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Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the
susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide
association study in Europeans identified two further breast cancer susceptibility variants: rs11249433 at
1p11.2 and rs999737 in RAD51L1 at 14q24.1. Although previously identified breast cancer susceptibility var-
iants have been shown to be associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers, the
involvement of these SNPs to breast cancer susceptibility in mutation carriers is currently unknown. To
address this, we genotyped these SNPs in BRCA1 and BRCA2 mutation carriers from 42 studies from the
Consortium of Investigators of Modifiers of BRCA1/2. In the analysis of 14 123 BRCA1 and 8053 BRCA2
mutation carriers of European ancestry, the 6q25.1 SNPs (r2 5 0.14) were independently associated with
the risk of breast cancer for BRCA1 mutation carriers [hazard ratio (HR) 5 1.17, 95% confidence interval
(CI): 1.11–1.23, P-trend 5 4.5 3 1029 for rs2046210; HR 5 1.28, 95% CI: 1.18–1.40, P-trend 5 1.3 3 1028 for
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rs9397435], but only rs9397435 was associated with the risk for BRCA2 carriers (HR 5 1.14, 95% CI: 1.01–
1.28, P-trend 5 0.031). SNP rs11249433 (1p11.2) was associated with the risk of breast cancer for BRCA2
mutation carriers (HR 5 1.09, 95% CI: 1.02–1.17, P-trend 5 0.015), but was not associated with breast
cancer risk for BRCA1 mutation carriers (HR 5 0.97, 95% CI: 0.92–1.02, P-trend 5 0.20). SNP rs999737
(RAD51L1) was not associated with breast cancer risk for either BRCA1 or BRCA2 mutation carriers
(P-trend 5 0.27 and 0.30, respectively). The identification of SNPs at 6q25.1 associated with breast cancer
risk for BRCA1 mutation carriers will lead to a better understanding of the biology of tumour development
in these women.

INTRODUCTION

Genome-wide association studies (GWASs) have identified
multiple common alleles that are associated with breast
cancer risk in the general population (1–7). Such alleles
provide plausible candidates as modifiers of cancer risk for
BRCA1 and BRCA2 mutation carriers. Nine of these poly-
morphisms have been investigated as risk modifiers to date
(8–10); single nucleotide polymorphisms (SNPs) in FGFR2,
TOX3, MAP3K1, LSP1, 2q35, SLC4A7 and 5p12 have been
shown to be associated with breast cancer risk for BRCA2
mutation carriers, but only SNPs in TOX3 and 2q35 were
associated with the risk for BRCA1 mutation carriers. The
differential patterns of associations between BRCA1 and
BRCA2 mutation carriers appear to be in line with the differ-
ential effects of these polymorphisms for oestrogen receptor-
positive and oestrogen receptor-negative breast cancer in the
general population (10,11). More recently, a GWAS restricted
to BRCA1 mutation carriers identified a locus at 19p13 which
modified breast cancer risk for BRCA1 mutation carriers and
the risk of oestrogen receptor (ER) negative and triple nega-
tive (oestrogen, progesterone receptor (PR) and Human Epi-
dermal growth factor receptor 2 (HER2) negative) breast
cancer in the general population (12). A separate GWAS in
BRCA2 mutation carriers suggested that another locus at
ZNF365 may modify the risk of breast cancer for BRCA2
mutation carriers (13). Candidate gene studies have also
suggested that a SNP in CASP8 is also associated with the
risk of breast cancer for BRCA1 mutation carriers (14). Each
of these polymorphisms confers modest relative risks for
breast cancer, but evidence so far suggests that they interact
multiplicatively on the breast cancer risk for mutation carriers
and the range of the combined risks of these SNPs is �6-fold
(10). Since BRCA1 and BRCA2 mutations confer high risks of
breast cancer, these relative risks result in substantial differ-
ences in the absolute risk of developing breast cancer
between SNP genotype categories, and such differences
could potentially influence the clinical management of
mutation carriers (15). However, several other variants ident-
ified through population-based GWAS have not yet been eval-
uated as modifiers of cancer risk for BRCA1 and BRCA2
mutation carriers. Identifying further modifiers of risk could
enhance risk prediction and will lead to a better understanding
of the biology of tumour development in BRCA1 and BRCA2
mutation carriers.

Using data from the Shanghai Breast Cancer Study, Zheng
et al. (7) identified a polymorphism at 6q25.1 through a
GWAS on the risk of breast cancer among Chinese women.

SNP rs2046210 was located upstream of the gene encoding
for ER a-ESR1: 29 kb upstream of the first untranslated
exon and 180 kb upstream of the first coding exon. Each
copy of the minor allele of the SNP was estimated to confer
an Odds Ratio (OR) of 1.29 among Chinese women and the
authors reported a stronger association with ER-negative
than ER-positive breast cancer. The same study also found
an association between rs2046210 and the risk of breast
cancer for European women, but a subsequent larger study
among Europeans suggested that the association in Europeans
is primarily due to another weakly correlated SNP in the
region (rs9397435) (16). In a separate GWAS, Thomas et al.
identified two further SNPs associated with the risk of the
breast cancer in the Cancer and Genetic Markers of Suscepti-
bility (CGEMS) study: rs11249433 at 1p11.2 in a linkage dis-
equilibrium block neighbouring NOTCH2 and FCGR1B, and
rs999737 at 14q24.1 in RAD51L1 (6). SNP rs11249433 was
mainly associated with ER-positive disease.

To evaluate the associations between these four SNPs and
breast cancer risk for BRCA1 and BRCA2 mutation carriers,
we genotyped these SNPs in BRCA1 and BRCA2 mutation car-
riers from the Consortium of Investigators of Modifiers of
BRCA1/2 (CIMBA).

RESULTS

Characteristics of the eligible mutation carriers, after quality
control exclusions, are summarised in Table 1. The primary
analysis included only mutation carriers of self-reported
white European ancestry, and included data from 11 604
women considered affected (first breast cancer diagnosis)
and 10 572 considered as unaffected (censored at bilateral pro-
phylactic mastectomy, ovarian cancer or age at last obser-
vation).

