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Abstract
Angiogenesis is a host-mediated mechanism in disease pathophysiology. The vascular endothelial
growth factor (VEGF) pathway is a major determinant of angiogenesis, and a comprehensive
annotation of the functional variation in this pathway is essential to understand the genetic basis of
angiogenesis-related diseases. We assessed the allelic heterogeneity of gene expression,
population specificity of cis expression quantitative trait loci (eQTLs), and eQTL function in
luciferase assays in CEU and YRI HapMap lymphoblastoid cell lines (LCLs) in 23 resequenced
genes. Among 356 cis-eQTLs, 155 and 174 were unique to CEU and YRI, respectively, and 27
were shared between CEU and YRI. Two cis-eQTLs provided mechanistic evidence for two
GWAS findings. Five eQTLs were tested for function in luciferase assays and the effect of two
KRAS variants was concordant with the eQTL effect. Two eQTLs found in each of PRKCE,
PIK3C2A, and MAP2K6, could predict 44, 37 and 45% of the variance in gene expression,
respectively. This is the first analysis focusing on the pattern of functional genetic variation of the
VEGF pathway genes in CEU and YRI populations and providing mechanistic evidence for
genetic association studies of diseases for which angiogenesis plays a pathophysiologic role.
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INTRODUCTION
Angiogenesis is an important biological mechanism for physiological processes such as
reproduction, vasculature development and wound healing. However, angiogenesis can
become dysregulated, playing a role in many pathologies including autoimmune diseases,
macular degeneration, endometriosis, atherosclerosis and cancer (Folkman, 2007). As
angiogenesis is a host-mediated biological mechanism, the extent of the angiogenic response
to a given stimulus might be partly dependent upon genetic differences in key angiogenesis
genes (Folkman, 2007). Thus, germline variation in genes of angiogenesis has the potential
to impact these responses and affect the development or course of angiogenesis-dependent
diseases. Indeed, germline genetic variants in genes of the vascular endothelial growth factor
(VEGF) pathway (Figure 1) have been found to associate with diseases such as cancer,
sarcoidosis, coronary heart disease, diabetic retinopathy, arthritis and psoriasis (reviewed in
(Rogers and D’Amato, 2011)).

The VEGF-pathway is a key network of proteins which regulate angiogenesis (Hicklin and
Ellis, 2005). VEGF is a family of five structurally related proteins: VEGFA, VEGFB,
VEGFC, VEGFD and placental growth factor (PGF). These proteins act as ligands, and
binding to a VEGF receptor (VEGFR) can lead to signal transduction via downstream
proteins. The most important of these ligands in angiogenesis is VEGFA (Olsson et al.,
2006), which can be secreted by a variety of cells and binds to two receptors: VEGFR1
(FLT1) and VEGFR2 (KDR)(Hicklin and Ellis, 2005). The binding of VEGFA to VEGFR2,
in particular, leads to a cascade of protein activation through signaling cellular effectors and
results in increased endothelial cell survival, proliferation, migration and differentiation
(Figure 1) (Bernatchez et al., 2002).

As a consequence of its central role in angiogenesis, the VEGF-pathway has become a target
for treatment of angiogenesis-dependent diseases, with several VEGF-pathway inhibitors in
clinical use and more in development for cancer treatment (reviewed in (Teicher, 2011)).
Furthermore, germline genetic variations in VEGF-pathway genes have been found to be
associated with responses to angiogenesis inhibitors (reviewed in (Teicher, 2011; Schneider
et al., 2012)). Nevertheless, complete information on the composition and functional effects
of variation in the VEGF-pathway genes is lacking and is needed to rationally examine and
interpret the effects of these genes on related clinical phenotypes.

Currently, a major limitation of the association between VEGF-pathway genetic variants and
clinical traits is that mechanistic explanations of genetic associations are lacking in a
majority of studies (Rogers and D’Amato, 2011). This is a consequence of the limited
information about the effects of genetic variation in the VEGF-pathway at the molecular
level. This knowledge is essential to support statistical associations and to prioritize SNPs
(single nucleotide polymorphisms) for prospective testing of their ability to predict the
clinical responses of patients. We have previously characterized the functional genetics of
KDR (VEGFR2) (Glubb et al., 2011), but a comprehensive analysis of the entire VEGF
pathway is not yet available. This study aims to provide a framework and mechanistic basis
to address these fundamental gaps in knowledge.

