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The central importance of epigenetics to the aging process is increasingly being recognized. Here we perform a
methylome-wide association study (MWAS) of aging in whole blood DNA from 718 individuals, aged 25–92 years
(mean 5 55). We sequenced the methyl-CpG-enriched genomic DNA fraction, averaging 67.3 million reads per
subject, to obtain methylation measurements for the ∼27 million autosomal CpGs in the human genome.
Following extensive quality control, we adaptively combined methylation measures for neighboring, highly-cor-
related CpGs into 4 344 016 CpG blocks with which we performed association testing. Eleven age-associated dif-
ferentially methylated regions (DMRs) passed Bonferroni correction (P-value < 1.15 3 1028). Top findings
replicated in an independent sample set of 558 subjects using pyrosequencing of bisulfite-converted DNA
(min P-value < 10230). To examine biological themes, we selected 70 DMRs with false discovery rate of <0.1.
Of these, 42 showed hypomethylation and 28 showed hypermethylation with age. Hypermethylated DMRs
weremore likely to overlap withCpG islands and shores. HypomethylatedDMRs were more likely to be in regions
associated with polycomb/regulatoryproteins (e.g.EZH2) or histone modifications H3K27ac, H3K4m1,H3K4m2,
H3K4m3 and H3K9ac. Among genes implicated by the top DMRs were protocadherins, homeobox genes, MAPKs
and ryanodine receptors. Several of our DMRs are at genes with potential relevance for age-related disease. This
study successfully demonstrates the application of next-generation sequencing to MWAS, by interrogating a
large proportion of the methylome and returning potentially novel age DMRs, in addition to replicating several
loci implicated in previous studies using microarrays.

INTRODUCTION

Human populations are living longer now than at any time in
history, with world life expectancy more than doubling in the
last two centuries (1). While mortality has been delayed, aging
is still accompanied by significantly elevated risk for many dis-
eases (2–4). With an increasingly long-lived population, there is
a strong impetus to understand the biology of the aging processes
and reduce age-related illness.

The effects of aging on the genome include telomere attrition
and accumulation of mutations (5). In addition, epigenetic

factors are increasingly being recognized as centrally important
to the aging process (6). Among epigenetic modifications, the
most intensively studied is the methylation of cytosine residues
at the carbon 5 position—5mC (7). Reported age-related changes
to DNA methylation have typically included a general loss of
methylation, or hypomethylation, across the genome (6,8,9), ac-
companied by site-specific hypermethylation at several gene
promoters (10,11).

The successful identification of differentially methylated
regions (DMRs) associated with aging in studies of candidate
loci (12–14) has stimulated interest in mapping all such sites
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genome-wide. As a step in this direction, several recent studies
have used the Illumina Infinium 27 K microarray to investigate
age-related methylation effects in fibroblasts (15), cultured
human cells (16), buccal DNA (17), whole blood (18–21) and
concordance of age-related change across multiple tissue types
(22). To date, two studies on aging have also employed the
higher density Infinium 450 K array (23,24). While these
arrays enable the detection of methylation at �27 000 or
450 000 CpG sites, there are .28 million CpG sites in the
human genome (25). Therefore, these array studies surveyed
only a small fraction of the potentially methylated portion of
the genome. Furthermore, much of the methylation relevant
for individual differences occurs outside gene promoters and
CpG islands (26).

As an alternative to arrays, next-generation sequencing (NGS)
technology (27) can be applied to the study of methylation (28).
The most comprehensive method for ascertaining 5mC status is
bisulfite sequencing, where unmethylated cytosines are converted
to uracil (29). This single-base resolution is attractive, but whole-
genome bisulfite sequencing (WGBS) is not yet economically
feasible in the large sample sizes required for adequate statistical
power in association studies (28). For example, Heyn et al. (24)
recently used WGBS to compare genome-wide methylation in
peripheral blood DNA from a newborn infant and a centenarian
but used Infinium 450 K arrays to confirm DMRs in additional
individuals of intermediate ages.

Alternative NGS methods have been developed to perform
genome-wide methylation analyses that are more cost-effective
than WGBS (28). One such method is affinity-based capture. In
two common variants of this approach, the methylated genomic
fraction is captured using methyl-CpG binding domain (MBD)
protein (30) or antibodies specific to 5mC (31), followed by se-
quencing on an NGS instrument. The number of fragments
mapping to a locus approximates the level of methylation.
While lacking single-base resolution, both MBD and antibody-
based capture methods are capable of detecting DMRs (32)
and have good genome-wide representation of the methylome
(33). One previous study has used antibody-based capture and
NGS to discover aging DMRs in blood DNA from a sample of
38 individuals (34).

Here we present a large-scale methylome-wide association
study (MWAS) of aging in whole blood DNA from .700 indi-
viduals using MBD-based capture and sequencing (MBD-seq).
Our use of NGS affords a more comprehensive view of aging
DMRs across the genome compared with previous studies
using microarrays. Furthermore, our sample size provides sub-
stantially more statistical power than any previous NGS study
of DNA methylation and aging. With this approach, we identify
multiple aging DMRs in DNA from blood that may provide
insight into aging epigenetics in this tissue.

