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Abstract
Genome-wide association studies (GWAS) have identified many variants that influence high-
density lipoprotein cholesterol, low-density lipoprotein cholesterol, and/or triglycerides. However,
environmental modifiers, such as smoking, of these known genotype–phenotype associations are
just recently emerging in the literature. We have tested for interactions between smoking and 49
GWAS-identified variants in over 41,000 racially/ethnically diverse samples with lipid levels from
the Population Architecture Using Genomics and Epidemiology (PAGE) study. Despite their
biological plausibility, we were unable to detect significant SNP × smoking interactions.

Short report

Candidate gene and genome-wide association studies (GWAS) have identified numerous
common variants associated with high-density lipoprotein cholesterol (HDL-C), low-density
lipoprotein cholesterol (LDL-C), and triglycerides (TG). However, examination of possible
interactions with environmental factors such as smoking is still lacking (Ordovas et al.
2011). Smoking has been associated with a poor lipid profile, including decreased HDL-C
and increased triglycerides (Chelland et al. 2008). Here, we assess the influence of smoking
as a modifier of known lipid-related genotype–phenotype associations across four racial/
ethnic groups.

Study samples were drawn from the Population Architecture Using Genomics and
Epidemiology (PAGE) study, which consists of four population-based studies and numerous
racial/ethnic populations, including those examined here: European Americans (n = 24,700),
African Americans (n = 9,782), American Indians (n = 3,607), and Mexican Americans/
Hispanics (n = 3,357) (Matise et al. 2011). Mean lipid levels by population and self-reported
smoking status (dichotomized into current and former/never smokers) for all PAGE
participants are listed in Table 1. Study specific demographics are presented in Table S1.

A total of 49 SNPs (Table S2) previously associated with one or more lipid trait in published
(as of 2008) candidate gene and GWA studies were selected and successfully genotyped in
PAGE (Dumitrescu et al. 2011). Regression modeling was used to assess the effect of a
multiplicative interaction between each variant and smoking status on HDL-C, LDL-C, and
ln(TG) levels. Race-specific models were adjusted for age, sex, and marginal effects.
Analyses were performed by each PAGE study site and summary statistics were meta-
analyzed using METAL (Willer et al. 2010). Given that the lipid traits are correlated and the
associations tested are not assumed to be completely independent, significance was defined
as p < 1.0E−03 to account for the 49 SNPs tested (=0.05/49 SNPs). Effect sizes needed to
detect significant interactions with 80 % power were calculated using Quanto (Gauderman
and Morrison 2006). Variant main effect sizes used in the power calculation were drawn
from a previous single-SNP association analysis for LDL-C (Dumitrescu et al. 2011).

No significant SNP × smoking interactions were detected (Fig. 1). Indeed, only 28
interactions (out of 588 tested) had p values <0.05, consistent with chance alone. The most
significant interaction was TTC39B rs471364x-smoking (p = 2.55E−03) for HDL-C levels
among Mexican Americans/Hispanics. Only one interaction (CETP rs1566439 for TG) was
nominally associated in more than one population; however, the direction of effect was
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inconsistent (p = 1.35E−02, β = −0.031 in European Americans; p = 6.84E−03, β = 0.106 in
Mexican Americans/Hispanics).

Several reasons may underlie the lack of significant interactions. First, not all PAGE study
sites collected sufficient data to assess smoking status as recommended by harmonization
work groups such as the consensus measures for phenotypes and eXposures [PhenX;
(Hamilton et al. 2011)]. Additionally, quantitative measures of smoking exposure such as
serum cotinine levels or number of pack-years, were not available for all PAGE study sites.
Therefore, our binary categorization of smoking (though a commonly used metric of
exposure) may have inhibited our ability to detect existing interactions.

Second, our power to detect to small interaction effects was limited, especially in minority
populations and for variants with low minor allele frequencies (examples in Table 2). For
example, we had 80 % power to detect a minimum interaction beta of 3.5 in European
Americans, 5.0 in African Americans, 7.4 in American Indians, and 9.4 in Mexican
Americans/Hispanics for HMGCR rs12654264 (allele frequency = 0.55–0.62). However, the
effect sizes needed to detect a significant interaction with PCSK9 rs11591147 (allele
frequency = 0.004–0.02) were four to seven times larger than those needed for rs12654264,
despite the fact that the main effect of rs11591147 size was very large (βG = −15.67 to 23.39
mg/dl; Dumitrescu et al. 2011).

Another factor that has implications for power is the range of smoking prevalence, both
across (Table 1) and within (Table S1) racial/ethnic groups. All other measures being equal,
increased prevalence of the environmental exposure results in increased power to detect a
gene–environment interaction. The populations studied here demonstrated a range of
smoking exposures, with American Indians (33.7 %) having the largest percentage of
current smokers and Mexican Americans/Hispanics having the smallest (16.9 %). As one
can see from Table 2, we were powered to detect smaller interaction effect sizes in
American Indians compared to Mexican Americans/Hispanics for all four modeled
interactions. Therefore, when designing gene–environment interaction studies, even larger
sample sizes may be necessary for populations in which the environmental exposure is rare.

Last, the lack of significant interactions may simply be due to the fact that none exists for
the variants and populations studied here. However, for some interactions, it is impractical
to draw this conclusion given we cannot distinguish between a true negative and a false
negative due to lack of statistical power.

Despite the known impact of smoking on lipids and the relevant role of the loci studied here
in lipid metabolism, we were unable to identify significant SNP × smoking interactions. We
demonstrate that studies of gene–environment interactions require very large sample sizes,
greatly impeding the investigation of minority populations and complex environmental
exposures.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
SNP × smoking interaction results by lipid trait and population. Each SNP × smoking
interaction was tested for an association with the indicated lipid trait after adjustment for age
and sex. p values (−log10 transformed) of the meta-analysis are plotted along the y-axis.
SNPs are ordered on the x-axis based on chromosomal location. Each triangle represents a
meta-analysis p value for each population. The direction of the arrows corresponds to the
direction of the beta coefficient. Populations are color-coded as denoted in the legend:
European Americans (EA), African Americans (AA), American Indians (AI), and Mexican
Americans/Hispanics (MA). The significance threshold (p = 1.0E−03) is indicated by the
red line
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