The association results with breast cancer risk are summarized
in Table 2. The minor allele of SNP rs2046210, at 6q25.1, was
associated with an increased risk of breast cancer for BRCA1
mutation carriers (per-allele HR¼ 1.17, 95% CI: 1.11–1.23,
P-trend ¼ 7.5 × 1029). In contrast, there was little evidence of
association with the risk of breast cancer for BRCA2 mutation car-
riers (per-allele HR¼ 1.06, 95% CI: 0.99–1.14, P-trend ¼ 0.09).
There was no evidence for heterogeneity in the HRs across studies
for BRCA1 mutation carriers (P-heterogeneity ¼ 0.47), but there
was marginal evidence for heterogeneity for BRCA2 mutation
carriers (P-heterogeneity ¼ 0.03; Fig. 1). This was mainly due
to data from the HUNBOCS study. After excluding this study
from the analysis, there was no longer evidence for heterogeneity
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(P ¼ 0.14) and the estimated HR for BRCA2 mutation carriers
was virtually unchanged (per-allele HR¼ 1.05, 95%CI: 0.98–
1.13, P-trend¼ 0.13). There was no evidence that the HR for
BRCA2 mutation carriers varied by age (P ¼ 0.87), but there
was evidence that the per-allele HR for BRCA1 mutation carriers
decreased with age (P-trend ¼ 0.0036). To investigate this
further, we fitted models allowing for a separate HR for each
decade of age (Supplementary Material, Table S2). This analysis
revealed significant associations between SNP rs2046210 and the
risk of breast cancer for BRCA1 mutation carriers at ages
,50 years (HR for the age group 20–29 ¼ 1.24, 95% CI:
1.08–1.42; HR for the age group 30–39 ¼ 1.24, 95% CI:
1.16–1.33; HR for the age group 40–49 ¼ 1.11, 95% CI:
1.04–1.21) but not for ages 50 or over (HR for the age group
50–59¼ 1.02, 95% CI: 0.90–1.15; HR for the age group 60–
69 ¼ 1.19; 95% CI: 0.96–1.47; HR for the age group 70–79 ¼
0.82, 95% CI: 0.50–1.36).

SNP rs9397435 was associated with the risk of breast cancer
for both BRCA1 and BRCA2 mutation carriers, but the evidence
of association was stronger for BRCA1 (per-allele HR ¼ 1.28,
95% CI: 1.18–1.40, P-trend ¼ 1.3 × 1028) than for BRCA2
(HR ¼ 1.14, 95% CI: 1.14, 95% CI: 1.01–1.28, P-trend ¼
0.031). There was some evidence of heterogeneity in the HRs
across studies when considered individually
(P-heterogeneity ¼ 0.023). However, this was mainly due to
studies with small numbers of mutation carriers and the low fre-
quency of the minor allele of this SNP (minor allele frequency
among unaffected ¼ 6.7%). Repeating the analysis by grouping
all studies within each country, there was no evidence of hetero-
geneity in the country-specific HRs (P-heterogeneity ¼ 0.26;
Fig. 2). Similarly, there was no evidence of heterogeneity in
the HRs across countries for BRCA2 mutation carriers

(P-heterogeneity ¼ 0.12; Fig. 2). There was no evidence that
the HR for BRCA1 mutation carriers varied by age (P-trend ¼
0.34), but there was evidence that the HR for BRCA2 mutation
carriers decreased with age (P-trend ¼ 0.0025). The estimated
age-specific HRs for rs9397435 among BRCA2 mutation car-
riers were all .1 for ages ,50, but there was no evidence of
an increased risk for ages .50 years (Supplementary Material,
Table S2).

SNPs rs9397435 and rs2046210 are located in the same
region at 6q25.1 and were only weakly correlated (pair-wise
r2 ¼ 0.14 based on the current data set). In an analysis for
the joint effects of these SNPs on breast cancer risk for
BRCA1 mutation carriers (based on 9347 carriers with geno-
types at both SNPs), the most parsimonious model included
the effects of both SNPs (P for inclusion ¼ 1.4 × 1025 and
0.0037 for rs2046210 and rs9397435, respectively; 2-degree
of freedom (df) P ¼ 5.8×10210 for the inclusion of both
SNPs compared with the null model).

The minor allele of SNP rs11249433 at 1p11.2 was associ-
ated with the risk of breast cancer for BRCA2 mutation carriers
(HR ¼ 1.09, 95% CI: 1.02–1.17, P-trend ¼ 0.015), but was
not associated with the risk of breast cancer for BRCA1
mutation carriers (HR ¼ 0.97, 95% CI: 0.92–1.02,
P-trend ¼ 0.20). There was no evidence that these HRs
varied across the study groups for either BRCA1 or BRCA2
mutation carriers (p-heterogeneity ¼ 0.10 and 0.14, respect-
ively, Fig. 3) or that the HRs varied by age (P ¼ 0.41 for
BRCA1; P ¼ 0.93 for BRCA2).

Carriers in each study were genotyped for either rs999737
or rs10483813 in the RAD51L1 region, but none were geno-
typed for both SNPs. Since rs999737 and rs10483813 are per-
fectly correlated (pair-wise r2 ¼ 1), the genotypes across

Table 1. Summary characteristics for the 22 176 eligible BRCA1 and BRCA2 carriersa used in the analysis

Characteristic BRCA1 BRCA2
Unaffected Breast cancer Unaffected Breast cancer

Number 6930 7193 3642 4411
Person-years follow-up 294 555 296 222 160 459 194 052
Median age at censure (IQR) 41 (34–50) 40 (34–47) 43 (34–52) 43 (37–50)
Age at censure, N (%)

,30 1016 (14.7) 603 (8.4) 510 (14.0) 209 (4.7)
30–39 1990 (28.7) 2816 (39.1) 978 (26.9) 1366 (31.0)
40–49 2075 (29.9) 2528 (34.1) 1005 (27.6) 1687 (38.3)
50–59 1218 (17.6) 940 (13.1) 647 (17.8) 812 (18.4)
60–69 448 (6.5) 244 (3.4) 344 (9.5) 274 (6.2)
70+ 183 (2.6) 62 (0.9) 158 (4.3) 63 (1.4)