RESULTS

Primary MWAS with age

Our MWAS sequencing pipeline (35) and computational ana-
lysis methods (36,37) have been described previously, and the
work flow for this project is summarized in Figure 1. After
quality control (QC), our final study sample consisted of 718 sub-
jects with, on average, 31.6 million reads per subject (SD ¼ 13.4

million). These subjects had an average age of 55.2 years (SD ¼
11.8), ranging from 25 to 92 years. Additional demographic and
sample information is provided in Supplementary Material,
Table S1. Sequence read positional data and phenotype informa-
tion have been submitted to dbGaP (http://
www.ncbi.nlm.nih.gov/gap) for public release.

Our use of MBD protein, which only binds to methylated
CpGs (30), led us to focus on the �27 million autosomal CpG
sites in the human genome. Methylation measurements were
obtained for each CpG by estimating the number of sequenced
fragments covering it (37). After QC and adaptively combining
correlated coverage estimates at neighboring CpG sites to reduce
the size of the data set (38), we obtained 4 344 016 CpG ‘blocks’.
Each block comprised, on average, 3.1 highly-correlated CpGs
and had a mean length of 73.7 bp (see Supplementary Material,
Table S2).

We used the quantitative coverage estimates for the �4.3
million blocks as input for multiple regression analyses to test
for association with age. We accounted for sex in the regression
model, in addition to multiple technical confounders and five
principal components (PCs) that captured unmeasured confoun-
ders. The quantile–quantile-plot for this analysis is shown in
Figure 2. This plot indicates an enrichment of small P-values
as compared with the expectation under the null. Eleven
DMRs passed the conservative Bonferroni correction
(P-value , 1.15 × 1028). Alternatively, there were 70 aging
DMRs with q-values of ,0.1. As motivated previously, this
false discovery rate (FDR) threshold provides a good balance
between discovery of true effects and controlling for false posi-
tives (39) and is relatively robust to the effects of correlated tests
(40–44). In our MWAS, q , 0.1 corresponds to P-value of
,1.37 × 1026. For concision, Table 1 shows details on the 11
aging DMRs passing Bonferroni correction only, whereas
Figure 3 shows a circular plot of the genome-wide distribution
of the top 70 DMRs. Figure 3 also integrates results from
further analyses outlined later. Genomic co-ordinates and ana-
lysis statistics for all 70 DMRs are provided in Supplementary
Material, Table S3. Overall, 42 DMRs showed decreased
(hypo) methylation with age, whereas the remaining 28
showed hypermethylation.

MWAS results and overlap with genomic features

For each genomic feature of interest, we examined enrichment
among our top results compared with the genome-wide
average, for all top 70 DMRs in addition to hyper- and hypo-
methylated DMRs separately. Results are shown in Figure 4A
and B, with significant (P , 0.05) deviations from the genome-
wide average indicated by solid dots. Statistics and P-values for
all tests are provided in Supplementary Material, Table S4.

Considering the first ten annotations for all DMRs (Fig. 4A),
all but ‘Genes’ and ‘Introns’ were significantly enriched.
Thus, we observe that our top findings are more likely to be in
CGIs or CpG shores, situated upstream from the start of tran-
scription in regions that are more likely to be evolutionarily con-
served among eutherian mammals and that are enriched for
predicted transcription factor binding sites. The most striking
finding was with CGIs, which were enriched 20-fold among
our top results compared with the genome-wide average
(P ¼ 7.71 × 10210).
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Considering hyper- and hypo-methylated DMRs separately,
once again all but ‘Genes’ and ‘Introns’ were significantly
enriched for both directions of effect, except for ‘Exons’ in the
hypomethylated category that was also non-significant.

Notably, among hypomethylated DMRs, none overlapped with
a CGI. Thus, all significant DMRs in CGIs were hypermethy-
lated with age. The enrichment of CGIs in the hypermethylated
DMRs, relative to the genome-wide average, was over 50-fold
(P ¼ 1.04 × 10213). Further comparison of hyper- and hypo-
methylated DMRs indicated that hypermethylated DMRs tend
to be more enriched for exons and upstream regions close to
the start of transcription, whereas hypomethylated DMRs
tended to be enriched for DNase clusters. The latter observation
is noteworthy because the approximately fourfold enrichment is
from a relatively high genome-wide baseline. That is, 15.4% of
all blocks overlap with a DNase cluster, which increases to
66.7% among the hypomethylated DMRs. This enrichment
was also highly significant (P ¼ 9.16 × 10214).

We next looked for overlap with binding sites for regulatory
proteins and genomic regions associated with specific histone
modifications. The results are shown in Figure 4B. In this ana-
lysis, hypermethylated DMRs were not significantly enriched
for any of the features we studied. Therefore, all of the significant
findings in this analysis are driven by the hypomethylated
DMRs. These were significantly enriched for transcriptional re-
pressor CTCF, histone-lysine N-methyltransferase EZH2 and
histone 2A family, member Z. Hypomethylated DMRs were
also significantly enriched for histone 3, lysine 27 acetylation
(H3K27ac), histone 3, lysine 4 methylation, dimethylation and
trimethylation (H3K4m1, m2 and m3) and histone 3, lysine 9
acetylation (H3K9ac).