To identify potentially functional genetic variants in the VEGF-pathway, we have examined
lymphoblastoid cell lines (LCLs) for VEGF-pathway gene expression quantitative trait loci
(eQTL). LCLs have proven a useful model for eQTL studies as a number of LCLs, derived
from individuals from several HapMap population groups, have been well characterized by
genotyping and gene expression studies (Frazer et al., 2007; Zhang et al., 2008; Zhang et al.,
2009). To validate the functional effects of selected candidate variants, we have performed
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reporter gene assays. The eQTL information on VEGF-genes has also been used to interpret
current GWAS results for disease traits.

MATERIALS AND METHODS
DNA samples and candidate genes for resequencing

All of the samples utilized for these studies were contributed with consent to broad data
release and to their use in many future studies, including for extensive genotyping and
sequencing, gene expression and proteomics studies, and all other types of genetic variation
research. The samples include no identifying or phenotypic information. HapMap panel 2
DNA samples from healthy unrelated individuals of the CEPH families (CEU, n=23) and the
Yoruba people of Ibadan, Nigeria (YRI, n=24) (Supp. Table S1) were obtained from the
Coriell Cell Repository (Camden, NJ) and were used for resequencing. To select and
prioritize genes for resequencing, we used the information on the VEGF pathway from
PharmGKB (Figure 1). Among 55 genes in the VEGF pathway (see full gene list at
(PharmGKB, 2013)), 23 genes were selected based upon their biological importance in
endothelial function and VEGF signaling (Table 1).

PCR and sequencing methods
The sequencing was conducted by the NHLBI DNA Resequencing and Genotyping Service
(http://rsng.nhlbi.nih.gov/scripts/index.cfm). For each gene, sequencing was performed to
the full genomic region of the gene (2 kb 5′-flanking, all introns and exons, and 2 kb 3′-
flanking), or to a focused “standard coverage” (2 kb 5′-flanking, exons, evolutionarily
conserved rat and mouse non-coding sequences, and 2 kb 3′-flanking) for genes larger than
70 kb. In some genes, customization to specific genomic regions was required. In brief, 5′-
M13 tailed-gene specific PCR primers were designed to cover the target region with
amplicon sizes ranging from 500–750 bp and with a minimum of 100 bp overlap between
adjacent amplicons, where applicable, resulting in double-stranded coverage of all targeted
regions. Overlapping amplicons were used to validate gene-specific primer sequences in
independent experiments and rule out the possibility of allele-specific PCR amplifications.
All primer sequences were compared to the whole genome assembly hg18 to verify
uniqueness against pseudogenes and gene families. Following temperature gradient
optimization of small-scale reactions to determine optimal thermal cycling conditions,
production level PCR amplifications were performed in 96-well plates in a volume of 7 μl
comprising 0.2 μl each of 7 μM forward and reverse primers, 2.8 μl DNA (5 ng/μl), and 0.4
μl elongase enzyme (Invitrogen, Carlsbad, CA) or iProof polymerase (Bio-Rad, Hercules,
CA) per well. Following evaluation of PCR products by 1% agarose gel electrophoresis,
reactions were diluted four to six fold in ddH2O to eliminate an extra purification step prior
to sequencing.

Sequencing reactions were performed in MJ Tetrad PTC 225 thermal cyclers in 384-well
format by using 5% BDT v3.1 sequencing chemistry (ABI, Foster City, CA). Reaction
products were precipitated in ethanol with CleanSeq magnetic beads (Agencourt Bioscience,
Beverly, MA). Perkin Elmer Minitrak, Multiprobe, and Evolution P3 robots were used to
automate liquid handling in the setup of PCR, sequencing reactions and precipitation
reactions. Reaction products were air dried and diluted to 30 μl with ddH2O.
Chromatograms were generated from sequence reaction on an Applied Biosystems ABI
3730XL capillary sequencer (ABI, Foster City, CA). Data flow was tracked by using a
custom-designed LIMS system.
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SNP analysis, quality control, sequencing coverage, and linkage disequilibrium (LD)
analysis

