
cinoma) were grown in Dulbecco’s Modified Eagle’s Medium with F12 (Invi-
trogen, Grand Island, NY, USA), supplemented with 10% (v/v) fetal bovine
serum (Invitrogen), 50 units/ml penicillin and 50 mg/ml streptomycin (Invi-
trogen) in an atmosphere of 5% CO2 and 95% air at 378C. To determine
the effects of IL-6, E2+Medroxyprogesterone Acetate (MPA), and WP1066
(Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) on STAT3 and
HIF1A activation, these reagents and inhibitors were directly added to sub-
confluent Ishikawa cells and then incubated for the indicated time. All experi-
ments were performed in triplicate with independent protein lysates.

Western blot analysis
Endometrial tissue was lysed using a lysis buffer (10 mM Tris–HCl (pH 7.4),
150 mM NaCl, 2.5 mM EDTA, and 0.125% (v/v) Nonidet P-40 supplemented
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with both a protease inhibitor cocktail (Roche, Indianapolis, IN, USA) and a
phosphatase inhibitor cocktail (Sigma Aldrich, St. Louis, MO, USA). Thirty
mg of total protein was separated on 8% SDS–PAGE gels and transferred
into a polyvinylidene difluoride membrane (Millipore Corp., Bedford, MA,
USA). After blocking with 0.5% (w/v) casein for 2 h in phosphate-buffered
saline (PBS) with 0.1% (v/v) Tween 20 (Sigma Aldrich), membranes were
incubated with either anti-STAT3 (Cell Signaling, Danvers, MA, USA),
anti-phospho-STAT3 (Cell Signaling), or anti-HIF1A (BD Bioscience, San
Jose, CA, USA) antibodies. Total Actin (Santa Cruz Biotechnology, Inc.)
levels were examined for loading controls. Following incubation with primary
antibody, membranes were exposed to a horse-radish peroxidase-linked
(HRP2) secondary antibody and positive immunostained observed using an
enhanced chemiluminescence HRP substrate. All experiments were per-
formed in triplicate with independent protein lysates. The band intensity was
determined by relative densitometry using ImageJ (National Institute of
Health, USA), and normalized against the bands obtained for actin or STAT3.

Immunohistochemical and
immunofluorescence analyses
Uterine sectionswere blockedwith10% normal goat serum inPBS (pH7.5) for
immunohistochemistry (IHC) and 10% normal goat serum in PBST (0.01%
Triton X-100 in PBS) for immunofluorescence (IF). Sections were exposed
to appropriate primary antibody ([anti-STAT3, Cell Signaling], [anti-phospho-
STAT3, Cell Signaling] or [anti-HIF1A, BD Bioscience]) in 10% normal goat
serum in PBS (pH 7.5) overnight at 48C. For IHC, sections were incubated
with the appropriate secondary antibody (Vector Laboratories, Burlingame,
CA, USA). Following exposure to the horseradish peroxidase-conjugated
streptavidin substrate, positive immunoreactivity (brown precipitate) was
detected using the Vectastain Elite DAB kit (Vector Laboratories). A semi-
quantitative grading system (H-score) was used to compare the immunohisto-
chemical staining intensities. The H-score was calculated using the following
equation: H-score ¼ S Pi (i + 1), where i ¼ intensity of staining with a value
of 1, 2 or 3 (weak, moderate or strong, respectively) and Pi is the percentage
of stained cells for each intensity, varying from 0 to 100% (Ishibashi et al., 2003).
For immunofluorescence, the sections were incubated 2 h at RT with the fol-
lowing secondary antibodies: Alexa Fluor 488-conjugated anti-mouse IgG
(Invitrogen) and Alexa Fluor 594-conjugated anti-rabbit IgG (Invitrogen).
Nuclei of the cells were counterstained with 4′,6-diamidino-2-phenylindole
(DAPI; Vector Laboratories).

Statistical analysis
Statistical analyses were performed using Student’s t-test, Mann–Whitney
U-test, or repeated measures ANOVA or one way ANOVA followed by
Tukey’s post hoc multiple range test using the Instat package from GraphPad
(San Diego, CA, USA). The Spearman correlation coefficient was used to
assess correlations between the levels of pSTAT3 and HIF1A in control
and endometriosis. All data are presented as means+ SEM. P , 0.05 was
considered statistically significant.