Replication of top findings

We aimed to replicate five findings using pyrosequencing of
bisulfite converted whole blood DNA from independent subjects.

Figure 1. Flow diagram of data processing and quality control (QC). MBD-seq, methyl-CpG binding domain (MBD) protein-enriched sequencing; PCA, principal
component analysis; MWAS, methylome-wide association study.

Figure 2. Quantile–quantile (QQ) plot of observed CpG block association
P-values (y-axis) against expected P-values (x-axis). The negative logarithm
in base 10 of the association P-value is plotted. The red line depicts the expect-
ation under the null hypothesis. The deviation of many points above the 95% con-
fidence interval (blue lines) in the right upper corner points to a considerable
number of significant findings.
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This targeted method has excellent quantitative accuracy for
methylation studies (45). From the top five findings in genes
(see Table 1), we were able to design good pyrosequencing
assays for three DMRs, located close (within 20 kb) to the genes
LSAMP, (limbic system-associated membrane protein), ZEB2
(zinc finger E-box binding homeobox 2) and MEIS1 (Meis
homeobox 1). As all of these DMRs showed hypomethylation

with age, we also selected the most significant hypermethylated
DMR in a gene. This was in GRIA2 (glutamate receptor, ionotro-
pic, AMPA 2), which passed FDR of ,0.1 and had a MWAS
P-value of 2.7 × 1028 (see Supplementary Material, Table S3).
Finally, we included a ‘negative control’ using a block that
showed no association with age in the MWAS. This was located
proximal to the gene FLI1 (Friend leukemia virus integration 1)
and had a MWAS P-value of 0.76. Replication was carried out
in an independent sample of 558 individuals from the same
Swedish population as our main sample and had a similar age
profile (mean ¼ 57.4, SD ¼ 10.9) (see Supplementary Material,
Table S5 for additional sample information). Results are shown
in Table 2. All of the hypomethylated DMRs replicated with
several P-values in the range 10220–10230, whereas GRIA2
also replicated, albeit at a more modest level of significance. All
effect directions in the replication sample were in the same direc-
tion as in the MWAS. Finally, the ‘negative control’ showed no
association as expected.

Pathways

The top 70 DMRs are located within 20 kb of 68 unique genes.
To test for functional relationships between these genes, we
looked for their co-occurrence within consensus reference path-
ways and protein–protein interaction networks (46). We also
tested for co-regulation by specific microRNAs (47). The
results of these analyses are shown in Table 3. We observed sig-
nificant enrichment (q , 0.1) in five protein–protein interaction
networks and six reference pathways. However, no microRNA
was significant after controlling the FDR at the 0.1 level.

The top network result centered on the PBX3 (pre-B-cell leuke-
mia homeobox 3) protein and involved the developmental genes
HOXB8 (homeobox B8) and MEIS1 (Meis homeobox 1). The
second network centered on RYR3 (ryanodine receptor R3),
and our results included the gene encoding this protein, plus the
gene encoding ryanodine receptor 2. Other significant networks
centered on CYLD [cylindromatosis (turban tumor syndrome)],
MAP3K3 (mitogen-activated protein kinase kinase kinase 3)
and TAB2 (TGF-beta-activated kinase 1/MAP3K7 binding
protein 2).

MAPK-related results were also observed for reference path-
ways. In addition to a generic large pathway (MAPK signaling),

Table 1. Aging DMRs with MWAS P-values passing Bonferroni correction

chr Start End CpGs T-value P-value q-value Gene name

8 50937289 50937521 8 27.65 6.47E-14 3.28E-07 SNTG1
3 115854624 115854638 3 27.45 2.66E-13 6.74E-07 LSAMP
2 145278477 145278615 5 26.79 2.29E-11 3.87E-05 ZEB2
12 21928555 21928715 6 26.64 6.25E-11 7.88E-05 KCNJ8
5 166514632 166514727 5 26.61 7.76E-11 7.88E-05 0
2 66654412 66654571 6 26.40 2.87E-10 0.0002 MEIS1
2 49810159 49810380 5 26.19 1.04E-09 0.0008 0
20 41343306 41343427 4 26.12 1.58E-09 0.0010 PTPRT
1 24718513 24718583 5 26.05 2.38E-09 0.0013 C1orf201
3 71478830 71478943 5 25.91 5.38E-09 0.0027 FOXP1
10 103527522 103527659 4 25.85 7.57E-09 0.0035 FGF8/NPM3/MGEA5

Chromosome (‘chr’), ‘start’ and ‘end’ positions for each CpG block are given, in addition to the number of ‘CpGs’ in the block. Also shown are the signed test statistic
values for the regression (‘T-value’), ‘P-values’ and ‘q-values’. ‘Gene name’ indicates genes within 10 kb (plus or minus) of the block.