All chromatograms were base-called using Phred, assembled into contigs using Phrap, and
scanned for SNPs with PolyPhred, version 6.15 to identify polymorphic sites (Stephens et
al., 2006). Data quality was monitored and assessed at multiple production checkpoints
using numerous methods. For example, each chromatogram was trimmed to remove low-
quality sequence (Phred score <25), resulting in analyzed reads averaging >450 bp with an
average Phred quality of 40. Following assembly of all chromatograms onto an initial
reference sequence, putative polymorphic sites were selectively reviewed using Consed
(Gordon et al., 1998). Individual polymorphic sites in regions with lower quality data,
ambiguous base calls, deviations from Hardy-Weinberg equilibrium (HWE) or those
identified using laboratory quality control tools were reviewed to eliminate potential false
positive positions. This approach generated sequence-based SNP genotypes with accuracy
>99.9%. Variations were deposited into a custom postgreSQL database, formatted and
submitted to dbSNP for assignment of ss and rs identification numbers.

Sequencing coverage of the VEGF-pathway genes is described in Supp. File S1 according to
the GenBank database (http://www.ncbi.nlm.nih.gov/genbank/). VEGFA genotype
information from the same HapMap individuals used for resequencing was obtained from
HapMap data using the default coverage. In all sequenced genes, we performed quality
control by comparing our resequencing results to the same genotyped SNPs (when
available) in the same individuals in the HapMap (NCBI build 36, dbSNP b126). 99.6%
concordance was found between our resequencing and HapMap genotyping (discordant
genotypes are listed in Supp. File S2). In addition, we incorporated into our analyses an
additional 35 CEU and 36 YRI unrelated individuals of the same panel 2 for whom HapMap
genotype data was available. Linkage disequilibrium (LD) analysis was conducted on all
SNPs for each gene in each population (CEU and YRI) separately by using Haploview v.4.2
(Smith, 2008). The parameters for the selection of tagging SNPs (tSNPs) were a minor allele
frequency (MAF) of ≥ 0.05 and pairwise r2 of ≥ 0.8.

Comparison with 1000 Genomes Project
To examine the overlap between our data (resequencing and HapMap) and the 1000
Genomes project, we downloaded the 1000 Genomes Project full data for all populations
from the consortium’s website (http://www.1000genomes.org/announcements/july-2010-
data-release-2010-07-20). We ran our data through the UCSC LiftOver (http://
genome.ucsc.edu/cgi-bin/hgLiftOver) algorithm to convert our genotype data to build 37
coordinates (used by the 1000 Genomes Project data). We also compared the MAF for each
population (CEU and YRI) and data (resequencing and HapMap) with the 1000 Genomes
Project. To do so, we used Concordance Correlation Coefficient (CCC) (Lin, 1989) with
epiR package (Stevenson et al., 2009), and we obtained the number and percentage of
variants exclusive to our data.

mRNA expression data
mRNA expression results were available from the LCLs of 23 CEU and 23 YRI individuals
(expression data were not available for YRI individual NA18871) resequenced in this study
and from an additional unrelated 35 CEU and 36 YRI HapMap individuals from the same
panel 2 (as described in the previous paragraph). Among the VEGF-pathway genes, NRP1,
FLT1, ITGB5 and PKRCA were not interrogated for eQTLs because of their low level of
expression (Huang et al., 2007). KDR is also expressed at low levels in LCLs, and we have
previously characterized the molecular and functional genetics of KDR (Glubb et al., 2011).
Briefly, LCL mRNA expression data was generated using the Affymetrix GeneChip®
Human Exon 1.0 ST Array (Huang et al., 2007). The resulting probe signal intensities were
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quantile normalized of all transcript clusters (gene-level) expression. Probeset-level
expression signals were summarized with the robust multi-array average method (Irizarry et
al., 2003). A transcript cluster was considered reliably expressed in LCLs if the log2-
transformed mRNA expression signals were greater than 5.34 (Huang et al., 2007; Duan et
al., 2008). Each transcript cluster includes a set of probesets (exon level) containing all
known exons and 5′- and 3′-untranslated regions (UTRs) in the genomes. The probes that
hybridize to regions containing SNPs were excluded from the expression analyses (Duan et
al., 2008). The Mann Whitney test was used to identify genes differentially expressed
between CEU and YRI samples (p<0.05).