Results

Aberrant activation of STAT3 in eutopic
endometrial tissue from women with
endometriosis
To determine whether STAT3 signaling is dysregulated in endometriosis,
we first examined the expression of total STAT3 and phosphorylated
STAT3 (pSTAT3) in endometrium from patients with and without endo-
metriosis using western blot (Fig. 1 A and B). The expression levels of
total STAT3 did not differ in the presence of endometriosis. However,

levels of pSTAT3 were significantly higher in the endometrium derived
from women with endometriosis (the mean of relative band intensity+
SEM: 2.28+0.38)whencompared withcontrols (1.00+0.21) (Student’s
t-test, P ¼ 0.0158, Fig. 1A and B). To examine the cell-specific expression
of STAT3 and pSTAT3, we next performed immunohistochemical analysis
of endometrium from women with and without endometriosis. STAT3
expression was consistently detected in both the stromal and epithelial
compartments of endometrium in both the control (the mean of
H-score+SEM: 252.25+14.45) and endometriosis groups (274.35+
9.47) (Mann–Whitney U-test, P ¼ 0.25, Fig. 1 C and D). In control
women pSTAT3 protein was not detected in endometrial cells except de-
cidual cells of late secretory phase (Supplementary Fig. S1). Interestingly,
the level of pSTAT3 protein was significantly increased in epithelial cells
of endometriosis patients (255.65+9.15) when compared with control
patients (14.75+5.39) (Mann–Whitney U-test, P , 0.0001, Fig. 1E and
F). These results suggest that dysregulation of STAT3 signaling molecules
may play an important role in the pathogenesis of endometriosis.

HIF1A expression in endometrium from
women with endometriosis
HIF1A is a known target of pSTAT3 and a key mediator of angiogenesis,
inflammation, proliferation, self-renewal, and extracellular invasion
(Henze and Acker, 2010). The western blot analysis of HIF1A levels
show that levels of HIF1A were markedly increased in the endometrium
of patients with endometriosis (the mean of relative band intensity+
SEM: 24.68+2.83) when compared with controls (1.00+ 0.24)
(Student’s t-test, P ¼ 0.0002, Fig. 2A and B). Additionally, subsequent
immunohistochemistry analysis of uterine paraffin wax sections
confirm that HIF1A protein levels are significantly higher in the endomet-
rial epithelium of patients with endometriosis (the mean of H-score+
SEM: 144.35+15.99) when compared with the patients without endo-
metriosis (16.75+ 6.35) (Mann–Whitney U-test, P , 0.0001, Fig. 2C
and D).

Correlation between pSTAT3 and HIF1A in
endometriosis
Figure 3A shows the correlation between pSTAT3 and HIF1A proteins in
both women without and with endometriosis. There was a significant
positive correlation between pSTAT3 and HIF1A in the endometrial
epithelial cells (Spearman correlation coefficient r ¼ 0.7943, P ,

0.0001). To determine whether pSTAT3 colocalized with HIF1A pro-
teins with respect to endometriosis, we performed double immuno-
fluorescence for pSTAT3 and HIF1A (Fig. 3B). Our immunostaining
results show that pSTAT3 and HIF1A proteins were colocalized in
13% of epithelial cells from endometriosis patients. In contrast, 1% of epi-
thelial cells were colocalized in patients without endometriosis. These
results suggest a strong correlation exists between STAT3 activity and
HIF1A expression in the endometrium which may play an important
role in the development and progression of endometriosis.

pSTAT3 and HIF1A expression during
progression of endometriosis in a baboon
model
A baboon model has previously been developed to study the patho-
physiology of endometriosis (Fazleabas et al., 2002; Braundmeier and
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Fazleabas, 2009; D’Hooghe et al., 2009). Intraperitoneal inoculation with
autologousmenstrual tissueunder laparoscopicguidanceresults in the for-
mation of endometriotic lesions with histological and morphological char-
acteristics similar to those seen in women (Fazleabas et al., 2002). To
determine if aberrant activation of STAT3 signaling was also evident in
this non-human primate model, we examined pSTAT3 and HIF1A expres-
sion in the eutopic endometrium of baboons following experimental

induction of the disease. pSTAT3 was strongly detected in both the
stroma and epithelium of baboon endometrium following induction of
the disease (Fig. 4), but levels of STAT3 protein were unchanged (Supple-
mentary Fig. S2). pSTAT3 and HIF1A protein were weakly detected in the
endometrium of pre-inoculation (control) animals (the mean of
H-score+SEM: 40.00+11.40 and 12.00+5.83, respectively). The
levels of pSTAT3 proteins were significantly increased at 6 months post-