Figure 3. Circular plot with MWAS results and pathways/networks. Each
dark-red spot in outermost track with gray background is 2log10(MWAS
P-value). Genomic features associated with these sites are shown by repeats
(dark-purple), exons (green) and introns (orange), respectively, in the concentric
circular tracks between the P-values and chromosome number. Of the 68 unique
genes associated (+20 kb flaking region)with the top 70 DMRs (q-value , 0.1),
the most relevant 45 genes for pathways and networks are shown. Links between
genes indicate co-occurrence in pathways and protein–protein interactions net-
works (Table 3). Lines connecting genes in deep-purple represent protein–
protein interactions. Genes co-occurring in reference pathways are linked as
follows: c-Jun kinases (light blue), Downstream TCR signaling (deep blue),
p38 MAPK signaling pathway (light green), MAPK signaling pathway
(green), protein processing in endoplasmic reticulum (pink) and amyotrophic
lateral sclerosis, ALS (red).
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a smaller and more specific MAPK sub-pathway (p38 MAPK
signaling) was implicated. The most significant reference
pathway overall was ‘JNK, (c-Jun kinases) phosphorylation by
TAK1’. JNK refers to c-Jun N-terminal kinases, which also

belong to the mitogen-activated protein kinase family and are
activated by TAK1 (TGF-beta activated kinase 1, encoded by
the gene MAP3K7) (48). Note that TAK1-interacting protein 2
(TAB2) was among the top network findings. Other pathways

Figure 4. Bioinformatics plot of genomic features for the top sites. The horizontal axis shows the proportion of features (vertical axis) overlapping with the top sites
(q-values , 0.1). Three groups of points are plotted: red circles corresponding to all 70 top DMRs, blue squares for hypermethylated age-DMRs and green triangles
for hypomethylated age-DMRs. Where enrichment compared with the genome-wide average is significant (P , 0.05), points are shown as solid color blocks. In panel
A, ‘Exon’, ‘Intron’ and ‘Gene’ designate overlap with RefSeq genes; ‘CGI’ denotes overlap with a CpG island; ‘Shore’ is +2 kb flanking a CGI; ‘Upstream 2 kb/8kb’
indicates within 2 or 8 kb upstream of transcription start site; ‘DNase cluster’ indicates a genomic region hypersensitive to DNaseI; ‘Conserv’ indicates regions of high
conservation across eutherian mammals; ‘TFBS’ indicates conserved motifs for transcription factor-binding sites in humans and rodents. In panel B, ‘CTCF’ is
CCCTC-binding factor protein; ‘EZH2’ is enhancer of zeste homolog 2, a histone-lysine N-methyltransferase; ‘H2AZ’ is H2A histone family, member Z,
whereas the remaining categories indicate histone modifications described using standard nomenclature.

Table 2. Replication of selected top sites

Gene Chr Position (bp) n Beta T-value P-value Pearson r

LSAMP 3 115854638 528 20.65 212.49 1.74E-31 20.47
115854632 514 20.50 212.71 2.72E-32 20.47
115854624 500 20.44 211.04 1.75E-25 20.43

ZEB2 2 145278477 511 20.66 210.38 5.54E-23 20.41
145278485 511 20.59 210.54 1.32E-23 20.42
145278509 493 20.47 26.13 1.81E-09 0.27

MEIS1 2 66654495 513 20.52 210.55 1.22E-23 20.41
66654515 506 20.47 210.87 7.96E-25 20.42
66654518 508 20.37 28.71 4.41E-17 20.35
66654531 415 20.47 29.26 1.18E-18 20.39

GRIA2 4 158142838 539 0.26 2.37 1.81E-02 0.10
158142841 540 0.37 3.86 1.25E-04 0.17
158142863 455 0.35 2.22 2.67E-02 0.05

Negative control
FLI1 11 128649311 121 20.02 20.17 0.87 20.01

128649306 121 20.06 20.58 0.56 20.04
128649270 121 20.01 20.09 0.93 0.01

Each block associated in the MWAS is comprised of several highly-correlated CpGs. In the replication study, which uses bisulfite sequencing, we have single-base
resolution and so can interrogate the methylation levels for each individual CpG. Therefore, in the table, the position and association statistics for each individual CpG
are shown. ‘Gene’, gene in which DMR is located; ‘Chr’, chromosome; ‘Position’, co-ordinate on hg19; ‘n’, number of samples, out of 558 total, with methylation
measurements for that CpG; ‘Beta’, regression coefficient; ‘T-value’, test statistic value.
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included ‘Downstream TCR signaling’, which involves gene ex-
pression following T-cell receptor activation, ‘protein process-
ing in the endoplasmic reticulum’, and genes associated with
‘Amyotropic Lateral Sclerosis (ALS)’ etiology.

Sex differences

In our main analysis, sex was regressed out. To investigate sex
differences, we carried out an MWAS to detect sites where the
age-related methylation association differed most between the
sexes. Results are shown in Supplementary Material, Table S7.
No sites passed our FDR threshold for declaring significance
(q , 0.1). One explanation is that power is reduced compared
with the main analysis. We also performed the association ana-
lysis with age for each sex separately (see Supplementary Mater-
ial, Tables S8 and S9). These analyses show somewhat more
pronounced age-related methylation changes in males.

