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C-reactiveprotein (CRP)concentration isaheritablesystemic markerof inflammation that isassociatedwithcar-
diovascular disease risk. Genome-wide association studies have identified CRP-associated common variants
associated in ∼25 genes. Our aims were to apply exome sequencing to (1) assess whether the candidate loci
contain rare coding variants associated with CRP levels and (2) perform an exome-wide search for rare variants
in novel genes associated with CRP levels. We exome-sequenced 6050 European-Americans (EAs) and 3109
African-Americans (AAs) from the NHLBI-ESP and the CHARGE consortia, and performed association tests of
sequence data with measured CRP levels. In single-variant tests across candidate loci, a novel rare (minor
allele frequency 5 0.16%) CRP-coding variant (rs77832441-A; p.Thr59Met) was associated with 53% lower
mean CRP levels (P 5 2.9 3 1026). We replicated the association of rs77832441 in an exome array analysis of
11 414 EAs (P 5 3.0 3 10215). Despite a strong effect on CRP levels, rs77832441 was not associated with inflam-
mation-related phenotypes including coronary heart disease. We also found evidence for an AA-specific asso-
ciation of APOE-12 rs7214 with higher CRP levels. At the exome-wide significance level (P < 5.0 3 1028), we
confirmed associations for reported common variants of HNF1A, CRP, IL6R and TOMM40-APOE. In gene-
based tests, a burden of rare/lower frequency variation in CRP in EAs (P ≤ 6.8 3 1024) and in retinoic acid recep-
tor-related orphan receptor a (RORA) in AAs (P 5 1.7 3 1023) were associated with CRP levels at the candidate
gene level (P < 2.0 3 1023). This inquiry did not elucidate novel genes, but instead demonstrated that variants
distributed across the allele frequency spectrum within candidate genes contribute to CRP levels.

INTRODUCTION

C-reactive protein (CRP) is an acute-phase protein reactant pro-
duced by the liver in response to proinflammatory stimuli. CRP
is a sensitive, but nonspecific heritable biomarker of systemic
inflammation that is associated with a variety of inflammation-
mediated diseases (1–5). Particular attention has been focused
on characterizing the association between CRP and cardiovascu-
lar disease (CVD). Prospective epidemiologic studies suggest
that basal CRP levels are predictive of risk of future CVD
(2,6–8), though the degree of association is dependent on levels
of other conventional vascular risk factors (5,9). Current consen-
sus recommendations support the clinical use of CRP to predict
CVD risk among a subset of asymptomatic adults and in the se-
lection of statin therapy (10). Despite routine clinical use of CRP
levels, data from Mendelian randomization studies suggest that
CRP is unlikely to be causally related to CVD (11–17).

Genome-wide association studies (GWASs) have sought to
characterize genetic determinates of CRP levels. This approach
has been successful at identifying �25 loci associated with CRP
levels among individuals of European (17–22), Asian (23–25)
and African (26,27) descent (Supplementary Material, Table S1).
To further interrogate known loci and to search for novel loci

associated with CRP levels, we applied exome sequencing,
which captures sequence variation in the protein-coding portion
of the genome. Exome sequencing has proved useful for iden-
tifying rare causal variants for several Mendelian disorders
(28–32). Furthermore, recent studies illustrate the application
of exome sequencing to identify variation underlying complex
traits (33–38).

In this study, we apply exome sequencing to a large sample of
European-American (EA) and African-American (AA) ascer-
tained through seven population-based cohorts [Atherosclerosis
Risk in Communities (ARIC), Coronary Artery Risk Develop-
ment in Young Adults (CARDIA), Cardiovascular Health
Study (CHS), Framingham Heart Study (FHS), Jackson Heart
Study (JHS), Multi-Ethnic Study of Atherosclerosis (MESA)
and the Women’s Health Initiative (WHI)] that compose the
National Heart, Lung, and Blood Institute (NHLBI) Exome
Sequencing Project (ESP) and the Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE) consortium.
Our specific aims were to (1) assess whether known CRP loci
harboring common variants also contain rare coding variants
associated with CRP levels and (2) perform an exome-wide
search for rare variants in novel genes associated with CRP
levels. Follow-up HumanExome BeadChip genotyping data
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from an independent sample derived from the WHI and JHS
cohorts were used as replication for discovery findings.

RESULTS

Participant characteristics

Race-stratified characteristics of discovery and validation
cohorts are summarized in Supplementary Material, Table S2.
Overall, compared with EA, AA had a greater proportion of
women, higher prevalence of hypertension and type 2 diabetes,
higher body mass index (BMI) and higher median CRP levels.

Single-variant test results

Summary information for uniquely annotated variants included
in the ESP–CHARGE meta-analyses is detailed in Supplemen-
tary Material, Table S3. The meta-analyzed exome-wide
single-variant association results for CRP levels in EA, AA
and combined races are summarized in Figure 1 and Supplemen-
tary Material, Figure S1A. Overall results for significant associ-
ation signals were consistent with no significant between-study
heterogeneity (Tables 1 and 2).

Confirmation of common coding variants associated
with CRP levels

Nine coding variants from four distinct chromosomal regions
reached exome-wide significance in the combined sample

(Table 1). All nine of these significant variants are common
[minor allele frequency (MAF) .10% in both EA and AA]
andhavebeen previously reported or are in linkage disequilibrium
(LD) with known CRP-associated single-nucleotide polymorph-
isms (SNPs) (2,19,25,26,39–41). The genes and their variants
are hepatocyte nuclear factor 1 homeobox A [HNF1A (MIM
142410); rs2464196 (p.Ser487Asn), rs2259820 (p.Leu459¼),
rs1169288 (p.Ile27Leu) and rs1169289 (p.Leu17¼), 12q24.2],
interleukin 6 receptor [IL6R (MIM 147880); rs2228145 (p.Asp
358Ala), 1q21.31], leptin receptor [LEPR (MIM 601007);
rs1805096 (p.Pro1019¼), 1p31.3], translocase of outer mito-
chondrial membrane 40 [TOMM40 (MIM 608061); rs157581
(p.Phe113¼), rs11556505 (p.Phe131¼), 19q13.32] and apoli-
poprotein E [APOE (MIM 107741); rs429358 (p.Cys130Arg),
19q13.32]. These significant hits in HNF1A, IL6R, LEPR,
TOMM40 and APOE correspond to four independent association
signals. Consistent with the results of prior GWAS meta-
analyses, common intronic variants in CRP, LEPR, HNF1A
and TOMM40 were also associated with CRP levels at an exome-
wide significance level (Supplementary Material, Table S4).
Supplementary Material, Table S5 summarizes effect estimates
for all variants reaching significance by the analytic group (ESP,
CHARGE-ARIC, CHARGE-CHS or CHARGE-FHS).