Year of birth, N (%)
,1920 31 (0.5) 38 (0.5) 24 (0.7) 46 (1.0)
1920–1929 143 (2.1) 220 (3.1) 111 (3.1) 191 (4.3)
1930–1939 419 (6.1) 577 (8.0) 255 (7.0) 484 (11.0)
1940–1949 935 (13.5) 1522 (21.2) 502 (13.8) 1018 (23.1)
1950–1959 1590 (22.9) 2256 (31.4) 760 (20.9) 1361 (30.9)
1960+ 3812 (55.0) 2580 (35.9) 1990 (546.8) 1311 (29.7)

Mutation class, N (%)
Class 1b 4581 (66.1) 4363 (60.7) 3426 (94.1) 4092 (92.8)
Class 2b 1964 (28.3) 2252 (31.3) 75 (2.0) 115 (2.6)
Other 385 (5.6) 578 (8.0) 141 (3.9) 204 (4.6)

IQR, interquartile range.
aCarriers of self-reported European ancestry only.
bSee methods for definitions.
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studies were combined and analysed as a single locus. There
were no significant associations between this SNP and the
risk of breast cancer for either BRCA1 or BRCA2 mutation car-
riers (BRCA1: per-allele HR ¼ 0.96, 95% CI: 0.90–1.03,
P-trend ¼ 0.27; BRCA2: per-allele HR ¼ 0.96, 95% CI:
0.88–1.04, P-trend ¼ 0.30). The HR estimates were consistent
across the studies for both BRCA1 (P-heterogeneity ¼ 0.11)
and BRCA2 mutation carriers (P-heterogeneity ¼ 0.42).
There was no evidence that the HRs varied by age for
BRCA1 (P ¼ 0.50) or BRCA2 (P ¼ 0.60) mutation carriers.

The associations were not altered after excluding long-term
survivors (Supplementary Material, Table S3) and there was
no evidence of differences in the associations between class
1 and class 2 BRCA1 mutation carriers (P for difference .
0.15 for all SNPs, Supplementary Material, Table S3).

BRCA1 and BRCA2 mutations also confer high risks of
ovarian cancer. To determine whether the three polymorph-
isms modify ovarian cancer risk in mutation carriers, we ana-
lysed the associations within a competing risk analysis
framework by estimating simultaneously the HRs for breast
and ovarian cancer. There was no evidence of association
with the risk of ovarian cancer for any of the SNPs
(Table 3). The estimated HRs for breast cancer were similar
to those from the primary analysis. SNPs rs2046210 and
rs9397435 remained significantly associated with the risk of
breast cancer for BRCA1 mutation carriers (P-trend ¼ 6.7 ×
1028 and 7.8 × 1027) and there was a slightly stronger evi-
dence of association between SNP rs11249433 and the risk
of breast cancer for BRCA2 mutation carriers (P-trend ¼
0.0052).

Table 2. SNP genotype distributions and associations with breast cancer risk

Mutation Genotype Unaffected, N (%) Affecteda, N (%) HR 95% CI P-value

6q25.1 (rs2046210)
BRCA1 CC 2282 (43.0) 2067 (37.5) 1

TC 2361 (44.5) 2669 (48.4) 1.23 1.14–1.33
TT 659 (12.4) 779 (14.1) 1.32 1.18–1.47
2-df test 7.5 × 1029

Per-allele 1.17 1.11–1.23 4.5 × 1029

BRCA2 CC 1144 (40.8) 1321 (39.1) 1
TC 1312 (46.7) 1574 (46.5) 1.02 0.92–1.13
TT 351 (12.5) 486 (14.4) 1.16 1.00–1.34
2-df test 0.13
Per-allele 1.06 0.99–1.14 0.09

6q25.1 (rs9397435)
BRCA1 AA 5361 (86.5) 5282 (82.9) 1.00

AG 802 (12.9) 1043 (16.4) 1.31 1.19–1.43
GG 38 (0.6) 49 (0.8) 1.37 0.92–2.06
2-df test 5.3 × 1028

Per-allele 1.28 1.18–1.40 1.3 × 1028

BRCA2 AA 2786 (84.1) 3141 (82.6) 1.00
AG 510 (15.4) 631 (16.6) 1.11 0.98–1.26
GG 17 (0.5) 32 (0.8) 1.56 0.91–2.67 0.077
2-df test 0.077
Per-allele 1.14 1.01–1.28 0.031

1p11.2 (rs11249433)
BRCA1 TT 1833 (34.4) 1961 (35.1) 1

CT 2584 (48.5) 2732 (48.9) 1.00 0.90–1.10
CC 911 (17.1) 890 (15.9) 0.92 0.83–1.03
2-df test 0.21
Per-allele 0.97 0.92–1.02 0.20

BRCA2 TT 1016 (35.9) 1135 (33.2) 1
CT 1377 (48.7) 1698 (49.6) 1.07 0.96–1.19
CC 434 (15.4) 590 (17.2) 1.20 1.04–1.38
2-df test 0.05
Per-allele 1.09 1.02–1.17 0.015

RAD51L1 (rs999737b/rs10483813c)
BRCA1 CC/TT 2725 (62.3) 2849 (63.6) 1

TC/AT 1461 (33.4) 1439 (32.1) 0.93 0.86–1.01
TT/AA 186 (4.3) 195 (4.3) 1.01 0.84–1.22
2-df test 0.25
Per-allele 0.96 0.90–1.03 0.27

BRCA2 CC/TT 1609 (61.1) 1950 (62.2) 1
TC/AT 869 (33.0) 1039 (33.1) 0.98 0.88–1.09
TT/AA 154 (5.9) 147 (4.7) 0.86 0.69–1.08
2-df test 0.43
Per-allele 0.96 0.88–1.04 0.30

Analysis restricted to mutation carriers of European ancestry.
aBreast cancer.
bGenotyped using iPLEX.
cGenotyped using Taqman, pair-wise r2 ¼ 1 between rs999737 and rs10483813 based on HapMap data.
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DISCUSSION

Several common variants identified through GWASs in the
general population and BRCA1 and BRCA2 mutation carriers
have been demonstrated to be associated with the risk of
breast cancer for BRCA1 and/or BRCA2 mutation carriers
(8–10,12,13). In this study, we evaluated the associations of
four additional variants, identified through population-based
GWAS or subsequent follow-up mapping studies, with the
risk of breast and ovarian cancer for BRCA1 and BRCA2
mutation carriers.