DISCUSSION

Our study successfully identified several DMRs associated with
aging in blood DNA. Strengths of the study included a wide age
range in the study population and a much larger sample size com-
pared with previous NGS studies. Our use of NGS also results in
an improvement in the number of sites interrogated over arrays.
A limitation of the study was that we examined one tissue only.
Tissues differ in methylation levels at many loci, so investigation
of blood can only provide information on a subset of all possible
methylation changes that occur with aging. Also, the DNA from
whole blood is almost completely sourced from leucocytes.
While several lineages exist, these all function within the
immune system, so our observations may be limited to normal
aging processes within this system. However, for the sample
sets described, blood was the only DNA source available to us.
We also did not examine the sex chromosomes, because methy-
lation measurements on the sex chromosomes will be con-
founded by the mechanisms of X-inactivation in females and
hemizygosity in males. These sex-specific effects require

alternative analysis methods that are outside the scope of the
current manuscript.

Results, summary and comparison with literature

Previous studies of blood DNA methylation and aging that used
Illumina Infinium arrays found predominantly hypermethylation
with age (19,20). In the current study, we found mostly hypo-
methylated sites. An explanation for this discrepancy is that the
Infinium array focuses on gene promoters and CGIs. Among
our top 70 results, all DMRs located in CGIs showed hypermethy-
lation, indicating that our results are compatible if we focus on
similar sites. The difference is that we interrogated many more
sites, and many of these sites showed hypomethylation.

Our observation of purely age-related hypermethylation at
CGIs, although striking, is by no means novel. Many previous
studies had the ability to interrogate these features (19,20) and
observed similar patterns. On the other hand, hypomethylated
aging DMRs have been less well characterized. Based on our
findings, this is probably because they tend to lie outside CGIs
and the regions targeted by arrays. In our analysis, hypomethy-
lated DMRs were enriched with binding sites for regulatory pro-
teins or specific histone modifications. These regulatory proteins
included transcriptional repressor CTCF, polycomb protein
EZH2 and histone 2A member Z. A previous study by Koch
et al., using pluripotent stem cells, linked regions of
senescence-associated hypomethylation to binding sites for
polycomb proteins (49). While we could not access data for all
of the polycomb proteins they investigated, both our study and
theirs observed focal hypomethylation at EZH2 binding sites.
The molecular parallel between senescence in cell culture and
aging has already been posited (20). However, the extent to
which this observed overlap between different biological
samples is indicative of a general aging mechanism will
require additional work to verify experimentally.

Considering specific histone modifications, we observed en-
richment for H3K27ac, H3K4m1, H3K4m2, H3K4m3 and
H3K9ac at hypomethylated DMRs. These marks are typically
associated with active chromatin (50), an observation consistent

Table 3. Network and pathway analysis

Networks
P-value q-value Network center Input overlap Size Enrichment

0.0002 0.047 PBX3 (ID:5090) HOXB8 (2); MEIS1 (2) 7 2 (28.6%)
0.0003 0.047 RYR3 (ID:6293) RYR3 (2); RYR2 (+) 8 2 (25.0%)
0.0006 0.083 CYLD (ID:1540) MGEA5 (2); TRAF6 (2); NOD2 (2) 54 3 (5.5%)
0.001 0.087 MAP3K3 (ID: 4215) HSPA2(+); VWF (2); TFG (2); TRAF6 (2); MAP3K5 (2) 250 5 (2.0%)
0.001 0.087 TAB2 (ID:23118) HSPA2 (+); HIPK2 (+); TRAF6 (2); NOD2 (2) 149 4 (2.7%)
Pathways
P-value q-value Pathway Input overlap Size Enrichment
0.0006 0.022 JNK (c-Jun kinases) phosphorylation TRAF6 (2); NOD2 (2) 16 2 (12.5%)
0.002 0.022 Downstream TCR signaling CD4 (2); TRAF6 (2) 29 2 (7.1%)
0.002 0.022 p38 MAPK signaling TRAF6 (2); MAP3K5 (2) 29 2 (6.9%)
0.003 0.027 MAPK signaling pathway HSPA2 (+); FGF8 (2); TRAF6 (2); MAP3K5 (2) 268 4 (1.5%)
0.007 0.034 Protein processing in endoplasmic reticulum HSPA2 (+); UBE2E3; MAP3K5 (2) 166 3 (1.8%)
0.007 0.034 Amyotrophic lateral sclerosis (ALS) GRIA2 (+); MAP3K5 (2) 53 2 (3.8%)

Reference network and pathway data were obtained from ConsensusPathDB, a meta-database of 30 different public sources of interaction data. The top 70 DMRs
implicated 68 unique genes (+20 kb). Where an identical gene combination indicated two or more similar pathways, only the most significant is shown. The direction
of age-related methylation association is indicated by the ‘+’ (hypermethylation) or ‘2’ (hypomethylation) in parentheses following the gene name.

1180 Human Molecular Genetics, 2014, Vol. 23, No. 5

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt511/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt511/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt511/-/DC1


with our hypomethylated DMRs also being enriched for DNase
clusters. These indicate open or active chromatin sensitive to di-
gestion by DNaseI. Some of these marks have been implicated in
aging or age-related outcomes. For example, levels of trimethy-
lated lysine 4 of histone H3 (H3K4me3) have been associated
with longevity in model organisms (51). While the links
between these histone marks and aging remain to be fully eluci-
dated, our results indicate that hypomethylated aging DMRs
may be of functional relevance.