Figure 1 Aberrant activation of phospho-signal transducer and activator of transcription-3 (pSTAT3) in eutopic endometrial tissue from women
with endometriosis. (A) Western blot analysis of STAT3 and pSTAT3 proteins in human endometrium of control and endometriosis. Actin was used
as sample-loading control. (B) Quantification of pSTAT3/STAT3 western blot data obtained by densitometric analysis. Representative photomicrograph
of immunohistochemical staining of STAT3 (C) and pSTAT3 (E) proteins in human endometrium of control and endometriosis. The immunohistochemical
histological score (H-score) of STAT3 (D) and pSTAT3 (F) proteins. The results represent the mean+ standard error of the mean (SEM). *P , 0.05;
***P , 0.001.
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inoculation (124.00+21.59, repeated measures ANOVA, P , 0.01) and
9 months post-inoculation (184+26.94, P , 0.001) during endometri-
osis progression (Fig. 4A). Likewise, the levels for HIF1A proteins were sig-
nificantly increased in the epithelial compartment at 6 (148.00+28.71)

and 9 (222+25.98) months post-inoculation (repeated measures
ANOVA, P , 0.01 and P , 0.001, respectively) (Fig. 4B). These results
suggest that aberrant activation of STAT3 may induce HIF1A proteins
during the pathogenesis of endometriosis.

Figure 2 Aberrant expression of hypoxia-inducible factor 1-alpha (HIF1A) in eutopic endometrial tissue from women with endometriosis. (A) Western
blot analysis of HIF1A proteins in human endometrium of control and endometriosis. Actin was used as sample-loading control. (B) Quantification of HIF1A
western blot data obtained by densitometric analysis. (C) Representative photomicrograph of immunohistochemical staining of HIF1A proteins in human
endometrium of control and endometriosis. (D) The immunohistochemical histological score (H-score) of HIF1A proteins. The results represent the
mean+ SEM. ***P , 0.001.

Figure3 Correlation and colocalization analysis of phospho-STAT3 and HIF1A in eutopic endometrial tissue from women with endometriosis. (A) Cor-
relation of between pSTAT3 and HIF1A H-score in control (n ¼ 20) and endometriosis (n ¼ 23) (P , 0.001, r ¼ 0.7943). (B) Colocalization of pSTAT3
and HIF1A in the endometrium between women with and without endometriosis by immunofluorescence analysis.
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IL-6 contributes to the elevated levels of
pSTAT3 and HIF1A expression
Previous studies have shown that IL-6 is over-expressed within the endo-
metriumofwomenwithendometriosis andpSTAT3is regulatedby inflam-
matory cytokines such as IL-6 (Kroon et al., 2013; Karalok et al., 2014). To
determine whether IL-6 can induce phosphorylation of STAT3 and HIF1A
expression in endometrial epithelial cells, we treated Ishikawa cells with
IL-6 for 12 h and subsequently used western blot analysis to examine
the expression levels of STAT3, pSTAT3 and HIF1A. Our results
showed that IL6 treatment significantly increased pSTAT3 (4.23+0.31)
and HIF1A (3.45+0.68) expression compared with the control
(1.00+0.07 and 1.00+0.08, respectively) but STAT3 levels were un-
changed (Fig. 5). These results indicate that this induction of pSTAT3 is
not transcriptional regulation of STAT3. Estradiol (E2) + Medroxyproges-
terone (MPA) are known moderators of uterine STAT3 function (Lee
et al., 2013). Furthermore, E2 + MPA and IL-6 treatment significantly
increased pSTAT3 levels (12.17+0.50) when compared with E2 +
MPA (1.26+0.08, P , 0.001) and IL-6 alone (4.23+0.31, P , 0.001).
These results suggest that IL-6 induces phosphorylation of STAT3 and
then HIF1A expression.

Activated STAT3 is required for HIF1A
expression
We next examined whether HIF1A expression could be interrupted
by inhibition of STAT3 phosphorylation. To examine whether HIF1A
expression is downstream of STAT3 activation in uterine epithelial
cells, we treated Ishikawa cells with IL-6 in the presence or absence of
WP1066, a STAT3 inhibitor, and examined HIF1A, pSTAT3 and
STAT3 protein levels using western blot analysis. Our results show a
remarkable time-dependent induction of pSTAT3 by IL-6 which could
be prevented by pretreatment with WP1066. In addition, WP1066
treatment remarkably reduced HIF1A expression after 6 h of IL-6 treat-
ment (Fig. 6). These results suggest that the HIF1A induction seen in the
endometrial epithelial cells is down stream of pSTAT3 induction.

