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Abstract
Genome-wide association studies (GWAS) in diverse populations are needed to reveal variants
that are more common and/or limited to defined populations. We conducted a GWAS of breast
cancer in women of African ancestry, with genotyping of > 1,000,000 SNPs in 3,153 African
American cases and 2,831 controls, and replication testing of the top 66 associations in an
additional 3,607 breast cancer cases and 11,330 controls of African ancestry. Two of the 66 SNPs
replicated (p < 0.05) in stage 2, which reached statistical significance levels of 10−6 and 10−5 in
the stage 1 and 2 combined analysis (rs4322600 at chromosome 14q31: OR = 1.18, p = 4.3×10−6;
rs10510333 at chromosome 3p26: OR = 1.15, p = 1.5×10−5). These suggestive risk loci have not
been identified in previous GWAS in other populations and will need to be examined in additional
samples. Identification of novel risk variants for breast cancer in women of African ancestry will
demand testing of a substantially larger set of markers from stage 1 in a larger replication sample.
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Introduction
Genome-wide association studies (GWAS) of breast cancer have been conducted almost
exclusively in populations of European ancestry, and have firmly established associations
with a number of common susceptibility loci that contribute modest effects (relative risks ≤
1.3) (Ahmed et al. 2009; Antoniou et al. 2010; Easton et al. 2007; Fletcher et al. 2011;
Ghoussaini et al. 2012; Haiman et al. 2011b; Hunter et al. 2007b; Kim et al. 2012; Long et
al. 2012; Stacey et al. 2007; Stacey et al. 2008; Thomas et al. 2009; Turnbull et al. 2010;
Zheng et al. 2009b). These discoveries provide support for the polygenic model of breast
cancer susceptibility (Pharoah et al. 2002), as well as clues as to important biological
pathways involved in the pathogenesis of breast cancer. For example, the most strongly
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associated risk locus for breast cancer revealed through GWAS has been the region
containing the fibroblast growth factor receptor 2 (FGFR2) at chromosome 10q26 (Easton et
al. 2007; Hunter et al. 2007a; Meyer et al. 2008). FGFR2 is a member of the FGFR family
of receptor tyrosine kinases (RTKs) which regulate cell proliferation, differentiation and
apoptosis (Tenhagen et al. 2012). The risk variant on chromosome 14q24 is located in intron
12 of RAD51B which is a member of the RAD51 protein family. RAD51 proteins are
essential for DNA repair by homologous recombination (Tarsounas et al. 2004), a DNA
repair pathway with an established and important role in breast cancer development. A more
recent study, which included African American subject from the current study, revealed a
risk marker at the telomerase reverse transcriptase (TERT) locus (Haiman et al. 2011b), a
protein that controls telomere length and is also implicated in oncogenesis (Kim et al. 1994).
Many of the risk variants identified by GWAS, however, are located in gene deserts, or near
genes with roles in breast cancer etiology that are currently unknown.

The search for additional low penetrance alleles for breast cancer in specific racial/ethnic
populations has revealed additional variants that are important globally or more common
and/or limited to defined populations. For example, a GWAS conducted among Chinese
women identified a novel risk locus for breast cancer near the gene for the estrogen receptor
(ER) on chromosome 6 which had not been revealed in previous, well-powered GWAS in
populations of European ancestry (Zheng et al. 2009b). A GWAS of prostate cancer in men
of African ancestry also identified a novel risk variant at 17q12 that is not observed in other
populations (Haiman et al. 2011a). In search for risk variants for breast cancer that may be
important to women of African ancestry, we analyzed > 1 million common SNPs in 3,153
African American breast cancer cases and 2,831 African American controls, and examined
the most statistically significant associations in a second stage of 3,607 cases and 11,330
controls of African ancestry.