We found strong evidence that SNP rs2046210 at 6q25.1
was associated with the risk of breast cancer for BRCA1
mutation carriers, but there was no clear evidence of
association with the risk of breast cancer for BRCA2 mutation
carriers (P for difference: 0.027). The observed association
with BRCA1 breast cancer risk was unaltered after the
exclusion of prevalent breast cancer cases, and did not vary
by the predicted functional effect of the mutations. This poly-
morphism was identified through a GWAS in Chinese women
(7), in whom the authors estimated a per-allele OR of 1.29
(95% CI: 1.21–1.37) for breast cancer in this population.
This OR estimate was greater than our estimated HR for
BRCA1 mutation carriers. However, the Chinese study

reported a further replication of their findings among women

of European ancestry for whom the per-allele OR was

estimated to be 1.15, similar to the HR based on our analysis
of BRCA1 mutation carriers who were also of self-reported
European ancestry. A more recent study by the same group
also found evidence for association with breast cancer in an
independent sample of European-ancestry American cases
and controls (17). Both studies (7,17) also reported a stronger
association with ER-negative disease than ER-positive in par-
ticular among Asian women, although the SNP was associated
with both disease subtypes. This is consistent with our finding
that this SNP is predominantly associated with the risk of
breast cancer for BRCA1 mutation carriers, the majority of
whom present with ER-negative tumours (18), and hence con-
forms to the general pattern we have observed previously that
the breast cancer susceptibility SNPs confer a similar relative
risk in carriers to that in the general population, once receptor
status is taken into account (10,11). A more recent study by
Stacey et al. (16) evaluated the associations of SNP
rs2046210 in a larger set of women of European ancestry,
but failed to replicate the association. The authors concluded
that this SNP does not confer a substantial risk of breast
cancer in Europeans and they postulated that this is due to
the different linkage disequilibrium structures between the
causal variant and SNP rs2046210 in Europeans. They found
a different SNP, rs9397435 (pair-wise r2 ¼ 0.08 based on
CEU HapMap data, r2 ¼ 0.71 based on CHB + JPT
HapMap data), accounting for the association in both the

Figure 1. Study-specific per-allele HR estimates for BRCA1 and BRCA2 mutation carriers for SNP rs2046210 at 6q25.1 near ESR1. The area of the square is
proportional to the inverse of the variance of the estimate. Horizontal lines indicate 95% CIs.
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Europeans and Chinese. SNP rs9397435 was also strongly
associated with the risk of breast cancer for BRCA1 mutation
carriers in our data set and exhibited weak association with the
risk for BRCA2 mutation carriers (P for difference between
BRCA1 and BRCA2 ¼ 0.10). Our joint analysis of SNPs
rs9397435 and rs2046210 among BRCA1 mutation carriers
demonstrated that a model that includes both SNPs fits signifi-
cantly better than a model that includes either SNP on its own,
and are not therefore consistent with the conclusions of Stacey
et al. (16) who suggest that the association is primarily due to
SNP rs9397435. Our results suggest that either the observed
associations are driven by another causative variant that is par-
tially associated with both SNPs, or that more than one causa-
tive variant is located in this region. Further comprehensive
genotyping of variants across the region will be required to
determine which of these hypotheses is correct. A potential
explanation for the observed differences between our study
and that of Stacey et al. (16) could be the fact the BRCA1
tumours are predominantly ER-negative, whereas the majority
of cases in Stacey et al. were ER-positive. This result
could have been observed if rs2046210 was mainly
associated with ER-negative breast cancer and rs9397435
was associated with both ER-negative and ER-positive
breast cancer. Stacey et al. (16) did not present the associ-
ations of rs2046210 by tumour ER status, but reported that
rs9397435 was associated with both ER-positive and
ER-negative disease, with a higher per-allele OR for
ER-negative breast cancer consistent with our observation of
a larger HR estimate for BRCA1 mutation carriers than
BRCA2 carriers for rs9397435. Although we found no signifi-
cant evidence of association between rs2046210 and the risk
of breast cancer for BRCA2 mutation carriers, the estimated
association was in the same direction.

Our results also suggest that rs2046210 is associated with
higher relative risks of breast cancer at younger ages among
BRCA1 mutation carriers. A similar pattern was observed for
rs9397435 among BRCA2 mutation carriers. Stacey et al.
(16) also found that rs9397435 was associated with an
earlier age at diagnosis in Europeans from the general
population.

SNPs rs2046210 and rs9397435 are located close to ESR1,
which encodes ER a mediator of oestrogen action (19). Elev-
ated oestrogen levels have been associated with increased
breast cancer risk (20), and although it is assumed that the
action of oestrogen is via ER in ER-positive tumours, two
studies have recently provided evidence that the size and repo-
pulating ability of the mammary stem cell compartment in
mice are controlled by17b-estradiol and progesterone via a
paracrine-signalling mechanism from steroid receptor-positive
luminal cells to steroid receptor-negative stem cells (21,22).
This may explain the apparently paradoxical observation that
a SNP in ESR1 could modify the risk of breast cancer in
BRCA1 carriers, in which the tumour phenotype is usually
ER-negative. The cell of origin of basal ER-negative
tumours in BRCA1 mutation carriers is likely to be a
luminal progenitor cell that is dependent on steroid hormone
signalling (23). There is also indirect evidence that steroid hor-
mones regulate breast cancer stem cells in humans where the
same paracrine regulation probably occurs, perhaps mediated
via the Receptor Activator of NF-kB) (RANK) ligand (24).
Other studies have also provided evidence that oophorectomy
decreases the risk of breast cancer in BRCA1 mutation carriers
(26,27) and tamoxifen treatment may decrease the risk of con-
tralateral breast cancer for BRCA1 mutation carriers. Both of
these findings suggest the potential ER involvement in
BRCA1 associated disease (28).