Discussion
Aberrant activation of STAT3 has been identified as both abnormal and
oncogenic (He and Karin, 2011; Fagard et al., 2013). STAT3 signaling par-
ticipates in oncogenesis by stimulating cell proliferation, promoting
angiogenesis, mediating immune evasion and conferring resistance to

Figure4 Aberrant activationof pSTAT3 and HIF1A in induced endometriosis of baboon. Immunohistochemical analysis of pSTAT3 (A and B) and HIF1A
(C and D) in endometriosis baboon model induced by intraperitoneal inoculation of menstrual endometrium during progression of endometriosis. pSTAT3
and HIF1A proteins were examined in the endometrium of pre-inoculation (a and e) and 3 (b and f), 6 (c and g) and 9 (d and h) months post-inoculation
during endometriosis progression. The immunohistochemical histological score (H-score) of pSTAT3 (B) and HIF1A (D). The results represent the
mean+ SEM. **P , 0.01; ***P , 0.001.
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apoptosis. Our results herein show that levels of pSTAT3 are significantly
higher in the eutopic endometrium from women with endometriosis
when compared with controls (Fig. 1). This suggests that tight regulation
of STAT3 activity is important for normal uterine function. The relation-
ship between STAT3 and endometriosis in humans is not well known.
Given its relevance to the inflammatory process, surprisingly little is
known about endometrial STAT3 and its regulation in health and
disease. Examining of molecular mechanisms of uterine STAT3 signaling
may suggest effective therapies for endometriosis and other uterine
disorders.

This study is the first to build on the hypothesis that aberrant activation
of STAT3 and HIF1A signaling within the eutopic endometrium is rele-
vant to endometriosis due to dysregulation of cell proliferation, inflam-
mation and steroid hormone signaling. To better understand the
correlation of these two transcription factors in endometriosis, we
examined correlation and colocalization of pSTAT3 and HIF1A (Fig. 3).
Furthermore, this study shows that inhibition of STAT3 can prevent
HIF1A expression in epithelial cells (Fig. 6). HIF1A has previously been
shown to up-regulate many of the aberrant proteins and factors

associated with endometriosis, including increased cellular proliferation
(Semenza, 2000a,b), aberrant ESR2 expression (Juhasz-Boss et al., 2011;
Wu et al., 2012), and angiogenic factors VEGF (Maybin et al., 2011) and
Cyr61 (Gashaw et al., 2008). Leptin is also a known target of HIF1A and
can induce endometrial cell proliferation (Wu et al., 2007; Oh et al.,
2013). Silencing HIF1A (siRNA) suppresses hypoxia-induced VEGF (Spi-
nella et al., 2007). Our results suggest that elevated pSTAT3 induces and
stabilizes HIF1A within the eutopic endometrium of women with endo-
metriosis, subsequently leading to aberrantly increased angiogenesis,
MMPs, and proliferation within the eutopic endometrial compartment
(Gilabert-Estelles et al., 2007; Aznaurova et al., 2014; Lu et al., 2014).

We describe herein a correlation between pSTAT3 and HIF1A ex-
pression levels, which is disease-dependent (Fig. 3). Previous studies
using the non-human primate model suggest that the presence of
ectopic endometrium (endometriotic lesions) alters the eutopic endo-
metrial gene expression profile (Li et al., 2013; Meola et al., 2013). As
in cancer, hypoxia is likely an important effectorof the microenvironment
of the ectopic endometriotic implants. Indeed, HIF1A has been shown to
regulate expressions of ESR1 and ESR2 expression (Wu et al., 2012).

Figure 5 Effects of IL-6 on STAT3 phosphorylation and HIF1A expression. Ishikawa cells were treated with interleukin 6 (IL-6) and/or Estradiol (E2) plus
medroxyprogesterone acetate (MPA) for 12 h. (A) Western blot analysis of STAT3, phospho-STAT3 and HIF1A in Ishikawa cells treated with IL-6 and/or
E2 plus MPA Actin was used as sample-loading control. (B and C) Quantification of pSTAT3 (B) and HIF1A (C). The results represent the mean+ SEM.
**P , 0.01; ***P , 0.001.