eQTL analysis
The primary analysis is a cis-based association between each SNP and mRNA levels.
Because 11 of the 24 genes significantly differed in their expression levels between CEU
and YRI (Supp. Figure S1), the eQTL analysis was conducted for each gene in the two
ethnic groups separately. For the eQTL analysis we aimed at increasing our power to detect
eQTLs by using both the SNP data from our resequencing (23 CEU and 23 YRI – one YRI
sample did not have expression data available) and SNP data in all the available unrelated
CEU and YRI individuals (58 CEU and 59 YRI, including the resequenced samples) from
the HapMap 2 panel, as some SNPs could be used from the HapMap genotype data even if
these loci were not fully covered by the resequencing. Hence, in each ethnic group, three
sets of SNPs were used for the eQTL analysis: 1) SNPs found only in the resequenced
samples (23 CEU and 23 YRI) and not in the genotyped HapMap samples (58 CEU and 59
YRI), 2) SNPs found in both the genotyped HapMap samples (58 CEU and 59 YRI) and the
resequenced samples, and 3) SNPs found only in the HapMap samples (58 CEU and 59
YRI) and not in the sequenced samples, most likely because of the incomplete coverage of
the resequencing and gaps in the sequences obtained through resequencing. A quantitative
trait association test to determine cis-eQTLs was carried out in R (Purcell et al., 2007),
where p-values are calculated using an asymptotic Wald test. Only SNPs with a MAF cutoff
of 0.05 in one population were tested under three genetic models (additive, recessive and
dominant). Only models with a minimum of 5 genotypes per group available were
considered. For the association between SNPs and gene expression, we used a p-value
threshold of 0.05 as a selection feature for guiding the prioritization of downstream analyses
aiming at determining functionality through bioinformatics and in vitro functional assays.
The differences in allele frequencies across populations were measured using FST (Wright’s
fixation index).

To identify eQTLs independently associated with gene expression, eQTLs were jointly
tested using a multivariate approach as follows: for each gene, those eQTLs showing a
p<0.05 were included in an automatic selection algorithm taking the null model (no eQTLs
included) as the starting point; at each step, the inclusion of each of the eQTLs not yet in the
model were evaluated using a F test, and that eQTL showing the minimum p-value was
included; this process was repeated until no eQTL showed a F test p<0.05. When two or
more eQTL SNPs were in LD, one of them was randomly selected for this analysis while the
others were excluded. For each gene, only samples without missing genotypes for all SNPs
used in the analysis were taken for model fitting in the selection algorithm. In some cases
this caused a significant reduction in sample size that could eventually produce over fitting.
To avoid this, once the final model was specified, it was refitted using all the samples
available for only the SNPs included in it. Only those eQTLs retaining significance in the
later model were declared as independent eQTLs. The proportion of overall variance
explained by the linear model was computed in each case.

Paré-Brunet et al. Page 5

Hum Mutat. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Bioinformatic analyses of eQTL SNPs
The pfSNP browser (http://pfs.nus.edu.sg) was used to evaluate the potential functionality of
the eQTL SNPs. pfSNP integrates >40 different algorithms/resources to evaluate the
potential functionality of SNPs based on previous published reports, inferred potential
functionality from genetics approaches, as well as predicted potential functionality based on
sequence motifs (Wang et al., 2011). This information was supplemented by bioinformatic
prediction of microRNA (miRNA) binding sites using the web-based MirSNP tool (http://
cmbi.bjmu.edu.cn/mirsnp) (Liu et al., 2012).

Reporter gene analysis of SNP function
As a proof of concept of the overall strategy of eQTL selection and bioinformatics
prediction of their functional effects, we identified five SNPs in the 3′UTR of three genes
(FRS2, KRAS and GRB2) for in vitro testing. Four of these were cis-eQTL SNPs
(rs512283:A>T, rs542403:A>G, rs1137282:A>G and rs1137188:C>T) predicted to be
functional by both pfSNP and MirSNP. rs7219:A>G in GRB2 was also selected because it
was predicted to have functional effects according to pfSNP and MirSNP, and displays
perfect LD with rs8079197:G>C, an intronic cis-eQTL in CEU (Supp. Figure S2).