Figure 2. Country-specific per-allele HR estimates for BRCA1 and BRCA2 mutation carriers for SNP rs9397435 at 6q25.1. The area of the square is proportional
to the inverse of the variance of the estimate. Horizontal lines indicate 95% CIs. Due to the low minor allele frequency at this SNP and small study sample we
were unable to obtain study-specific estimates for all studies. Studies were therefore grouped by country of origin.
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There are currently limited data in the literature on the
impact of these variants on expression levels of ESR1 in
breast tumour samples. Stacey et al. found some evidence
that breast tumours from 11 GG homozygote carriers of
rs9397435 expressed higher mean levels of ESR1 compared
with tumours from over one thousand carriers of the ‘A’
allele (16). However, Dunbier et al. (29) recently reported
that ESR1 is co-expressed in tumour biopsies along with
three uncharacterized open reading frames located upstream
of ESR1. It is therefore currently uncertain whether
rs9397435 or correlated causal variant(s) affect breast cancer
risk through modulating ESR1 expression levels or those of
additional genes in the region. If the ESR1 gene is found to
be the target, this would provide direct evidence that ER sig-
nalling is important in the development of ER-negative breast
cancer (and breast cancer in BRCA1 carriers in particular).

We also found evidence that SNP rs11249433 at 1p11.2 was
associated with the risk of breast cancer for BRCA2, but not
BRCA1 mutation carriers (P for difference: 0.007). The esti-
mated HR was slightly greater (1.15 versus 1.09) when
BRCA2 mutation carriers with prevalent breast cancer were
excluded from the analysis, although the difference in the esti-
mates was small. This could potentially arise if the SNP is
also associated with survival after breast cancer diagnosis. In
this case, the inclusion of prevalent cases could lead to an attenu-
ation of the HR. Future studies will aim to evaluate the associ-
ations of this SNP with breast cancer prognosis. The observed

association with the risk for BRCA2 mutation carriers is consist-
ent with the observation of Thomas et al. (6) that this SNP is
mainly associated with the risk for ER-positive breast cancer.

We found no significant evidence of association between
the RAD51L1 locus and the risk of breast cancer for BRCA1
or BRCA2 mutation carriers. However, the OR estimate from
the original breast cancer GWAS (0.94) is only slightly differ-
ent from the HR estimates for both BRCA1 and BRCA2 car-
riers (0.96) and is included in the CIs for both estimates (5).
If the relative risk associated with each copy of the minor
allele of this SNP is between 0.90 and 1.00, we have limited
power to detect these associations given our sample size
(30). RAD51L1 is known to be essential to DNA repair via
homologous recombination; therefore, if the breast cancer
association seen in the general population was mediated
through RAD51L1, an absence of an association in BRCA1
and BRCA2 mutation carriers (i.e. a ‘negative interaction’
with BRCA status) could also be plausible. It is interesting
to note, however, that a rare allele in the RAD51 gene, in
the same pathway, was previously associated with an
increased risk of breast cancer for BRCA2 mutation carriers
(25). Future studies with a larger number of mutation carriers,
and analysis of the causal variant once it has been identified,
may help to clarify the involvement of this locus in breast
cancer for mutation carriers.

Including the SNPs from the present study, five loci are now
known to modify the risk of breast cancer for BRCA1 mutation

Figure 3. Study-specific per-allele HR estimates for BRCA1 and BRCA2 mutation carriers for SNP rs11249433 at 1p11.2. The area of the square is proportional
to the inverse of the variance of the estimate. Horizontal lines indicate 95% CIs.
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carriers (CASP8, TOX3, 2q35, 19p13 and 6q25.1) (8–10,
12,14) and nine loci are known to modify the risk of breast
cancer for BRCA2 mutation carriers (FGFR2, TOX3,
MAP3K1, LSP1, 2q35, SLC4A7, 5p12, ZNF365 and 1p11.2)
(8–10,13). These loci are estimated to account for �3.0%
of the genetic variance in the risk of breast cancer in
BRCA1 mutation carriers and 5.6% of the variance in
BRCA2 mutation carriers. Although these variants account
for a small proportion of the variability in risk, it has been
demonstrated that these SNPs have implications for the absol-
ute risk prediction in mutation carriers (10), and could there-
fore be relevant in the genetic counselling of women
carrying mutations (15). There are also suggestions from can-
didate gene studies that other variants may modify cancer risks
for mutation carriers, which are currently being investigated in
larger sample sizes (31,32). The three associated

polymorphisms presented here, in conjunction with previously
identified risk-modifying polymorphisms and other risk- mod-
ifying factors, can be used to improve risk prediction in
BRCA1 and BRCA2 mutation carriers.

Data from the general population indicate that chemopreven-
tive agents have different effects on the risk of ER-positive and
ER-negative breast cancer (33). Ongoing and future CIMBA
studies will aim to clarify the involvement of these polymorph-
isms in ER-positive and ER-negative breast cancer risk, as well
as other tumour subtypes, in BRCA1 and BRCA2 mutation car-
riers, which should lead to further improvements in risk predic-
tion. Since BRCA1 and BRCA2 mutations confer high risks of
breast cancer, these SNPs, taken together with other risk
factors such as mammographic breast density (34), will result
in substantial differences in the absolute risk of developing
breast cancer between combined SNP and risk factor categories

Table 3. Competing risk analysis

Genotype Unaffected, N (%) Breast cancer, N (%) Ovarian cancer, N (%) Breast cancer Ovarian cancer
HR 95% CI P-value HR 95% CI P-value

6q25.1 (rs2046210)
BRCA1 CC 1658 (42.5) 2046 (37.4) 645 (44.7) 1 1

TC 1740 (44.6) 2648 (48.4) 642 (44.5) 1.23 1.13–1.33 0.98 0.86–1.12
TT 505 (12.9) 777 (14.2) 156 (10.8) 1.30 1.16–1.47 0.89 0.72–1.10
2-df test 9.8 × 1028 0.54
Per-allele 1.16 1.10–1.23 6.7 × 1028 0.95 0.87–1.05 0.31

BRCA2 CC 988 (40.8) 1317 (39.1) 160 (40.4) 1 1
TC 1130 (46.6) 1567 (46.5) 189 (47.7) 1.01 0.91–1.13 0.99 0.78–1.27
TT 305 (12.6) 485 (14.4) 47 (11.9) 1.14 0.98–1.33 0.88 0.61–1.26
2-df test 0.22 0.76
Per-allele 1.05 0.98–1.13 0.15 0.95 0.81–1.12 0.57