Consistency of specific findings with previous studies

The most similar study to ours, in terms of approach, was that by
Salpea et al. (34), who used meDIP coupled with NGS to detect
aging DMRs in blood DNA from a sample of 38 individuals.
Their study identified seven main loci of interest, none of
which showed precise positional overlap with our top 70
DMRs. Incomplete statistical power is the most likely explan-
ation for this difference, although technical differences in the
capture methods could also be relevant. However, one of their
findings was with the PCDHG (protocadherin gamma) cluster,
and we did observe DMRs at the related PCDHA (protocadherin
alpha) cluster and PCDH9. Notably, the array studies by Bell
et al. (19) and Rakyan et al. (20) also identified the PCDHA
region among their significant aging DMRs, whereas several
protocadherin genes were implicated by Hannum et al. (23).
Therefore, convergent evidence from multiple studies of blood
DNA indicates that protocadherins are subject to differential
methylation with age. Protocadherins contribute to neural
circuit development and provide individual cells with their spe-
cific identity (52). Methylation has been shown to regulate ex-
pression of the different isoforms encoded by the cluster (53).
Protocadherins have been shown to interact with c-Jun
N-terminal kinases (JNKs) and frizzled 7 in model organisms
(54). The former was the top protein–protein interaction
network finding in our results, and the latter was among the top
aging loci identified by Salpea et al. (34).

We looked for overlap with other genes identified by Bell et al.
(see Supplementary Material, Table S1) and genes proximal
(+20 kb) to DMRs in our study. The overlap consisted of
GRIA2 (glutamate receptor, ionotropic, AMPA 2), LAG3
(lymphocyte-activation gene 3) and LHX5 (LIM homeobox 5).
GRIA2 was the most significant hypermethylated site in our
MWAS and replicated using pyrosequencing in an independent
sample. This gene was one of five loci found to be continuously
hypermethylated with age in several different tissue types in a
study by Koch et al. (22), with a mean correlation of GRIA2
methylation with age across tissues of 0.62. Genes that show con-
sistent methylation effects with age across tissues appear to be in a
minority compared with tissue-specific methylation changes, as
far as can be ascertained on the basis of current published
studies. However, these may provide starting points for future
explorations of aging biology. Notably, genetic variation at the
related gene GRIA1 was robustly associated with longevity in a
genome-wide association study meta-analysis (55). Several
other genes identifiedby Bellet al. weremembers of gene families
represented among our top findings. The overlap with protocad-
herins was mentioned earlier, but Bell et al. also detected
several HOX genes including HOXA9, HOXA13, HOXD11 and
HOXD13. Several HOXB family members were implicated in

our analysis, whereas another homeobox gene (MEIS1) was
among our top findings that passed Bonferroni correction and
replicated in an independent sample. Methylation changes at
homeobox genes have previously been associated with aging
and cellular senescence (16).

A study by Rakyan et al. (20) implicated three loci that over-
lapped with our findings (see Supplementary Material,
Table S3). In addition to the protocadherin alpha cluster, these
were MYO3B (myosin IIIB) and MAP3K5 (mitogen-activated
protein kinase kinase kinase 5). While no studies have specifically
linked the MYO3B gene to aging, levels of myosin heavy chain ex-
pression have been reported to drop in older individuals (56).
MAP3K5 is a mitogen-activated protein kinase kinase kinase of
the JNK and p38 MAPK pathways. It plays vital roles in the cel-
lular response to these stressors, such as the regulation of apop-
tosis, and has been associated with neurodegenerative diseases
(57). Stress-activated MAPK cascades that converge on JNKs
play a vital role in the regulation of cellular senescence (58).

Finally, a recent study by Hannum et al. used the Illumina Infi-
nium 450 K array to identify aging DMRs in blood DNA. The
authors used their data to create a predictive model of aging and
among the DMRsmost relevant to theirmodel were several at pro-
tocadherin and homeobox genes (see Supplementary Material,
Table S3). However, they also examined overlap between aging
DMRs and genes showing age-related changes in expression.
This is of particular relevance because such an overlap suggests
a possible age-related functional effect at these loci. We compared
the 68 genes implicated by our top findings with those loci
showing both altered methylation and expression in the
Hannum et al. study (seeSupplementaryMaterial,TableS6).Spe-
cific genes that overlapped were EPHX2 (epoxide hydrolase 2),
FOXP1 (forkhead box P1), NPM3 (nucleophosmin/nucleoplas-
min 3) and PRR5L (proline rich 5 like). These genes have
diverse functions and, while none of them have been explicitly
linked to aging previously, their combined methylation and ex-
pression changes with aging would seem to make them high pri-
ority candidates for further characterization in future.