Lower frequency variation associated with CRP levels

Two lower frequency synonymous variants (TOMM40 rs112
849259, p.Asp209¼, MAF ¼ 3.1% and CRP rs1800947,
p.Leu184¼, MAF ¼ 4.4%) reached exome-wide significance

Figure 1. Manhattan plots of 2log10(P-values) from single-variant analyses. (A) Combined race, (B) EA and (C) AA. Variants in the 25 candidate loci identified
through CRP GWAS are highlighted in red, candidate loci with variant reaching exome-wide significance are labeled in italics and rare variants rs77832441 and
rs112849259 are also labeled.
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in the combined sample of EA and AA participants (Table 2).
The CRP rs1800947 synonymous variant has previously been
associated with lower CRP levels in EA, independently of the
more common CRP-lowering haplotype at the chromosome
1q23 CRP locus (12,20,42). TOMM40 rs112849259 has not
previously been reported as associated with CRP levels. Since
rs112849259 is not present on the Exome Array, we were

unable to assess its association with CRP in our genotype-based
validation sample.

In addition to the CRP rs1800947 synonymous variant, we
identified a novel association of a rare nonsynonymous CRP
variant rs77832441 (Thr59Met; MAF ¼ 0.16%) with lower
CRP levels in the combined discovery sample [A allele, beta
(b) standard error (SE) ¼ 20.88 (0.19); P ¼ 2.90 × 1026)

Table 1. Exome-wide significant single-variant associations with CRP (P , 5.00 × 10208) for common coding variants

Gene (chromosome:
GRCh37 coordinate)

rs# (function;
coded/
non-coded
allele)

Previous report (GWAS variant if
different than reported, LD
measures)

Sample (N) MAF b (SE) P-value Het. I2 (P)

LEPR (1:66102257) rs1805096
(Syn; G/A)

Reiner et al. (26) EA (6050) 0.37 20.11 (0.019) 3.56 × 10208 70.4 (0.012)
AA (3109) 0.46 20.11 (0.027) 5.37 × 10205 0 (1)
Combined (9159) 0.40 20.11 (0.016) 8.34 × 10212 56.7 (0.04)

IL6R (1:154426970) rs2228145
(nSyn; C/A)

Curocichin et al. (39) EA (6050) 0.40 20.12 (0.019) 7.81 × 10211 0 (0.93)
AA (3109) 0.14 20.089 (0.040) 2.62 × 10202 0 (0.38)
Combined (9159) 0.31 20.12 (0.017) 8.81 × 10212 0 (0.86)

HNF1A (12:121435342) rs2259820
(Syn; T/C)

Reiner et al. (19) (rs2464196,
r2 ¼ 1, D′ ¼ 1)a

EA (6050) 0.31 20.12 (0.020) 1.83 × 10209 0 (0.69)
AA (3109) 0.12 20.067 (0.040) 9.62 × 10202 0 (0.96)
Combined (9159) 0.25 20.11 (0.018) 9.06 × 10210 0 (0.72)

HNF1A (12:121435427) rs2464196
(nSyn; A/G)

Reiner et al. (19) EA (6050) 0.32 20.12 (0.020) 9.29 × 10209 0 (0.71)
AA (3109) 0.12 20.07 (0.040) 8.07 × 10202 0 (0.80)
Combined (9159) 0.25 20.11 (0.018) 3.27 × 10209 0 (0.78)

HNF1A (12:121416622) rs1169289
(Syn; G/C)

Kong and Lee (25) (rs2393791,
r2 ¼ 0.83, D′ ¼ 0.93)a

EA (6050) 0.46 20.12 (0.019) 8.98 × 10211 8.5 (0.34)
AA (3109) 0.34 20.06 (0.028) 2.16 × 10202 0 (1)
Combined (9159) 0.42 20.10 (0.016) 2.64 × 10211 20.9 (0.28)

HNF1A (12:121416650) rs1169288
(nSyn; C/A)

Curocichin et al. (39) EA (6050) 0.34 20.11 (0.020) 9.52 × 10209 0 (0.73)
AA (3109) 0.12 20.08 (0.041) 4.04 × 10202 0 (1)
Combined (9159) 0.26 20.11 (0.018) 1.36 × 10209 0 (0.90)

TOMM40 (19:45395714) rs157581(Syn;
C/T)

Middleburg et al. (40) (rs2075650,
r2 ¼ 0.58, D′ ¼ 1)a

EA (6050) 0.21 20.16 (0.023) 2.42 × 10212 0 (0.68)
AA (3109) 0.47 20.09 (0.027) 5.07 × 10204 0 (0.88)
Combined (9159) 0.30 20.13 (0.018) 3.73 × 10214 7.9 (0.37)

TOMM40 (19:45396144) rs11556505
(Syn; T/C)

Middleburg et al. (40) (rs2075650,
r2 ¼ 1, D′ ¼ 1)a

EA (6050) 0.14 20.18 (0.027) 2.86 × 10211 0 (0.84)
AA (3109) 0.12 20.02 (0.040) 6.33 × 10201 0 (0.43)
Combined (9159) 0.13 20.13 (0.023) 8.62 × 10209 61 (0.025)

APOE (19:45411941) rs429358
(nSyn; C/T)

Chasman et al. (41) EA (1832)b 0.11 20.31 (0.058) 7.03 × 10208 0 (1)
AA (1528)b 0.19 20.24 (0.049) 1.52 × 10206 0 (1)
Combined (3360)b 0.14 20.27 (0.038) 8.05 × 10213 0 (0.82)

nSyn, nonsynonymous; syn, synonymous; MAF, minor allele frequency; Het. I2, heterogeneity; EA, European-American; AA, African-American; SE, standard error;
(P), P-value; b, beta; SNP, single-nucleotide polymorphism; GRCh37, Genome Reference Consortium Human Build 37; rs#, reference SNP ID number.
aD′ and r2 values are based on Broad SNAP proxy search using CEU 1000 Genomes Pilot 1 data.
bThe reduced sample size for rs429358 is explained by the fact the variant passed quality control in ESP, but not in CHARGE.