Materials and Methods
Study Populations

Stage 1 of the GWAS included African American participants from 9 epidemiological
studies of breast cancer, comprising a total of 3,153 cases and 2,831 controls (cases/controls:
The Multiethnic Cohort study (MEC), 734/1,003; The Los Angeles component of The
Women’s Contraceptive and Reproductive Experiences (CARE) Study, 380/224; The
Women’s Circle of Health Study (WCHS), 272/240; The San Francisco Bay Area Breast
Cancer Study (SFBCS), 172/231; The Northern California Breast Cancer Family Registry
(NC-BCFR), 440/53; The Carolina Breast Cancer Study (CBCS), 656/608; The Prostate,
Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) Cohort, 64/133; The
Nashville Breast Health Study (NBHS), 310/186; and, The Wake Forest University Breast
Cancer Study (WFBC), 125/153). Replication testing was conducted in an independent
sample of 3,607 breast cancer cases and 11,330 controls from 9 additional studies of breast
cancer in women of African ancestry (The Black Women’s Health Study (BWHS),
826/1,167; The Women’s Insights and Shared Experiences study (WISE), 174/458; NBHS/
Southern Community Cohort (SCCS), 981/851; The Nigerian Breast Cancer Study (NBCS),
681/282; The Barbados National Cancer Study (BNCS), 93/244; The Racial Variability in
Genotypic Determinants of Breast Cancer Risk Study (RVGBC), 151/272; The Baltimore
Breast Cancer Study (BBCS), 117/111; The Chicago Cancer Prone Study (CCPS), 268/261;
and, The Women’s Health Initiative (WHI), 316/7,484).

Sample size and selected characteristics for these studies are summarized in Supplemental
Tables 1 and 2 and detailed information about the design and organization of each study is
provided in Supporting Information.
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Genotyping and Quality Control
Genotyping in stage 1 was conducted using the Illumina Human1M-Duo BeadChip. Of the
5,984 samples from these studies (3,153 cases and 2,831 controls), we attempted genotyping
of 5,932, removing samples (n = 52) with DNA concentrations < 20 ng/ul. Following
genotyping, we removed samples based on the following exclusion criteria: 1) unexpected
replicates (≥ 98.9% genetically identical) that we were able to confirm through discussions
with study investigators (only one of each replicate was removed, n = 15); 2) unknown
replicates that we were not able to confirm (pair or triplicate removed, n = 14);3) samples
with call rates < 95% after a second genotyping attempt (n = 100); 4) samples with ≤ 5%
African ancestry (n = 36) (discussed below); and 5) samples with < 15% mean
heterozygosity of SNPs on the X chromosome and/or similar mean allele intensities of SNPs
on the X and Y chromosomes (n = 6) as these are likely to be males.

We removed SNPs with < 95% call rate (n = 21,732) or minor allele frequencies (MAFs) <
1% (n = 80,193). To assess genotyping reproducibility we included 138 known replicate
samples; the average concordance rate was 99.95% (> 99.93% for all pairs). We also
eliminated SNPs with genotyping concordance rates < 98% based on the replicates (n =
11,701). The final analysis dataset included 1,043,036 SNPs genotyped on 3,016 cases and
2,745 controls, with an average SNP call rate of 99.7% and average sample call rate of
99.8%. Hardy-Weinberg equilibrium (HWE) was not used as a criterion for removing SNPs;
none of the SNPs selected for replication deviated from HWE in controls in each study
(based on a cut-off of p < 0.001).

We selected 66 SNPs with p-values < 2×10−4 in stage 1 for evaluation in the second stage.
These SNPs were selected from 53 regions following linkage disequilibrium (LD) pruning
of correlated SNPs. Two of these SNPs were located near a previously validated breast
cancer risk locus [rs12355688 at 10q22, 241 kb downstream of rs704010, r2 = 0 in both
CEU and YRI populations from 1000 Genomes Project (March 2010 release) (Turnbull et
al. 2010); and rs3745185 at 19p13, 10kb downstream of rs2363956, r2 = 0.57 and 0.19 in the
CEU and YRI populations from 1000 Genomes Project (March 2010 release), respectively
(Antoniou et al. 2010)]. Genotyping in the replication studies was performed using the
Sequenom platform (BWHS), OpenArray (WISE and NBHS/SCCS), the Affymetrix 6.0
SNP array (WHI) (Hutter et al. 2011) and Illumina GoldenGate (all other studies) (see
Supporting Information). Blinded duplicate samples (5–10%) were included in the
replication studies and concordance of these samples was ≥ 98% in all studies. The number
of SNPs that were genotyped successfully in each stage 2 study ranged from 51 to 63. The
average call rate for all SNPs in stage 2 was 98.8% (range for call rates of a SNP within
study: 71.4–100%). Call rates by SNP and study are shown in Supplemental Table 3.