Among the potentially novel methylation findings to emerge
from our study were the ryanodine receptors. While these have
established links with aging and senescence and may play a
role in the pathology of Alzheimer’s disease (59), no previous
studies have shown methylation changes with age at these
genes, to our knowledge. Of potential interest is the central
role played by RYR2 in the signaling cascade produced by
Resveratrol, a drug that mimics the effects of dietary restriction
(60), which is known to increase longevity.

In summary, our study combined large sample size and com-
prehensive assessment of age-related methylation using NGS to
identify multiple aging DMRs. Our results indicate some con-
sistency with aging DMRs reported in previous studies. These
associations, while not guaranteeing functional relationships to
aging and age-related pathology, provide an interesting starting
point from which to consider future functional studies.

MATERIALS AND METHODS

Sample

Our initial sample consisted of 738 subjects from Sweden,
average age ¼ 55, and age range from 25 to 92 years. Subjects
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were controls collected as part of a larger project entitled ‘A
Large-Scale Schizophrenia Association Study in Sweden’. This
overarching project (61–63) is supported by grants from the Na-
tional Institute of Mental Health and the Stanley Foundation and
aims at understanding the etiology of schizophrenia and bipolar
disorder plus their clinical and epidemiological correlates. Per-
ipheral blood was donated at the local medical facilities of the
participants. DNA was extracted from EDTA blood using the
Gentra Puregene kit for automated extraction with the Autopure
LS robot (Qiagen).

MBD-seq

Genomic DNA was first sheared to median fragment size of
125 bp using a Covaris E210. We used the MethylMiner kit
from Invitrogen, which employs MBD protein-based enrichment,
to capture fragments with one or more methylated CpGs. Depend-
ent on sample availability, we used 2–5 mg (mean ¼ 4.19 mg,
SD¼ 0.99 mg) of DNA starting material and eluted the captured
fragments in 500 mM NaCl to increase the relative number of frag-
ments from CpG poor regions (35), which otherwise would not be
well covered (64). Methylated fragments were prepared for
multiplexed single end (50 bp) sequencing on the SOLiD (Life
Technologies) following the manufacturer’s standard protocols.
Based on observations suggesting that 30–60 million total reads
per sample may be sufficient for genome-wide methylation ana-
lysis (64,65), we aimed for an average of 60 million reads with
a minimum of 40 million. Samples with ,40 million reads
were rerun to supplement reads.

Alignment and read quality control

The SOLiD system aligns in color space and uses 2-base encod-
ing (66), producing two ‘color calls’ for each base. After deleting
poor quality reads (.2 missing color calls), we obtained an
average of 67.3 million (SD ¼ 26.9 million) total reads per
sample. The mean quality value (QV ¼ 210log10(p) with P
being the probability of an error) per color call was 21.4
(SD ¼ 1.1). Reads were aligned to the human genome (build
hg19/GRCh37) with BioScope 1.2 (Life Technologies), using
a seed-and-extend approach combined with local alignment
and multiple schemas. The percentage of mapped reads was
69.2% (SD ¼ 6.2). All runs with ,40% alignment or those pro-
ducing a very small number of reads (,1 million total) were
deleted. We also deleted reads with multiple poor quality align-
ments, whereas high copy number duplicate reads were col-
lapsed to single reads. This led to the elimination of 32.1% of
the mapped reads. After all QC, 19 subjects were excluded
because they had ,15 million reads remaining and one
subject was excluded because s/he withdrew consent during
the study.

MBD-seq methylation measures

MBD-seq returns an approximation of the amount of methylation
at a locus by essentially summing the number of fragments cover-
ing each CpG site. However, methylation of any CpG in the entire
fragment, not just the sequenced 50 bp, could lead to its capture by
MBD protein. Therefore, we estimated the fragment size distribu-
tion for each sample from the sequencing data, based on the

distribution of reads around isolated CpGs. This non-parametric
method has been validated against paired-end libraries where
fragment size is known (37). The sample-specific estimated frag-
ment size distribution was then used to calculate the probability
for each read that the fragment it is tagging covers the CpG
under consideration. Coverage estimates for each of the 26 752
702 autosomal CpGs in the reference genome were then calcu-
lated for each subject by taking the sum of the probabilities that
all fragments in its neighborhood cover the CpG (37).

To safeguard against errors arising from regions that are prob-
lematic to align, we previously performed an in silico alignment
experiment, by fragmenting the reference genome and aligning it
back to itself using standard alignment software (35). This ex-
periment showed that 36% (10.5 million) of all genome-wide
CpGs were in regions difficult to align, with the majority
(71.8%) located in regions flagged as repetitive elements by
RepeatMasker. These CpGs were dropped from further consid-
eration. To reduce the size of the data set, the remaining �16
million CpGs were adaptively combined by collapsing highly
inter-correlated coverage estimates at adjacent CpG sites into a
single mean coverage estimate (38). This resulted in 5 074 538
CpG ‘blocks’. Supplementary Material, Table S2 provides add-
itional descriptive statistics of the genome-wide block structure.
Prior to association testing, we identified 730 522 blocks with
very low (,99% of noise) levels of coverage. Eliminating
these likely non-methylated sites left 4 344 016 blocks for the
MWAS.