Table 2. Single-variant associations of rare and low frequency coding variants with CRP levels

Gene (GRCh37
coordinate)

rs# (function; coded/
non-coded allele)

Previously
report

Sample (N) MAF b (SE) P-value Het. I2 (P)

CRP (1:159683438) rs1800947 (Syn; G/C) Ridker et al. (2) EA (6050) 0.0607 20.27 (0.039) 4.82 × 10212 0 (0.56)
AA (3109) 0.0101 20.58 (0.134) 1.54 × 10205 0 (0.77)
Combined (9159) 0.0435 20.30 (0.038) 4.22 × 10215 28.6 (0.22)

CRP (1:159683814) rs77832441 (nSyn; A/G) Not reported EA (6050) 0.0022 20.75 (0.197) 1.39 × 10204 0 (0.44)
AA (3109) 0.0005 22.06 (0.605) 6.65 × 10204 0 (0.82)
Combined (9159) 0.0016 20.88 (0.187) 2.90 × 10206 28.4 (0.22)
Replication EA (11 414) 0.0031 20.90 (0.11) 3.00 × 10215 –
Discovery + replication (14 573) 0.0034 – 3.86 × 10216 –

TOMM40
(19:45397307)

rs112849259 (Syn; C/T) Not reported EA (6050) 0.0266 20.28 (0.058) 1.28 × 10206 14.1 (0.32)
AA (3109) 0.0391 20.37 (0.069) 1.13 × 10207 0 (0.39)
Combined (9159) 0.0308 20.32 (0.044) 1.06 × 10212 16.2 (0.31)

nSyn, nonsynonymous; syn, synonymous; MAF, minor allele frequency; Het. I2, heterogeneity; EA, European-American; AA, African-American; SE, standard error;
(P), P-value; b, beta; SNP, single-nucleotide polymorphism; GRCh37, Genome Reference Consortium Human Build 37; rs#, reference SNP ID number.
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that was significant at the candidate gene level (significance
threshold P , 1.87 × 1024). We subsequently validated this
finding among 11 414 independent EA Exome Array samples,
where the A allele (MAF ¼ 0.31%) was strongly associated with
CRP levels (b (SE) ¼ 20.90 (0.11), P ¼ 3.00 × 10215). The
combined discovery and replication P-value was 3.86 × 10216.

Additional characterization of CRP p.Thr59Met rare
variant association signal

To demonstrate that the CRP missense variant rs77832441
p.Thr59Met association signal is independent of other common
and lower frequency CRP locus SNPs, we performed conditional
regression analyses using either the ESP discovery exome-
sequenced samples or the genotype-based Exome Array valid-
ation samples. As shown in Supplementary Material, Table S6,
the association of rs77832441 p.Thr59Met with CRP levels
was independent of CRP variants known to be associated with
CRP through prior GWAS (rs1417938, rs3093059 and rs180
0947). Furthermore, assessment of LD in the 1000 Genomes
European ancestry panel structure showed very weak LD
between rs77832441 and common CRP variants (Supplemen-
tary Material, Table S7).

The rs77832441-A allele encoding the threonine-to-
methionine amino acid substitution could reduce CRP levels
by affecting mRNA splicing or stability, reducing CRP synthesis
or altering CRP monomer subunit structure or the ability for CRP
monomers to associate into native circulating pentamers. The
p.Thr59Met missense variant is located at residue 41 of the
mature CRP polypeptide. According to the three-dimensional
X-ray crystallographic structure of CRP (43), this amino acid
lies at the end of a b-sheet (residues 32–41) proximate to a 3/
10 alpha helical domain (residues 43–45). The 40–42 region
of the CRP protein is involved in interprotomer interactions
with residues 115–123 on the adjoining monomer (Supplemen-
tary Material, Fig. S2). Therefore, the non-conservative
threonine-to-methionine amino acid change [which is predicted
to be functional by in silico protein conservation algorithms
(44,45)] has the potential to reduce CRP pentamerization or
reduce native pentameric CRP stability.

To follow up on this association, we sought to test whether
other inflammation-related phenotypes were associated with
the CRP-lowering A-allele of rs77832441 p.Thr59Met. In data
from 14 727 coronary heart disease (CHD) cases and 30 232
controls from the Myocardial Infarction Genetics Exome

Array Consortium, we failed to demonstrate an association
between rs77832441 and a decreased risk of CHD [odds ratio
(95% confidence interval (CI) ) ¼ 0.99 (0.65–1.51); P ¼ 0.96]
despite having an estimated 80% power to detect an odds ratio
of 0.67 or less. Furthermore, using data from the EA replication
sample, we were unable to demonstrate any association between
the CRP rs77832441 variant and incident ischemic stroke
[Ncases ¼ 2378, Ncontrols ¼ 16 736; odds ratio (95% CI) ¼ 1.28
(0.76–2.14); P ¼ 0.35], systolic blood pressure [N ¼ 19 111;
b (SE) ¼ 20.48 (1.98) mmHg; P ¼ 0.81], waist-to-hip ratio
[N ¼ 19 111; b (SE) ¼ 20.0014 (0.0071); P ¼ 0.84] and BMI
[N ¼ 19 111; b (SE) ¼ 0.044 (0.54) kg/m2; P ¼ 0.93]. Finally,
test for the association of rs77832441 with type 2 diabetes in
6474 cases and 6370 controls from EA participants included in
the Type 2 Diabetes Genetic Exploration by Next-generation
sequencing in Ethnic Samples Consortium failed to identify an
association of the p.Thr59Met variant on type 2 diabetes risk
[odds ratio (95% CI) ¼ 0.72 (0.22–2.37); P ¼ 0.59].