DNA regions spanning SNP loci of interest were amplified using primers with engineered
restriction enzyme sites (Supp. Table S2). PCR fragments and reporter gene vectors were
digested with the corresponding restriction enzymes (New England Biolabs, Ipswich, MA).
A 1403 bp region spanning rs512283:A>T and rs542403:A>G (3′UTR of FRS2) was
amplified and inserted into pmirGLO plasmid (Promega, Madison, WI, USA) using a SalI
site in the reverse primer, an XbaI site 184 bp downstream of the forward primer and the
corresponding restriction sites in pmirGLO (downstream of the luciferase reporter gene). A
940 bp region spanning rs1137188:C>T (3′UTR of KRAS) and a 902 bp region spanning
rs1137282:A>G (3′UTR of KRAS) were amplified and inserted downstream of the luciferase
reporter gene in pMIR-REPORT plasmid (Applied Biosystems) using SacI and HindIII sites
for the rs1137188:C>T fragment and SacI and PmeI for the rs1137282:A>G fragment. A
383 bp region spanning rs7219:A>G (3′UTR of GRB2) was amplified and inserted
downstream of the luciferase reporter gene in pmirGLO vector using NheI and XhoI sites.
Clones were screened by restriction digestion and positive clones were verified by DNA
sequencing using the Sanger method. Mutagenesis to create the variant alleles of each SNP
was performed using the QuikChange II Site Directed Mutagenesis Kit (Stratagene, La Jolla,
CA) according to the manufacturer’s protocol.

For the reporter gene assays, HEK-293 cells were obtained from ATCC and cultured with
DMEM/F12 50/50 supplemented with 10 % FBS in 5% CO2 incubator at 37°C. HEK-293
were seeded in 24 well plates and cultured to a confluency of ~80%. Cells were transfected
with pmirGLO vector constructs or co-transfected with either pMIR-REPORT and the
control TK Renilla plasmid (Promega), in triplicate, using Lipofectamine 2000 reagent
(Invitrogen, Carlsbad, CA) as per the manufacturer’s instructions. After 24 h, cells were
washed twice with PBS and lysed with passive lysis buffer. Dual report luciferase assays
were performed using the Promega protocol. The luminescence was measured and the
Firefly activity was normalized to Renilla. Differences in mean expression were analysed
using paired t-tests in GraphPad Prism software (La Jolla, CA).

RESULTS
Gene resequencing

Resequencing encompassed 690,764 bp of DNA of the 23 VEGF-pathway genes (Table 1).
Among the regions sequenced, 3,558 genetic variants were identified (Supp. File S3), of
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which 449 were not found in the dbSNP database build v130. Data have been submitted to
the dbSNP database (http://www.ncbi.nlm.nih.gov/SNP/snp_viewTable.cgi?
handle=RSG_UW). Among the variants, 693 and 1,708 were uniquely identified in CEU
and YRI samples, respectively, and 1,157 variants were found in both populations (Table 2).
At a MAF>0.05, 354 and 684 variants were unique to CEU and YRI, respectively, and 924
variants were found in both populations (Table 2). Haplotype-tagging SNPs (tSNPs) were
identified in the 24 genes (including VEGFA) (Supp. Table S3) at r2=0.8 and MAF>0.05
thresholds using Haploview 4.2 (Supp. Figure S2).

Comparison of our data with the 1000 Genomes Project showed that 80% of SNPs we
identified were also found in the 1000 Genomes Project. For 5% of the remaining SNPs, the
chromosomal positions matched those in the 1000 Genomes Project, but the rsnumber SNP
identifier has been merged to a new one. The remaining 15% of the SNPs were not found in
the 1000 Genomes Project either through matching chromosomal position or SNP identifier.
We took all the SNPs in concordance with the 1000 Genomes Project (85%) in the two
populations (CEU and YRI) and compared SNP allele frequencies between the 1000
Genomes Project and our two sets of data (resequencing and HapMap) independently. The
concordance between the HapMap data and 1000 Genomes Project data (Supp. Figure S3A
and B, CCC in CEU: 0.966 and CCC in YRI: 0.954) was higher than that between our
resequencing and the 1000 Genomes Project data (Supp. Figure S3C and D, CCC in CEU:
0.923 and CCC in YRI: 0.942).