6q25.1 (rs9397435)
BRCA1 AA 4116 (86.1) 5245 (82.9) 1282 (87.5) 1.00 1.00

AG 633 (13.2) 1034 (16.3) 178 (12.1) 1.28 1.16–1.41 0.90 0.75–1.08
GG 33 (0.7) 49 (0.8) 5 (0.3) 1.25 0.81–1.94 0.47 0.18–1.18
2-df test 2.8 × 1026 0.15
Per-allele 1.25 1.14–1.37 7.8 × 1027 0.87 0.73–1.03 0.10

BRCA2 AA 2410 (83.9) 3131 (82.5) 386 (85.4) 1.00 1.00
AG 466 (15.5) 631 (16.6) 64 (14.2) 1.11 0.97–1.26 0.93 0.69–1.26
GG 15 (0.5) 32 (0.8) 2 (0.4) 1.50 0.85–2.62 0.65 0.16–2.68
2-df test 0.12 0.75
Per-allele 1.13 1.00–1.27 0.047 0.92 0.70–1.20 0.52

1p11.2 (rs11249433)
BRCA1 TT 1363 (34.8) 1945 (35.1) 486 (33.5) 1 1

CT 1863 (47.5) 2714 (49.0) 739 (50.9) 1.02 0.94–1.11 1.12 0.97–1.29
CC 695 (17.7) 880 (15.9) 226 (15.6) 0.91 0.81–1.01 0.91 0.75–1.11
2-df test 0.08 0.05
Per-allele 0.96 0.91–1.02 0.18 0.98 0.90–1.08 0.74

BRCA2 TT 889 (36.4) 1129 (33.1) 133 (33.7) 1 1
CT 1182 (48.4) 1695 (49.7) 198 (50.1) 1.10 0.98–1.22 1.12 0.88–1.44
CC 372 (15.2) 588 (17.2) 64 (16.2) 1.23 1.06–1.42 1.23 0.88–1.72
2-df test 0.02 0.44
Per-allele 1.11 1.03–1.19 0.0052 1.11 0.94–1.31 0.20

RAD51L1 (rs999737/rs10483813)
BRCA1 CC/TT 2014 (61.9) 2828 (63.6) 732 (63.4) 1 1

TC/AT 1100 (33.8) 1426 (32.1) 374 (32.4) 0.92 0.84–1.01 0.95 0.81–1.10
TT/AA 138 (4.2) 194 (4.4) 49 (4.2) 1.02 0.83–1.24 1.00 0.69–1.45
2-df test 0.17 0.76
Per-allele 0.96 0.89–1.03 0.21 0.97 0.85–1.10 0.60

BRCA2 CC/TT 1384 (61.1) 1942 (62.1) 233 (62.0) 1 1
TC/AT 753 (33.2) 1036 (33.2) 119 (31.6) 0.98 0.87–1.09 0.95 0.74–1.21
TT/AA 130 (5.7) 147 (4.7) 24 (6.4) 0.88 0.70–1.11 1.16 0.71–1.90
2-df test 0.56 0.72
Per-allele 0.96 0.88–1.05 0.35 1.01 0.83–1.23 0.92

Associations with breast and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Analysis restricted to mutation carriers of European ancestry.
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(10,35). These will enable preventive therapies, including che-
moprevention and prophylactic surgery, to be targeted at
mutation carriers most likely to benefit.

MATERIALS AND METHODS

Subjects

All carriers participated in clinical or research studies at the
host institutions under ethically approved protocols and data
were analysed anonymously. Subjects were BRCA1
and BRCA2 mutation carriers recruited by 42 study centres
in 22 countries through the CIMBA initiative (Supplementary
Material, Table S1). The large majority of carriers were
recruited through cancer genetics clinics offering genetic
testing, and enrolled into national or regional studies. Some
carriers were identified by population-based sampling of
cases, and some by community recruitment (e.g. in Ashkenazi
Jewish populations). Eligibility to participate in CIMBA is
restricted to female carriers of pathogenic BRCA1 or BRCA2
mutations who were 18 years old or older at recruitment.
Information collected included the year of birth; mutation
description, including nucleotide position and base change;
age at the last follow-up; ages at breast and ovarian cancer
diagnoses; and age or date at bilateral prophylactic mastect-
omy. Information was also available on the country of
residence, which was defined to be the country where
the carrier family was recruited to the study. Related individ-
uals were identified through a unique family identifier.
Women were included in the analysis if they carried mutations
that were pathogenic according to generally recognized cri-
teria (25) (Breast Cancer Information Core). Further details
of the CIMBA initiative can be found elsewhere (36).

Women who carried pathogenic mutations in both BRCA1
and BRCA2 were excluded from the current analysis. The
primary analysis was restricted to women self-reported as
‘white of European ancestry’, but additional analyses were
performed which were restricted to mutation carriers of
non-European ancestry. We investigated possible overlap of
carriers between studies by comparing the year of birth,
exact mutation description, and the reported ages, to identify
potential duplicate individuals. Where possible we also used
SNP genotype data available within the CIMBA database to
find hidden duplicates. When a potential duplicate was ident-
ified, we contacted the relevant centres for further information
about these individuals, in a manner that protected the identity
of the individuals in question, in order to determine precisely
the extent of true overlap in subjects and families appearing
more than once in the data set. Duplicated mutation carriers
were included only once in the analysis. To avoid inclusion
of families extending over several studies, we included only
the individual with the most complete version of the family
history in the study.