Additional analysis of common coding variants
at the chromosome 19q13

Two common synonymous variants in TOMM40 (rs157581-C
allele, MAF ¼ 30%; and rs11556505-T allele, MAF ¼ 13%)
were associated with a �12% lower mean CRP level (P ≤
8.62 × 1029) in the combined EA and AA single-variant
meta-analysis. On the basis of previous studies (39,46), we
hypothesized that these TOMM40 common variants and/or the
low frequency (rs112849259) variant may be in LD with the
functional APOE 12, 13 and 14 alleles. We therefore assessed
the relationship between the common and low frequency
TOMM40 variants to the APOE 14 allele-defining variant
rs429358 p.Cys130Arg by performing conditional analysis
using the ESP exome sequencing data. Conditional analysis in
EA and AA demonstrated that all three TOMM40 synonymous
CRP-lowering variants (rs157581, rs11556505 and rs11284
9259) are conditionally dependent on the APOE 14 allele-
defining SNP rs429358 (Table 3).

The APOE 12 allele-defining variant rs7412 p.Arg176Cys
failed quality control due to poor sequencing coverage in both
ESP and CHARGE discovery samples; however, rs7412 geno-
type was available in 13 794 individuals from our validation
sample genotyped on the Exome Array. Association analyses
using the Exome Array samples suggested that the rs7412
minor allele (T) was associated with higher CRP levels in

Table 3. Conditional analysis of TOMM40 synonymous variants on the APOE 14-defining missense variant rs429358 in the ESP discovery sample

rs# (function) MAF (EA/AA/
combined)

Sample (N) 1000 Genomes pairwise r2

(rs112849259, rs157581, rs11556505)
Without adjustment for rs429358 With adjustment for

rs429358
b (SE) P-value b (SE) P-value

rs112849259
(Synonymous)

0.026/0.039/
0.031

EA (1832) CEU (1, 0.07, 0.005) 20.40 (0.11) 1.29 × 10206 2017 (0.12) 0.13
AA (1528) YRI (rs112849259 NA in YRI) 20.30 (0.10) 2.22 × 10203 20.15 (0.11) 0.15

rs157581
(Synonymous)

0.21/0.47/0.30 EA (1832) CEU (0.07, 1, 0.58) 20.16 (0.044) 2.15 × 10204 20.030 (0.058) 0.60
AA (1528) YRI (NA, 1, 0.11) 20.089 (0.038) 1.99 × 10202 20.025 (0.043) 0.56

rs11556505
(Synonymous)

0.14/0.12/0.13 EA (1832) CEU (0.005, 0.583, 1) 20.18 (0.052) 6.77 × 10204 20.014 (0.068) 0.84
AA (1528) YRI (NA, 0.11, 1) 20.051 (0.056) 0.37 20.032 (0.057) 0.57

MAF,minor allele frequency;Het. I2, heterogeneity; EA, European-American;AA, African-American;SE, standarderror; (P), P-value;b, beta; rs#, referenceSNP ID
number.

Human Molecular Genetics, 2015, Vol. 24, No. 2 563

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu450/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu450/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu450/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu450/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu450/-/DC1


2379 AA [b (SE) ¼ 0.17 (0.05), P ¼ 6.79 × 1024] from WHI;
however, there was no evidence of association of rs7412 with
CRP in 11 404 EA [b (SE) ¼ 0. 018 (0.024), P ¼ 0.46]. We sub-
sequently validated the rs7412 association in an independent
sample of 2201 AA from JHS with Exome Array genotype
data [b (SE) ¼ 0.20 (0.057); P ¼ 4.44 × 1024]. The combined
meta-analysis results for the association of rs7412 in an
Exome Array validation sample with CRP (N ¼ 4609) were b
(SE) ¼ 0.18 (0.037); P ¼ 1.09 × 1026. Using allele dosage for
the APOE 14 variant rs429358 imputed from 1000 Genomes in
WHI (imputation Rsq ¼ 0.64), we demonstrated in the com-
bined AA Exome Array validation sample (N ¼ 4211) that the
association of APOE 12-defining variant rs7412 with higher
CRP levels (P ¼ 3.74 × 1025) and the association of APOE
14 allele-defining variant rs429358 with lower CRP levels
(P ¼ 4.78 × 1029) were conditionally independent.

Gene-based test results

Results for collapsing approach (T1) and sequence kernel asso-
ciation test (SKAT) gene-based tests are summarized in Supple-
mentary Material, Figures S1B and S1C, respectively. None of
the genes reached exome-wide significance (significance thresh-
old P , 2.5 × 1026) in EA or AA alone. In the race-combined
sample, only rare variation in CRP was associated with CRP
levels (T1 P ¼ 2.36 × 1026) at an exome-wide significance
level.

Among the 25 candidate genes from GWAS (significance
threshold P , 2.00 × 1023), the most significant finding was
that rare variation in the CRP locus was associated with CRP
levels in EA with both the T1 test (P ¼ 6.80 × 1024) and
SKAT (P ¼ 1.71 × 1024; Supplementary Material, Tables S8
and S9). Results for both tests of EA on the Exome Array robustly
replicated the CRP gene-based association (PSKAT ¼ 3.21 ×
10215 ; PT1 ¼ 2.54 × 10214). Removal of the rare CRP variant
rs77832441 (Thr59Met) from the EA T1 and SKAT tests elimi-
nated significant signal for the gene-based test (PSKAT ¼ 0.96;
PT1 ¼ 0.77), suggesting that the CRP gene-based association
signal is driven solely by rs77832441. Gene-based results for
CRP in AA were less significant (PSKAT ¼ 0.06; PT1 ¼ 1.05 ×
1023), only reaching candidate gene level of significance in
the T1 test.