eQTL and bioinformatics analyses
To identify cis-eQTLs, associations were sought between genotypes of common variants
(MAF>0.05) and LCL mRNA levels from each corresponding VEGF-pathway gene. In
total, 356 cis-eQTLs were identified in CEU and YRI (Supp. File S4). 155 and 174 cis-
eQTLs were detected uniquely in CEU and YRI samples, respectively, and 27 cis-eQTLs
were found in both populations (Table 2). Nine (5%) and 20 (10%) of the eQTLs in CEU
and YRI, respectively, are located in the 5′UTR region (Supp Table S4). Furthermore, of the
19 genes with eQTLs identified in this study, 15 share no eQTLs between the two sample
groups. We assessed whether the cis-eQTLs unique to CEU and YRI populations,
population-specific cis-eQTLs, could be attributed to differential allele frequencies across
populations. For the 155 cis-eQTLs identified only in CEU, 24 were rare variants in YRI. Of
the remaining 131 cis-eQTLs, 18 CEU cis-eQTLs showed significant differences in allele
frequencies (FST > 0.25) and the allelic effect was in the same direction across both
populations for 9. For the 174 cis-eQTLs identified only in YRI, 30 were rare variants in
CEU population. The remaining 144 YRI cis-eQTLs showed significant differences in allele
frequencies (FST > 0.25) and the allelic effect was in the same direction across both
populations for 2. For the 27 cis-eQTLs found in both populations, only 1 eQTL showed
significant differences in allele frequencies which could be indicative of DNA regulatory
differences across populations (p<0.05) (FST > 0.25, Supp Table S5) (Supp. Figure S4).

To identify variants with putative functional effects, bioinformatic analyses were performed.
Out of all the SNPs identified, 99 are coding, 28 of which are non-synonymous (Supp. Table
S6). Twelve of the non-synonymous SNPs were predicted to have possibly damaging effects
on protein function either by PolyPhen or SIFT (Supp. Table S6). eQTL SNPs were
examined for regulatory function using bioinformatic analyses and 46 SNPs were predicted
to have functional effects (Supp. Table S7), of which five were synonymous, 12 were in
3′UTRs, and 26 were intronic.
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Luciferase reporter gene assays
eQTL SNPs are more likely to be found near gene start and end sites. As the 3′UTR is a
terminal gene region amenable to reporter gene analysis and SNPs in this region can mediate
effects on expression through miRNA and transcription factor binding, mRNA splicing and
other regulatory mechanisms, we selected five candidate 3′UTR SNPs with predicted
functionality (Table 3) from three genes (FRS2, GRB2 and KRAS) for eQTL validation. Of
the five candidate SNPs, four showed significant effects (p<0.05) on luciferase reporter
activity. The minor alleles of rs1137188:C>T and rs1137282:A>G in KRAS significantly
reduced and increased luciferase activity (Table 3), respectively, consistent with the YRI
eQTL findings for these SNPs (Table 3). The minor allele of rs7219:A>G in GRB2 had no
significant effect on luciferase activity (Table 3). rs7219:A>G shares perfect LD with
rs8079197:G>C in CEU, which was identified as a GRB2 CEU eQTL, and impacts the
binding sites of three miRNAs, but did not result in a change in luciferase activity (Table 3).
The minor alleles of rs512283:A>T and rs542403:A>G in FRS2 decreased luciferase
activity by 11 and 29%, respectively (Table 3). These results were inconsistent with the
eQTL findings as the minor alleles of rs512283:A>T and rs542403:A>G were significantly
associated with increased FRS2 expression in CEU (Table 3).

Multivariate analysis of cis-eQTLs
The multivariate analysis showed that three genes had independent cis-eQTLs significantly
contributing to the variance in gene expression. In CEU, rs7559522:G>A and
rs2053797:C>T (LD r2=0.027) showed a statistically independent association with PRKCE
expression and accounted for 44% of its variance (p 0.0008). In YRI, rs7478986:T>C and
rs11024158:G>A (LD r2=0.04) accounted for 45% of PIK3C2A expression variance (p
0.0017), while rs16966894:A>G and rs8067307:C>A (LD r2=0.02) in YRI accounted for
37% of MAP2K6 expression variance (p 0.0006; Supp. Table S8 and Supp. Figure S2).

VEGF-pathway eQTLs in clinical GWAS
To identify eQTLs that might explain GWAS findings, eQTL SNPs were interrogated using
the PheGenI web-based tool (http://www.ncbi.nlm.nih.gov/gap/PheGenI) which searches the
NHGRI GWAS catalog data. Two eQTLs significantly associate with clinical phenotypes in
GWAS (Table 4). The variant allele of rs2283792:T>G, a MAPK1 intronic SNP, associated
with decreased expression in LCLs and decreased risk of multiple sclerosis (Sawcer et al.,
2011). The variant allele of rs4356203:A>G, an intronic PIK3C2A SNP, associated with
increased expression in LCLs and increased risk of schizophrenia (Ripke et al., 2011).