MWAS association testing

We used the block data obtained after the data reduction stage as
input for multiple regression analyses to test for association with
age. In theprimaryassociationanalysis,weaccountedformultiple
potential confounders including sex and possible assay-related
technical artifacts, such as the quantity of genomic DNA starting
material forMethylMiner,quantityofmethylation-enrichedDNA
captured andsamplebatch. We also performed a principal compo-
nent analysis (PCA) of the methylation data, using our
MethylPCA software (36), to identify unmeasured confounders
to be regressed out. Based on a scree test (Supplementary Mater-
ial, Fig. S1), we selected the first five PCs for this purpose. Such
unmeasured confounders include, but are not limited to, environ-
mental factors such as diet, lifestyle or medication use, in addition
to biological factors such as cell heterogeneity in the blood
samples used to provide genomic DNA. Considering specifically
cell heterogeneity, as is true for most tissues, blood is a biological
systemconsisting ofa varietyof cell types. Thiscan producemany
significant findings if (1) the relative abundance of cell types
differs systematically with the outcome of interest (in our case,
age), plus (2) methylation patterns differ across cell types. As
these conditions are known to be true, cell heterogeneity has the
potential to cause erroneous findings. However, cell type hetero-
geneity will be captured by the PCA because it causes differences
across many methylation sites (67,68). Previous studies have
shown that PCA could accurately distinguish and control for
methylation profiles in peripheral blood cells and transformed
B-lymphocytes (69) and PCA has been used previously to
control for unmeasured confounders in methylation studies (70).
Therefore, by regressing out PCs, we therefore control for
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unmeasured confounders, including for possible cell type hetero-
geneity.

An analysis of genome-wide SNP data on these subjects (63)
suggested that, in this fairly homogeneous sample, ancestry did
not substantially contribute to variation in the methylome and
therefore was not included as a covariate in the MWAS.
Finally, to account for multiple testing, we controlled the FDR
(71) at the 0.1 level (39). Operationally, the FDR was controlled
using q-values that are FDRs calculated using the P-values of the
individual tests as thresholds for declaring significance (72,73).

To test for sex differences in age-related methylation changes,
we used a likelihood ratio test with one degree of freedom that
compared the explained variance of a multiple regression
model that allowed for sex differences through and age–sex
interaction term versus a model that only included main effects
of age and sex. We also tested for aging effects within
members of each sex individually, using the same analysis
method as described for the main MWAS.

Bioinformatics of genomic features

Annotations for build hg19 were obtained via UCSC genome
browser download. These included: (1) CpG islands (GC
content of ≥50% or greater, length . 200 bp, CpG ratio .
0.6), (2) CpG shores defined as 2 kb flanking a CpG island
(26), (3) repetitive elements from RepeatMasker (www.repea
tmasker.org), (4) within RefSeq gene boundaries, exons and
introns, (5) potential gene promoters (2 and 8 kb upstream
from most 5′ transcription start site), (6) evolutionarily con-
served regions based on sequence homology in 29 eutherian
mammals, (7) predicted transcription factor-binding sites
based on consensus sequence from human, mouse and rat as pro-
vided in the TransFac database version 7.0 and (8) DNase clus-
ters from the University of Washington DNaseI hypersensitivity
submission to ENCODE. For polycomb/regulatory proteins and
histone modifications, we used ENCODE data for EBV-
transformed B-cell line GM12878 (74,75). For each annotation,
we calculated the percentage of significantly associated blocks
(DMRs) that overlapped with these features and compared this
to overlap for all blocks genome-wide, to calculate fold enrich-
ment. Significance was calculated using Fisher’s exact test, to
account for occasional small cell numbers for rare annotations.

Pathway, network neighborhood and microRNA analysis

We used ConsensusPathDB (http://cpdb.molgen.mpg.de/), a
human meta-database of 30 public repositories of biological
interaction data hosted by the Max Planck Institute of Molecular
Genetics in Berlin, Germany (46), plus data from TargetScan 5.1
for microRNA binding (47). To perform enrichment analysis, a
hypergeometric test was performed to calculate the significance
of the overlap between the genes from our input list (all genes
+10 kb from DMRs with q-values of ,0.1 in the MWAS)
and those present in each reference pathway, network or micro-
RNA target list. If more than one gene was implicated by a single
DMR, and these appeared in the same pathway, these were col-
lapsed to a single observation and the P-value recalculated.

Replication

For replication purposes, we used pyrosequencing, which allows
for targeted sequencing of bisulfite-converted DNA with high
quantitative accuracy (45). Genomic DNA was bisulfite con-
verted using Epitect 96 (Qiagen), and reactions were carried
out using the PyroMark system from Qiagen according to stand-
ard protocols. Supplementary Material, Table S6 provides
primer sequences. Standard curves including five DNA
samples with known methylation levels (0, 25, 50 75 and
100% methylation, created using methylated (#59665) and
unmethylated (#59655) EpiTect Control DNA) were run for
each assay and at least two plate controls of known methylation
levels were included on each plate. To test for association
between age and methylation in the pyrosequencing data, age
was regressed on percent methylation at each CpG site. Sex
and plate indicator variables were included in the multiple
regressions to control for sex differences and batch effects and
extreme outlying observations were removed.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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