Gene-based testing with SKAT additionally showed that rare
putatively deleterious variation in the retinoic acid receptor-
related orphan receptor a [RORA (MIM 600825)] locus was
associated with CRP levels in AA (P ¼ 1.73 × 1023), but not
in EA (P ¼ 0.83). Using HumanExome BeadChip genotype
data from an independent African-American validation sample
(P ¼ 0.06), the gene-based test did not reach a statistical signifi-
cance. However, only one RORA rare variant was shared
between exome sequencing discovery and HumanExome Bead-
Chip validation platform, which may explain our inability to
replicate the finding.

DISCUSSION

By combining exome sequence data from two large consortia,
we have identified and validated a novel association between
lower CRP levels and the rs7732441 CRP missense variant.

Though strongly associated with CRP levels, rs7732441 was
not associated with other inflammation-mediated phenotypes in-
cluding CHD, stroke, systolic blood pressure, waist-to-hip ratio
and BMI. In addition to the previously described CRP-lowering
association signal attributable to the canonical APOE 14 allele,
we demonstrate a second, independent association signal from
the APOE 12 allele that is specific to AA. Finally, a targeted
gene-based analysis of known CRP-associated genes suggested
possible associations between rare coding variants in RORA (in
AA) on CRP levels.

In this study, we did not identify any novel genes through
aggregated gene-based tests. Meta-analysis of cohort-specific
results in this study was carried out in skatMeta, which limited
available gene-based methodologies to SKAT and burden
tests. Methods development for rare variant association analyses
is an active area of research (47). Future efforts may extend avail-
able options for meta-analysis, which may be capable of identi-
fying additional rare variant association signals in our dataset.

Previous studies suggest that tens of thousands of samples
may be necessary to be sufficiently powered to detect associa-
tions between rare variants and complex traits (48,49). Though
we uncover associations between CRP levels and rare-to-low
frequency variants of larger effect, we recognize that larger
sample sizes will be required to detect associations of rare
coding variants of more moderate effect sizes. Power calcula-
tions based on our discovery sample size of �6000 EAs
suggest we had 80% power to detect a variant with �2 mg/l
effect on CRP at 3% MAF but considerably less power to
detect the same effect size at MAF ≤ 1% (Supplementary
Material, Fig. S3). Beyond limited power, factors such as hetero-
geneity of study sampling design (inclusive of both extreme
sampling for other phenotypes and randomly selected indivi-
duals) or exome sequencing platform, and minor differences in
variant calling and quality control procedures between ESP
and CHARGE consortia, may have limited our ability to detect
novel rare variants associated with CRP levels and/or limit gen-
eralizability of our findings.

CRP

Previous studies have identified and replicated associations
between CRP levels and variants in the CRP locus in populations
of European (17,18,20), African (26,27), Asian (17,23,24,39)
and Hispanic ancestry (26). These GWAS have identified three
independently associated common alleles (rs33116653,
rs12093699 and rs1205) and a single low frequency synonymous
variant (rs1800947) in the CRP gene associated with lower CRP
levels in EA (Supplementary Material, Table S10). GWAS and
candidate gene studies (12,42) have identified an additional
AA-specific allele (rs16827466) associated with higher CRP
levels.

Extending these previous findings, we identify a novel rare
CRP variant (rs77832441) that is both strongly associated with
CRP level in single-variant tests and drives the gene-based
results for CRP. On the basis of conditional analyses (Supple-
mentary Material, Table S6) and LD estimates (Supplementary
Material, Table S7), this variant appears to represent an inde-
pendent signal from known GWAS CRP SNPs. Despite the mag-
nitude of its effect, rs77832441 only contributed 0.5% of the
overall natural log(CRP) phenotypic variance. Our results
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extend the existence of allelic heterogeneity at the CRP locus and
suggest that rare coding variation in the CRP gene contributes to
CRP phenotypic variation.

Functional prediction algorithms taking into account conser-
vation and protein structure, SIFT (45) and Polyphen-2 (44)
predict the p.Thr59Met variant to be deleterious [SIFT ¼ 0.03
(damaging) and Polyphen-2 ¼ 1.0 (probably damaging)]. Simi-
larly, crystal structures of CRP indicate that the variant could
disrupt the site involved in monomer subunit interactions (43),
which may reduce CRP pentamer formation or stability. In
vitro, the monomeric and native pentameric isoforms of CRP
exhibit distinct physicochemical and inflammatory properties
(50–52), which have potential implications for the role of
CRP in atherothrombotic disorders.

It remains possible that, since CRP levels were measured by
immunoassay, the p.Thr59Met missense variant may alter an
epitope recognized by the monoclonal antibody used for CRP
capture or detection, leading to artificially low CRP values.
We investigated the possibility that the p.Thr59Met amino
acid substitution interferes with CRP detection by examining
CRP measurements among a subset of 3442 CARDIA partici-
pants for whom both polyclonal and monoclonal antibody
assays were performed at study Year 15. We hypothesized that
the polyclonal assay would be less susceptible to artifactual
bias due to the amino acid substitution at residue 59. Comparison
of the results failed to demonstrate a large difference in CRP
effect size between monoclonal and polyclonal assays in a
subset of the discovery sample (Supplementary Material,
Fig. S4). CRP levels detected by monoclonal antibody and poly-
clonal antibody assays were highly correlated in this sample for
p.Thr59Met carriers (r ¼ 0.97) and non-carriers (r ¼ 0.94).
These results suggest that p.Thr59Met may confer a true bio-
logical reduction in circulating CRP levels, though further
studies are warranted to fully characterize the functional signifi-
cance of this variant.

Despite the large, likely direct effect of rs77832441 on mean
CRP levels, investigation of the relationship of the identified rare
variant to other inflammation-mediated phenotypes failed to
demonstrate an association. Similar to previous studies (11–
17,53–55), these findings provide additional evidence that
CRP levels may not elicit direct effects on CHD, stroke, systolic
blood pressure, hip-to-waist ratio, type 2 diabetes and BMI.
While CRP is a robust marker of CHD risk (2,6–8), Mendelian
randomization studies have consistently failed to demonstrate
that CRP is causally related to CHD (11–17). Our finding of a
lack of association between rare, putatively deleterious
rs77832441 and CHD provides additional support that CRP is
not in the causal pathway for CHD.