DISCUSSION
To interrogate human genome variation and understand its biological and clinical
implications can be an overwhelming, daunting task. Human genome variation can be
queried through a myriad of repositories, databases and other portals available in the public
domain. The collected data pertain to descriptive population allele data, functional
annotation, multiple clinical outcomes and endophenotypes, and other layers of information.
An integrated and focused analysis from these data is not always possible, and the
understanding of the functional and clinical consequences of variants of genes in any given
pathway relies on a variety of different experimental approaches.

Because of the central role of angiogenesis in physiology, pathophysiology, and drug
treatment, we undertook a resequencing and functional validation project on 23 genes of the
VEGF pathway. The 1000 Genomes Project is developing an extensive record of human
genetic variation by sequencing the genomes of about 2,000 individuals from LCLs
collected from several different populations (www.1000genomes.org). However, data from
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phase 1 of this study has low coverage at ~2.7–4.6x (Zhang and Dolan, 2010). Thus,
resequencing studies are still crucial, not only for the discovery of unreported variants but
also for determining their frequency in human populations and reliably assigning genotypes
to each sequenced individual. Hence, resequencing of candidate genes coupled with eQTL
analyses provides the opportunity to propel the discovery of SNP-phenotype associations.
Because of these premises, we have performed an extensive and focused molecular genetic
study of the VEGF-pathway genes.

To our knowledge, this is the first analysis on the genetic variation for rare and common
variants in CEU and YRI populations in VEGF-pathway genes which combines SNP
discovery with an integrated functional annotation of SNPs using eQTL data, bioinformatics
and in vitro experiments. Although eQTL data from LCLs have been used as the functional
modules to interpret GWAS outcome data and in several other applications, we used the
eQTL information derived from the VEGF-pathway genes as a screening tool to prioritize
SNPs for downstream analysis of functionality. We realize the limited power to detect
eQTLs using the small sample size of resequenced and (HapMap) genotyped samples of this
study, as well as the intrinsic limitations of inferring vascular biology through data
generated from cells of a different histology, such as the LCLs. Nevertheless, concordance
in the effect of LCL eQTLs across tissues that are histologically diverse has been reported in
several studies (Dimas et al., 2009; Nica et al., 2011), suggesting eQTLs in LCLs might
reflect the basic function of a variant on gene expression. For some genes, we demonstrate
that the amount of variation explained by a few eQTLs can be more than 35%, as shown for
PRKCE, MAP2K6, and PIK3C2A (Supp. Table S7).

The LCL eQTL information and the bioinformatics inference of functionality should be used
to prioritize SNPs for testing. These approaches cannot replace in vitro validation of SNP
mechanisms at the bench. This has been clearly demonstrated for non-synonymous SNPs (an
even simpler proposition compared to regulatory variants with smaller effects), for which
prediction of the functional effect can be problematic (Carr et al., 2009). The lack of
experimental data to train prediction algorithms for non-coding SNP function and also the
context dependence (i.e. tissue, cell type, etc.) of their effects (Pang et al., 2009) contribute
to the modest correlation between predicted effects and results from in vitro studies. We
tested the concordance between eQTL results and functional in vitro effects for a limited
number of 3′UTR SNPs in three genes. Out of five SNPs, only two showed concordant
effects, and they were located in the 3′UTR of KRAS, a key oncogene of the VEGF pathway
(Kranenburg, 2005). Interestingly, these two variants are not in LD with rs61764370:T>G in
the binding site for the let-7 miRNA, which has been associated with a series of clinical
phenotypes related to cancer risk and response to EGFR inhibitors and other cancer drugs
(Chin et al., 2008; Graziano et al., 2010; Paranjape et al., 2011; Smits et al., 2011; Ratner et
al., 2012; Sebio et al., 2013). These results propose additional KRAS variants for testing.
Due to the lack of efficient high throughput molecular screens for SNP functionality
(Chorley et al., 2008; Glubb and Innocenti, 2011), we propose that only a joint analysis of
eQTL, bioinformatics, and in vitro confirmation of candidate SNPs could be reliable enough
to dictate further molecular and clinical testing of SNPs.