Genotyping

The genotyping platforms used by each study are shown in Sup-
plementary Material, Table S1. Genotyping for the four SNPs
was performed in two stages. Stage 1 involved SNPs
rs2046210, rs11249433 and the RAD51L1 SNPs rs999737 and

rs10483813. DNA samples from 11 studies were genotyped
using the iPLEX Mass Array platform at a single genotyping
centre. All remaining studies used the 5′ endonuclease assay
(Taqman), with reagents supplied by Applied Biosystems and
tested centrally. A Taqman assay could not be adequately
designed for SNP rs999737 and studies using this platform gen-
otyped the surrogate SNP rs10483813 (pair-wise r2 ¼ 1 with
rs999737 based on HapMap data). Stage 2 involved SNP
rs9397435 and all samples were genotyped using the iPLEX
Mass Array platform at four genotyping centres. All centres
included at least 2% of the samples in duplicate, no template
controls in every plate and a random mixture of affected and
unaffected carriers. Samples that failed for more than two of
the SNPs genotyped (or ≥20% of the SNPs typed if more
than three SNPs were analysed using multiplex genotyping)
were excluded from the analysis. A study was included in the
analysis only if the call rate was over 95% after samples that
failed at multiple SNPs had been excluded. The concordance
between duplicates had to be at least 98%. To assess the accu-
racy of genotyping across genotyping centres, all centres geno-
typed 95 DNA samples from a standard test plate (Coriell
Institute) for all three SNPs. If the genotyping was inconsistent
for more than one sample in the test plate, the study was
excluded from the analysis of that SNP. On the basis of these cri-
teria, two studies were excluded from the analysis of rs2046210,
eight studies were excluded from the analysis of rs999737/
rs10483813 and three studies were excluded from the analysis
of rs11249433. As an additional genotyping quality-control
check, we also evaluated the deviation from Hardy–Weinberg
equilibrium (HWE) for unrelated subjects separately for each
SNP and study. Seven studies had HWE P-values in the range
0.003–0.05 (one study for the rs2046210 SNP, two for
rs9397435 and four studies for rs11249433). Upon examination
of the cluster plots for these studies and SNPs, none revealed any
unusual patterns and these studies were included in all the ana-
lyses. After the above exclusions, a total of 22 176 unique
mutation carriers (14 123 BRCA1 and 8053 BRCA2) from 42
studies had an observed genotype for at least one of the SNPs
and were therefore included in the primary analysis (Sup-
plementary Material, Table S1).

Statistical analysis

The aim of the primary analysis was to evaluate the associ-
ation between each genotype and the risk of breast cancer.
The phenotype of each individual was therefore defined by
their age at diagnosis of breast cancer or their age at the last
follow-up. For this purpose, individuals were censored at the
age of the first breast cancer diagnosis, ovarian cancer diagno-
sis or bilateral prophylactic mastectomy or the age at the last
observation. Mutation carriers censored at ovarian cancer
diagnosis were considered unaffected. Since mutation carriers
were not sampled randomly with respect to their disease
status, standard methods of survival analysis (such as Cox
regression) may lead to biased estimates of the hazard ratios
(HRs) (37). We therefore conducted the analysis by modelling
the retrospective likelihood of the observed genotypes con-
ditional on the disease phenotypes as previously described
(25). The effect of each SNP was modelled either as a per-
allele HR (multiplicative model) or as separate HRs for
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heterozygotes and homozygotes, and these were estimated on
the logarithmic scale. The HRs were assumed to be indepen-
dent of age (i.e. we used a Cox proportional-hazards model).
The assumption of proportional hazards was tested by
adding a ‘genotype × age’ interaction term to the model in
order to fit models in which the HR changed with age.
Where there was significant evidence of a ‘genotype × age’
interaction, we fitted models that allowed for age-specific
HRs. These allowed for age-specific HRs to be estimated sim-
ultaneously in 10-year intervals (20–29, 30–39, . . . , 70–79).
Thus, these models included six log-HR parameters. We
examined between-study heterogeneity by comparing the
models that allowed for study-specific log-HRs against
models in which the same log-HR was assumed to apply to
all studies. Analyses were carried out with the pedigree analy-
sis software MENDEL (38), and details of this approach have
been described previously (25). Under the retrospective likeli-
hood approach, the baseline age-specific incidence rates in the
Cox proportional-hazards model were chosen such that the
overall breast cancer incidence rates, averaged over all geno-
typic categories, agree with external estimates of incidence
for BRCA1 and BRCA2 mutation carriers. All analyses were
stratified by study group and country of residence and used
calendar-year- and cohort-specific breast cancer incidence
rates for BRCA1 and BRCA2 (39).

To evaluate the combined effects of the ESR1 SNPs on the
risk of breast cancer, we fit retrospective likelihood models
where the breast cancer incidence l(t)was assumed to be of
the form l(t) = l0(t) exp (b1x1 + b2x2), where l0(t) is the
baseline incidence, b1 is the per-allele log-HR for SNP1, b2

is the per-allele log-HR for SNP2, and x1 and x2 represent
the number of minor alleles at SNP 1 and 2, respectively
(0,1,2), while allowing for linkage disequilibrium between
the loci. To test whether the fit of the model is significantly
improved by the inclusion of a locus into the model, we
tested for the significance of parameters b1 and b2.

To investigate whether our results were influenced by any of
our assumptions, we performed additional sensitivity analyses.
If any of the SNPs were associated with disease survival, the
inclusion of prevalent cases may influence the HR estimates.
Current data indicate that 5-year survival after a breast
cancer diagnosis is now over 80% (Cancer Research—UK,
Breast cancer survival statistics). We therefore repeated our
analysis by excluding mutation carriers diagnosed more than
5 years prior to the age at recruitment into the study. To
examine whether SNP associations differed by type of
mutations, we classified BRCA1 mutations according to their
potential functional effect (40–42). Class 1 mutations com-
prised loss-of-function mutations, expected to result in a
reduced transcript or protein level due to mRNA nonsense-
mediated decay and/or degradation or instability of truncated
proteins, translation re-initiation but no production of stable
protein, or the absence of expression because of the deletion
of transcription regulatory regions. Class 2 mutations were
those likely to generate potentially stable mutant proteins
that might have dominant negative action, partially preserved
normal function or loss of function. Class 2 mutations include
missense substitutions, in-frame deletions and insertions, as
well as truncating mutations with premature stop codons
occurring in the last exon. Mutations whose consequences at

the transcript or protein level could not be inferred were not
considered for this classification. These were mainly mutations
located in splice sites but not characterized for their effect at
the transcript level, or large deletions or insertions with unde-
termined boundaries.