TOMM40-APOE

19q13 is a gene-dense region including TOMM40, APOE and
apolipoprotein C-I (APOC1; MIM 107710). Variants in all
three of these genes have been previously associated with CRP
levels through GWAS or candidate gene analyses (17,26,39–
41,46). In our exome sequencing analysis, the APOE 14-
tagging missense variant (rs429358) and three synonymous
TOMM40 variants were associated with CRP levels (rs157581,
rs11556505 and rs112849259). Evidence from previous study

and 1000 Genomes sequencing suggest that rs157581 and
rs11556505 are in moderate-to-strong LD with rs429358, the
variant that defines the APOE 14 allele (56,57). Similarly, we
show in our dataset that the CRP-associated TOMM40 variants
(rs157581, rs11556505 and rs112849259) do not represent an in-
dependent signal from the APOE rs429358 variant. Further-
more, we identify and replicate an additional AA-specific
rs429358-independent novel association between APOE
12-tagging variant rs7412 and higher CRP level.

APOE is a major constituent of lipoproteins, and the APOE 12
and 14 alleles are important genetic determinants of CVD and
Alzheimer’s disease (58,59). The p.Arg158Cys missense
variant encoded by 12 exhibits reduced affinity for the low-
density lipoprotein receptor (LDLR) and reduced clearance of
apoE-containing triglyceride-rich lipoprotein particles (such as
very low-density lipoprotein), and is associated with lower low-
density lipoprotein (LDL) cholesterol levels (41) and type III
hyperlipoproteinemia (59). In contrast, the p.Cys112Arg
variant encoded by 14 exhibits more rapid clearance of apoE-
containing triglyceride-rich lipoproteins due to increased
LDLR affinity and is associated with increased LDL-cholesterol
(LDL-c) levels and increased cardiovascular risk (41,58,60,61).
In addition to its role in cholesterol transport, APOE has anti-
atherogenic and anti-inflammatory effects in experimental
systems (59,62). However, the mechanisms for these pleiotropic
effects as well as the paradoxical association of 12 with lower
LDL-c/higher CRP levels and 14 with higher LDL-c/lower
CRP levels are not well understood.

RORA

RORA encodes a nuclear receptor with strong homology to the
retinoic acid receptor. Data from knockout RORA mice models
suggest the importance of RORA in regulating immune and
inflammatory responses, atherosclerosis susceptibility and
ischemia-induced angiogenesis (63,64). Previous GWAS indi-
cate that common variation in RORA is associated with CRP
(18) and liver enzyme levels (65,66) at a genome-wide signifi-
cance level in EA. The previous GWAS meta-analysis of CRP
identified a common variant rs340029-T allele as associated
with increased CRP levels (18); however, GWAS in AA and
Hispanic Americans found no association between rs340029
and CRP levels (26). Further characterization of rare variation
of this locus through sequencing efforts is warranted to follow
up on our discovery finding of a burden of rare variants at the
locus.

Summary

Overall, our results suggest that variants distributed across the
allele frequency spectrum within biological candidate genes
identified by GWAS contribute to CRP levels. As suggested
by other studies, robustly associating rare coding variants with
modest effects on complex traits will require extremely large
sample sizes (26,48). Collaborative efforts involving meta-
analysis of exome sequence or exome BeadChip genotype data
will be necessary to amass the large sample sizes required to
identify additional rare coding variants contributing to the
phenotypic variance of CRP levels.
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MATERIALS AND METHODS

Study subjects and CRP measurements

Our discovery sample consisted of exome sequence data from
3360 individuals from the NHLBI-ESP and 5799 individuals
from the CHARGE project with valid CRP measures. In total,
these 9159 participants included 6050 EA and 3109 AA
sampled from seven population-based cohorts: ARIC (N ¼
4827), CARDIA (N ¼ 190), CHS (N ¼ 946), FHS (N ¼ 1144),
JHS (N ¼ 346), MESA (N ¼ 399) and the WHI (N ¼ 1307) as
part of the NHLBI- ESP and an independent sample from three
of the same population-based cohorts (ARIC, FHS and CHS)
as part of the CHARGE consortium (67). CRP levels were mea-
sured by high-sensitivity immunoassay in all seven cohorts.
Detailed descriptions of each of the seven cohorts and the tech-
niques used to measure circulating CRP levels are provided in
previous publications (68–73) and summarized in Supplemen-
tary Material, Table S11. Clinical information was collected
through self-report and in-person examination. All participants
provided written informed consent as approved by local
human subjects committees.

Sampling design

The CHARGE cohorts’ study participants included here were
selected as part of a large random cohort sample or for extreme
values for at least one of the following phenotypes: age at meno-
pause, electrocardiogram QT interval, fasting blood glucose,
fibrinogen level, renal function, Stamler–Kannel-like extremes
of risk factors selected by principle components (PCs) and
waist-to-hip ratio. The sampling design of ESP included
disease phenotypes (early onset myocardial infarction and ische-
mic stroke), and several quantitative cardiovascular risk factors
that were sampled on the basis of phenotypic extremes (blood
pressure, BMI and LDL-c), as well as a deeply phenotyped
random sample. Due to the extreme sampling of phenotypic
extremes, we adjusted for sampling design to minimize bias.