Functional annotation can provide the mechanistic link between the SNP and its clinical
association. Through our study, we can provide insights on the clinical relevance of genetic
variation in MAPK1 and PIK3C2A. For example, a MAPK1 SNP, rs2283792:T>G, decreases
the risk of multiple sclerosis (Sawcer et al., 2011). In our study, we found this same SNP to
be an eQTL of MAPK1. A reduction in MAPK1 expression may provide protection from
multiple sclerosis by reducing the activation of Th17 cells (Noubade et al., 2011). Thus, the
association of rs2283792:T>G with multiple sclerosis may be explained by our finding that
the variant allele of rs2283792:T>G correlates with lower MAPK1 expression. In the GWAS

Paré-Brunet et al. Page 9

Hum Mutat. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for multiple sclerosis, no functional analysis of this SNP was provided (Sawcer et al., 2011).
For PIK3C2A, factors (including SNPs in the gene) that increase gene expression might
result in an increased risk of schizophrenia. PIK3C2A activates neurosecretory granule
exocytosis (Meunier et al., 2005) and increases neuroexcytosis models of schizophrenia in
mice (Uriguen et al., 2013), while downregulation of neuroexcoytotic proteins is associated
with antipsychotic drug treatment (Gil-Pisa et al., 2012). Consistent with these reports, we
found rs4356203:A>G to associate with increased PIK3C2A expression which may lead to
greater neuroexocytosis, potentially increasing schizophrenia risk. This is consistent with the
finding of a recent GWAS (Ripke et al., 2011) where this SNP was found to increase the risk
of schizophrenia, but for which no molecular mechanism was provided.

With specific reference to the VEGF-pathway in oncology, there are large knowledge gaps
regarding the effects of these SNPs on molecular and cellular phenotypes of tumor
angiogenesis and, in this setting, the interpretation and validation of associations of VEGF-
pathway SNPs and patient outcomes is challenging (Schneider et al., 2012; Lambrechts et
al., 2013). Associations of VEGF-pathway SNPs in clinical cancer studies tend to fail to
replicate if they do not have a mechanistic basis. Compounding these issues is the absence
of cellular model systems which allow the interrogation and isolation of the individual
effects of SNPs on angiogenic phenotypes (Freedman et al., 2011). In an N-analysis of
oncology studies of VEGFA SNPs, rs2010963:C>G was found to be significantly associated
with a 26% relative improvement in OS across a variety of tumor types, suggesting it could
be a putative biomarker (Eng et al., 2012). Genotype-phenotype analyses suggest that the
minor allele of rs2010963:C>G is associated with decreased promoter activity and decreased
VEGFA mRNA expression (Watson et al., 2000; Young et al., 2004; Hussein et al., 2010).
Therefore rs2010963:C>G may confer a survival benefit by reducing tumor angiogenesis.
rs2010963:C>G has a high degree of LD with rs833068:G>A (r2=0.96), an eQTL identified
in our study of LCLs associated with decreased VEGFA expression. This analysis further
highlights how eQTL data can be informative of the molecular effects of putative
biomarkers.

With this study, we provide a framework for functional inference of common SNPs. Having
established methods to “zoom in” variation in any given gene pathway will improve our
biological understanding of genome variation, a major roadblock for clinical translation of
the genome data (Green and Guyer, 2011). Leveraging existing eQTL data with the support
of functional in vitro validation provides essential information to identify genetic candidates
for association studies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The VEGF pathway in the human endothelium, according to www.pharmgkb.org
Copyright PharmGKB (Maitland et al., 2010). Reprinted with permission of PharmGKB and
Stanford University.
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Table 4

Clinical GWAS correlates of eQTL SNPs

SNP Gene Minor allele association pfSNP

LCL gene expression Clinical phenotype

rs2283792 MAPK1 ↓ YRI Reduced multiple sclerosis risk rs5749998 (LD with rs2283792, r2=0.967): introduces an
intronic splicing regulatory element

rs4356203 PIK3C2A ↑ CEU Increased schizophrenia risk rs214935 (LD with rs4356203, r2=0.875): introduces a
FOXJ2 binding site

NHGRI GWAS catalog data were interrogated for eQTL SNPs using PheGenI (http://www.ncbi.nlm.nih.gov/gap/PheGenI).
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