Figure 6 Effects of STAT3 inhibitor (WP1066) in Ishikawa cells treated with IL-6. (A) Western blot analysis of STAT3, pSTAT3 and HIF1A in Ishikawa
cells treated with IL-6 and/or WP1066 for 0, 15 min, 6, 12 and 24 h. Actin was used as sample-loading control. (B and C) Quantification of pSTAT3 (B) and
HIF1A (C). The results represent the mean+ SEM. *P , 0.05; **P , 0.01; ***P , 0.001.
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These results suggest that dysregulation of STAT3 and HIF1A signaling
may play an important role in the pathogenesis of endometriosis. Our
western blot analysis showed an increase in both pSTAT3 and HIF1A ex-
pression in Ishikawa cells following IL-6 treatment (Fig. 5). Additionally,
we observed more colocalization of HIF1A and pSTAT3 proteins in
endometrial epithelial cells from women with endometriosis (Fig. 3B).
These results suggest that cytokines and disease-specific regulation of
pSTAT3 mayrepresenta sentinel difference within the eutopic endomet-
rium from women with and without this disease.

Previous studies have described use of a non-human primate model
for the study of endometriosis (D’Hooghe et al., 1994; Fazleabas,
2006). Intraperitoneal inoculation with autologous menstrual tissue
results in the formation of endometriotic lesions with histological and
morphological characteristics similar to those seen in women (Fazleabas
et al., 2002). This baboon model also shows similar markers of proges-
terone resistance as previously described in humans (Braundmeier and
Fazleabas, 2009). Sequential analysis of eutopic endometrium from
these baboons throughout the progression of this disease reveal
increased pSTAT3 and HIF1A expression (Fig. 4). Angiogenesis plays
an important role in endometriosis. The angiogenic potential of both
the endometrium and the peritoneal environment influences lesion
establishment, and endometriotic lesions require an adequate blood
supply to survive in their ectopic sites (McLaren, 2000; Taylor et al.,
2002). Therefore, these results suggest that aberrant activation of
STAT3 may induce HIF1A proteins during endometriosis progression.
We confirmed HIF1A induction of pSTAT3 in Ishikawa endometrial epi-
thelial cancer cell lines (Fig. 6).

Inflammatory cytokines are responsible for the IL-6 elevation found at
higher concentrations within the peritoneal fluid (Buyalos et al., 1992)
and serum of women with endometriosis (Pellicer et al., 1998). In
animal models of endometriosis, IL-6 is also increased in the serum of
rats with surgically induced endometriosis (Boutten et al., 1992). Our
results show that phosphorylation of STAT3 can be remarkably
increased by IL-6 (Fig. 5) and that inhibition of STAT3 phosphorylation
can reduce HIF1A expression (Fig. 6).

JAKs and STATs are critical components of many cytokine receptor
systems, regulating growth, survival, differentiation, and pathogen resist-
ance. JAK1 and JAK2 account for STAT3 phosphorylation upon docking
with IL-11/gp130 receptor complex (Kamimura et al., 2003). WP1066
inhibits STAT3 activity by inhibiting its upstream transcription factor
JAK (Ferrajoli et al., 2007). WP1066 shows a decrease of HIF1A levels
in Ishikawa cells, suggesting that STAT3 can regulate angiogenesis
through HIF1A. Additionally, S3I-201 inhibits STAT3 activity by inhibiting
STAT3 dimerization (Fletcher et al., 2009), whereas cryptotanshinone
inhibits STAT3 activity by inhibiting its phosphorylation (Lu et al.,
2013). Furthermore, Ishikawa cells are human endometrial epithelial
cancer cell lines. Ishikawa cell line, which is one of the few uterine cell
lines that expresses functional ESR and PGR (Croxtall et al., 1990).
This cancer cell line is modestly responsive to estrogen, but has lost its
inhibitory response to progesterone, despite expression of receptors
for both hormones. We have observed activation of STAT3 in Ishikawa
cells treated with IL-6 (Fig. 5). Therefore, additional studies are necessary
to fully understand the action of STAT3 in other endometrial epithelial
cell lines with other STAT3 inhibitors.

In summary, we report for the first time that phosphorylated STAT3
and HIF1A are highly expressed and activated in the endometrium of
patients with endometriosis. Our studies provides a better understanding

for the aberrant gene expression previously described by many and attrib-
uted to progesterone resistance (Youngand Lessey, 2010).Progress inour
understanding of the etiology and pathophysiology of endometriosis and
potential therapeutic interventions by targeted pharmacological agents
has been hampered due, in part, to the lack of defined molecular mechan-
isms. These findings will provide new etiological insight into the develop-
ment of this disease as well as a molecular framework for the design of
new therapeutic strategies.
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