We further evaluated the associations of these SNPs with
the risk of ovarian cancer within a competing risk analysis fra-
mework (12,43), by estimating HRs simultaneously for breast
and ovarian cancers. In this model, each individual was at risk
of developing either breast or ovarian cancer, by assuming that
the probabilities of developing each disease were independent
conditional on the underlying genotype. A different censoring
process was used in this case, whereby individuals were fol-
lowed up to the age of the first breast or ovarian cancer diag-
nosis and were considered to have developed the
corresponding disease. No follow-up was considered after
the first cancer diagnosis. Individuals were censored for
breast cancer at the age of bilateral prophylactic mastectomy
and for ovarian cancer at the age of bilateral oophorectomy
and were assumed to be unaffected for the corresponding
disease. The remaining individuals were censored at the age
at the last observation and were assumed to be unaffected
for both diseases.

All analyses were stratified by study group and country of
residence and used calendar-year- and cohort-specific cancer
incidences for BRCA1 and BRCA2 (39). For sensitivity ana-
lyses, strata with a small number of mutation carriers were
grouped. We used a robust variance-estimation approach to
allow for the non-independence among related carriers (44).
Data on the two completely correlated SNPs (rs999737 and
rs10483813) were combined and treated as a single locus in
the analysis of associations.

WEB RESOURCES

Breast Cancer Information Core: http://research.nhgri.nih.gov/
bic/.

Cancer Research—UK, Breast cancer—survival statistics:
http://info.cancerresearchuk.org/cancerstats/types/breast/
survival/.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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Véronique Byrde, Olivier Caron, Gilbert Lenoir. Centre Jean
Perrin, Clermont-Ferrand: Yves-Jean Bignon, Nancy Uhrham-
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nen and RN Irja Erkkilä for their help with the patient data and
study samples.

The Hereditary Breast and Ovarian Cancer Research
Group Netherlands (HEBON)

HEBON Collaborating Centers: Coordinating center:
Netherlands Cancer Institute, Amsterdam, NL: F.B.L. Hoger-
vorst, S. Verhoef, M. Verheus, L.J. van ‘t Veer, F.E. van
Leeuwen, M.A. Rookus; Erasmus Medical Center, Rotterdam,
NL: M. Collée, A.M.W. van den Ouweland, A. Jager, M.J.
Hooning, M.M.A. Tilanus-Linthorst, C. Seynaeve; Leiden
University Medical Center, NL, Leiden: C.J. van Asperen,
J.T. Wijnen, M.P. Vreeswijk, R.A. Tollenaar, P. Devilee;
Radboud University Nijmegen Medical Center, Nijmegen,
NL: M.J. Ligtenberg, N. Hoogerbrugge; University Medical
Center Utrecht, Utrecht, NL: M.G. Ausems, R.B. van der
Luijt; Amsterdam Medical Center, NL: C.M. Aalfs, T.A. van
Os; VU University Medical Center, Amsterdam, NL: J.J.P.
Gille, Q. Waisfisz, H.E.J. Meijers-Heijboer; University Hospi-
tal Maastricht, Maastricht, NL: E.B. Gomez-Garcia, C.E. van
Roozendaal, Marinus J. Blok, B. Caanen; University Medical
Center Groningen University, NL: J.C. Oosterwijk, A.H. van
der Hout, M.J. Mourits; The Netherlands Foundation for
the detection of hereditary tumours, Leiden, NL: H.F.
Vasen. The HEBON study is supported by the Dutch Cancer
Society grants NKI1998-1854, NKI2004-3088 and
NKI2007-3756.

Hungarian Breast and Ovarian Cancer Study (HUNBOCS)
This work was supported by Hungarian Research Grant

NKTH-OTKA CK-80745 and the Norwegian EEA Financial
Mechanism Hu0115/NA/2008-3/ÖP-9.
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Recherche en Santé du Québec clinician-scientist award.

National Cancer Institute (NCI)
The research of Drs PL Mai and MH Greene was supported

by the Intramural Research Program of the US National
Cancer Institute, and by support services contracts
NO2-CP-11019-50 and N02-CP-65504 with Westat, Inc,
Rockville, MD.

Mayo Clinic (MAYO)
This work was supported by grants from the Breast Cancer

Research Foundation (BCRF), Komen Foundation for the
Cure, Department of Defense ovarian cancer research award
(W81XWH-10-1-0341) and US National Cancer Institute,
National Institutes of Health grant CA128978.

N.N. Petrov Institute of Oncology (NNPIO)
The work is supported by the Russian Foundation for Basic

Research (grants 08-04-00369-a, 09-04-90402 and
10-04-92110-a), the Commission of the European Commu-
nities (grant PITN-GA-2009-238132) and through a Royal
Society International Joint grant (JP090615).

Ontario Cancer Genetics Network (OCGN)
This work was supported by Cancer Care Ontario and the

US National Cancer Institute, National Institutes of Health
under RFA # CA-06-503 and through cooperative agree-
ments with members of the Breast Cancer Family Registry
(BCFR) and Principal Investigators. The content of this
manuscript does not necessarily reflect the views or policies
of the National Cancer Institute or any of the collaborating
centers in the BCFR, nor does mention of trade names, com-
mercial products or organizations imply endorsement by the
US Government or the BCFR. We wish to thank Teresa
Selander, Nayana Weerasooriya and members of the
Ontario Cancer Genetics Network for their contributions to
the study.

The Ohio State University Clinical Cancer Genetics (OSU
CCG)

This work was supported by the Ohio State University
Comprehensive Cancer Center. We thank Leigha Senter and
Kevin Sweet for patient accrual and data management, the
Human Genetics Sample bank for sample preparation and
the OSU CCC Nucleic Acids Shared Resource for genotyping
plate reads.

Pisa Breast Cancer Study (PBCS)
MAC from University Hospital of Pisa was supported by

Istituto Toscano Tumori grant
SEABASS
SEABASS is a collaborative effort between Cancer

Research Initiatives Foundation (Malaysia), University
Malaya (Malaysia), National University Hospital (Singapore),
University Kebangsaan Malaysia (Malaysia), Hospital Kuala
Lumpur (Malaysia) and Putrajaya Hospital (Malaysia). The
research has received funding from CARIF and University
Malaya.

Swedish Breast Cancer Study (SWE-BRCA)
SWE-BRCA collaborators: Per Karlsson, Margareta Nord-

ling, Annika Bergman and Zakaria Einbeigi, Gothenburg,
Sahlgrenska University Hospital; Marie Stenmark-Askmalm
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