Exome sequencing and variant calling

In ESP, the processes of library construction, exome capture,
sequencing and mapping were performed as previously described
(26,37,74). Sequencing was performed at the University of
Washington (UW) and the Broad Institute of MIT/Harvard
(Broad). Briefly, exome capture was performed using Roche
Nimblegen SeqCap EZ or Agilent SureSelect Human All Exon
50 Mb. Paired-end sequencing (2 × 76 bp) was performed on
Illumina GAII and HiSeq instruments. Single-nucleotide var-
iants (SNVs) were called using a maximum-likelihood approach
(75) implemented in the UMAKE pipeline at the University of
Michigan, which allowed all samples to be analyzed simultan-
eously, both for variant calling and filtering. Binary Align-
ment/Map (BAM) (76) files summarizing Burrows–Wheeler
Alignment (BWA) (75) alignments generated at the UW and
the Broad were used as an input. These BAM files summarized
alignments mapped to the Genome Reference Consortium
Human Build 37 (GRCh37), refined by duplicate removal, reca-
libration and indel re-alignment using the Genome Analysis
ToolKit (GATK) (77). We excluded all reads that were not con-
fidently mapped (Phred-scaled mapping quality ,20) from

further analysis. Mean depth was 127× in targeted regions.
We then computed genotype likelihoods for exome targeted
regions and 50 flanking bases, accounting for per base alignment
quality using SAMtools (76). Variable sites and their allele fre-
quencies were identified using a maximum-likelihood model,
implemented in glfMultiples (78). These analyses assumed a
uniform prior probability of polymorphism at each site. The
final call-set was performed on 6823 samples (referred to as
the ESP6800 call-set).

In CHARGE, DNA samples were constructed into Illumina
paired-end pre-capture libraries according to the manufacturer’s
protocol. The complete protocol and oligonucleotide sequences
are accessible from the Human Genome Sequencing Center
(HGSC) website. Either four or six pre-capture libraries were
pooled together and then hybridized to Nimblegen exome
capture array [HGSC VCRome 2.1 design (79); (42 Mb, Nim-
bleGen)] and sequenced in paired-end mode in a single lane on
the Illumina HiSeq 2000 platform. Illumina sequence analysis
was performed using the HGSC Mercury analysis pipeline.
Pooled samples were de-multiplexed using the Consensus
Assessment of Sequence and VAriation (CASAVA) software.
Reads were then mapped to the GRCh37 human reference se-
quence using BWA producing BAM files. Aligned reads were
then recalibrated using GATK (77) along with BAM sorting, du-
plicate read marking and realignment near indels. The Atlas2
(80) suite was used to call variants and produce high-quality
variant call files (VCF) (81). The VCF includes a filter indicating
variants with apparent strand-bias, low allele fraction, low
coverage or low quality to produce a high-quality variant list.
Specifically, the poor quality fields included variants with a pos-
terior probability of less than0.95, ,3 variant reads, variant read
ratio ,0.1, .99% variant reads in a single-strand direction, total
coverage ,6 and homozygous reference alleles with less than
6× coverage.

Quality control

ESP used a support vector machine classifier to separate likely
true-positive and false-positive variant sites, applying a series
of variant-level filtering steps. Variant-level quality metrics
included allelic balance (the proportional representation of
each allele in likely heterozygotes), base quality distribution
for sites supporting the reference and alternate alleles, and the
distribution of supporting evidence between strands and sequen-
cing cycle, among others. These steps were followed by quality
control on individual samples within each study. We used as the
positive training set variants identified by dbSNP (82) or 1000
Genomes (57), and we used variants that failed multiple filters
as the negative training set. We found this method to be effective
at removing sequencing artifacts while preserving good quality
data, as indicated by the transition–transversion (ti–tv) ratio for
previously known and newly identified variant sites, the propor-
tion of high-frequency variants overlapping with dbSNP, and the
ratio of synonymous to nonsynonymous variants, as well as
attempts at the validation of a subset of sites. We excluded var-
iants with read depth .500, variants with .2 observed alleles in
CHARGE and any genotype containing a copy of the less fre-
quent alternate allele in ESP, or missing rates ≥10% for ESP
and .20% for CHARGE, and HWE P-value of ,5 × 1028

and ,5 × 1026 for ESP and CHARGE, respectively.
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In ESP, samples with discrepant self-reported race and ances-
try derived from principal component analysis (PCA) performed
on exome sequencing data in PLINK (83) as well as ancestry out-
liers by PCA were removed. Samples having very low concord-
ance (,90%) with previously obtained SNP array data were
considered likely sample swaps and were also dropped from
further analysis. In CHARGE, within each cohort, a sample
was excluded if it fell beyond 6 standard deviations of any of
four selected measures that were calculated by the cohort and an-
cestry group: number of singletons, heterozygote to homozygote
ratio, mean depth or ti–tv ratio.

Variant annotation

To facilitate meta-analysis between CHARGE and ESP, we
created a combined variant annotation file including all quality-
controlled variant sites observed in either study: 2 706 877 var-
iants in CHARGE and 1 907 911 in ESP6800. We first annotated
variants in the two studies separately using an in-house pipeline
built on ANNOVAR (84) and dbNSFP v2.0 (85) according to the
reference genome GRCh37 and National Center for Biotechnol-
ogy Information RefSeq. The majority of the exonic variants
were annotated to a unique gene and functional category.
A variant, however, can be annotated to multiple genes by
ANNOVAR and can have more than one of the following
functional categories: stop-gain, stop-loss, splicing, nonsynon-
ymous, noncoding RNA splicing, synonymous, exonic, 5′ un-
translated region (UTR5), 3′ untranslated region (UTR3),
noncoding RNA exonic, upstream, intronic, noncoding RNA
intronic, downstream and intergenic, where the first five categor-
ies are considered ‘functional’ variants to be included in the rare
variant burden tests. We then merged the CHARGE and ESP
annotated variant lists to ensure that a variant that was present
in both studies has the same reference allele and functional anno-
tation. The combined CHARGE-ESP SNP info file that was used
in the skatMeta package included a total of 3 494 971 unique
autosomal sites present in either or both ESP and CHARGE.

Association analyses

Samples with very high CRP values (.100 mg/l) were excluded
from analyses and measured CRP values below the lower limit of
detection were replaced with the assay lower limit value, leaving
3109 AA and 6050 EA available for association testing. CRP
values were naturally log (ln) transformed to normalize the dis-
tribution of CRP levels. We performed two types of tests, single
variant (common and lower frequency variants) and gene burden
(rare and lower frequency variants only), as detailed further
below and summarized in Supplementary Material, Table S12.
Cohort-level analyses were carried out using the R (86) skatMeta
package. In the CHARGE cohorts (ARIC, FHS and CHS), the
‘skatCohort’ or ‘skatFamcohort’ functions were used to create
datasets for meta-analysis. In ESP, the six cohorts were pooled
into a single dataset and were analyzed using the ‘skatCohort’
function.

Meta-analyses of the ‘skatCohort’ and ‘skatFamcohort’
results were conducted at two independent sites to ensure con-
cordance in findings. Both race-stratified meta-analysis consid-
ering a single ethnicity, and combined meta-analyses including
both ethnicities were carried out because most CRP-associated

loci identified to date have shown consistent patterns of associ-
ation between EA and AA (26). All meta-analyses were con-
ducted in the skatMeta package using the ‘singlesnpMeta’
function for single-variant meta-analyses, and the ‘burdenMeta’
and ‘skatMeta’ functions for gene-level meta-analyses. We con-
sidered only variants on autosomal chromosomes in all analyses.
Confirmatory analyses in METAL (87) evaluate between-study
heterogeneity of significant results using the heterogeneity
I2 metric. Based on adjustment for 23 tests of significant
CRP-associated SNV in the discovery sample, heterogeneity
was considered to be statistically significant (a P-value of
,2.17 × 1023).

Single-variant tests

Using the skatMeta, we ran race-stratified study-specific objects
(ESP, CHARGE-ARIC, CHARGE-FHS and CHARGE-CHS)
for downstream meta-analyses. Within each meta-analysis
group (EA, AA and combined) and for each variant site with
five or more minor alleles detected, we tested for association
with CRP levels via linear regression with an additive genetic
model. We included as covariates, race-specific PCs as
needed, age, sex and BMI. In the ESP samples, a dummy variable
correcting for the sampling procedure, cohort and capture target
was included in the model.

Gene burden tests

Using the skatMeta package, we ran two different types of gene-
level tests. The first was adopted from the T1 collapsing ap-
proach (15). For the T1 tests, we only considered polymorphic
variants having a within race MAF of ≤0.01 that was calculated
from the entire ESP–CHARGE call-set. The second gene-level
test was adopted from the SKAT approach (47). For the SKAT
tests, we only considered variants having an MAF of ≤0.05
that was calculated from the entire ESP–CHARGE call-set.
Both T1 and SKAT tests considered only SNVs annotated as
nonsynonymous, stop-gain, stop-loss, noncoding RNA splice
or splice variants in the shared ESP/CHARGE annotation file.
Burden tests considered only considered variants that passed
quality control in either or both ESP and CHARGE. All gene-
level tests were adjusted for age, sex, BMI and principal compo-
nents (as needed). In addition, the ESP analyses included a
dummy variable correcting for the sampling procedure, cohort
and capture target.

Significance thresholds

For the analysis of rare variants (MAF ,0.05) in the 25 known
CRP-associated genes, we evaluated 267 coding variants and
thus, we used a Bonferroni-corrected threshold of P , 1.87 ×
1024 to declare significance at the single-variant level. In the
burden test of candidate genes, we corrected for the number of
candidate genes surveyed (N ¼ 25) to assign the threshold of
significance at P , 2.0 × 1023. In the exome-wide exploratory
analyses, an association was deemed to be statistically sig-
nificant at P ≤ 5.0 × 1028 for single variants (the standard
GWAS common variant criteria for assessing significance
based on a million test), which is a stringent threshold consider-
ing that we only tested �640 000 variant sites. Significance was
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assessed at P , 2.5 × 1026 for the gene-based rare variant asso-
ciation tests based on a correction for 19 230 genes. Supplemen-
tary Material, Table S12 summarizes the significance thresholds
for all the reported tests.

Validation of CRP association signals in additional samples

Significant association findings from the discovery sample were
followed up in an independent sample of 13 794 participants of
the WHI with CRP measurement available [11 414 EA partici-
pants and a sub-sample of 2380 AA participants from the WHI-
SHARe project (26)] and 2201 AA from JHS. Replication
samples were independent from samples used in the ESP and
CHARGE exome sequencing discovery sample. The JHS and
WHI validation samples were genotyped using the Illumina
HumanExome v1.0 BeadChip at Broad Institute or at the
Translational Genomics Research Institute (Phoenix, AZ), respect-
ively. Genotype calls were assigned using GenomeStudio v2010.3.
We removed samples with call-rates ,98%, SNPs with call-rates
,95% or HWE P-values less than 5 × 1026. We checked
concordance of genotype calls across hundreds of duplicated
samples and SNPs with concordance rates ,99% were excluded
from analysis. High-sensitivity CRP was measured on with the
use of a latex-particle enhanced immunoturbidimetric assay. Con-
sistent with the discovery analysis, only samples with CRP values
,100 mg/l were included in the replication analyses. Single-
variant and gene burden tests for association tests were performed
as described above.

Investigation of the association between rs77832441
and inflammation-related phenotypes

Samples from the WHI EA replication with available Illumina
Human Exome Array data were used to investigate the associ-
ation between rs77832441 and inflammation-mediated pheno-
types stroke, systolic blood pressure, waist-to-hip ratio and
BMI. To investigate the association with CHD, we used EA
samples from the Myocardial Infarction Genetics Exome
Array Consortium with available Illumina HumanExome Bead-
Chip data (N CHD cases ¼ 14 727, N controls ¼ 30 232). Avail-
ability of EA samples from 6474 type 2 diabetes cases and 6370
controls from the Type 2 Diabetes Genetic Exploration by Next-
generation sequencing in Ethnic Samples Consortium with
available exome sequence data permitted us to evaluate
whether rs77832441-A allele was associated with case status.
Linear or logistic regression was used to assess association
between the predictor (rs77832441—per A-allele) and the con-
tinuous or binary inflammation-mediated phenotype with ad-
justment for covariates as needed. Statistical significance was
assessed at P , 0.05.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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