Estimation of African Ancestry
In stage 1, we utilized STRUCTURE (Pritchard et al. 2000) to infer percent African ancestry
on an individual level. A total of 2,546 ancestry-informative SNPs from the Illumina array
were selected based on low inter-marker correlation and ability to differentiate between
samples of African and European descent. In evaluating the distribution of the fraction of
African ancestry across the stage 1 populations, statistically significant differences
(ANOVA p < 10−16) were noted (Supplemental Figure 1). We also applied principal
components analysis (PCA) (Price et al. 2006) to estimate axes of variation among the 5,761
individuals using the same 2,546 ancestry informative markers. The first eigenvector
accounted for 10.1% of the variation between subjects, and subsequent eigenvectors
accounted for no more than 0.5%. Using input genotypes from the HapMap populations,
CEU (CEPH Utah), YRI (Yoruba), and JPT (Japanese), we determined that the first
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eigenvector captures clearly differentiates between Europeans (CEU) and West Africans
(YRI) in the HapMap samples (Supplemental Figure 2).

Statistical Analysis
We examined the observed versus the expected distribution of the Chi-squared test statistics
using a 1-degree of freedom (df) trend test, comparing genotype counts for each SNP in
cases versus controls. All tests of statistical significance were two-sided. To improve
coverage, we augmented the set of SNPs tested for association through imputation using
MACH (Li and Abecasis 2006). Phased haplotypes from the120 CEU and 120 YRI founders
in HapMap Phase 2 were used to infer genotypes of all Phase 2 SNPs that were not available
on the Illumina 1M Duo or did not pass our quality control (QC) criteria. Odds ratios (OR)
and 95% confidence intervals (CI) for each SNP were estimated using unconditional logistic
regression, adjusting for age, the first eigenvector and study. The SFBCS and NC-BCFR
studies were conducted in the same San Francisco Bay Area population and were combined
in all analyses.

In the replication studies, ORs and 95% CIs for each SNP were estimated using
unconditional logistic regression, adjusting for age, region within the WHI and estimated
genetic ancestry. Ancestry information was available for all stage 2 studies except WISE
(Supporting Information). Overall testing of single SNP associations was conducted via
meta-analyses of results from the stage 1 and stage 2 studies.

We also conducted combined GWAS and admixture-based statistical tests to assess the
contribution of local ancestry on the SNP associations. For each subject in our analysis, we
inferred local ancestry, which defines the proportion of European and African ancestry at
each genotyped and imputed SNP. To infer local ancestry in our GWAS panel of 5,761
African American women, we applied the program HAPMIX (Price et al. 2009). HAPMIX
builds a Hidden Markov Model (HMM) using phased haplotype data that are representative
of the two source populations assumed to be ancestral to the admixed (study) data. In this
case, we provided the same HapMap dataset that was used for imputation (i.e. 240 CEU +
YRI founder haplotypes per chromosome) as input. HAPMIX reports posterior probabilities
for each subject at each SNP of carrying 0, 1 and 2 copies of a European allele.

Combined GWAS and admixture-based statistical tests were conducted to make inferences
about regions of the genome that explain not only case-control differences in disease risk
based on SNP associations, but also risk differences based on local genetic ancestry. We
utilized the MIXSCORE program (Pasaniuc et al. 2011) which takes as input results from a
GWAS scan and an admixture scan (specifically HAPMIX output), computes several
statistics that incorporate allele frequency information from both sources of evidence. The
SUM score is a 2-df Chi squared test that simultaneously tests for association (i.e. a case-
control difference in allele frequency) and admixture evidence (i.e. a deviation from the
genome-wide proportion of European ancestry). The MIX score also tests for both evidence
of admixture and association, but assumes the odds ratios for admixture and association are
equal, which is potentially more powerful when this assumption is true since it is a 1-df test.

Results
The stage 1 analysis included 3,016 cases and 2,745 controls among African American
women from 9 epidemiological studies of breast cancer. The age of the cases and controls in
stage 1 ranged from 22 to 87 years with the median ages being 55 and 58 years, respectively
(Supplemental Table 1). The analysis of the most statistically significant associations from
stage 1 was conducted in 3,533 cases and 11,046 controls from an additional 9 studies. The
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age of the cases and controls in stage 2 ranged from 18 to 92 years with the median ages
being 50 and 53 years, respectively (Supplemental Table 2).

We observed no evidence of inflation of the test statistic (λ = 1.01) for the 1,043,036
genotyped and 2,067,098 imputed SNPs analyzed in stage 1, and no excess of very small p-
values beyond what was expected (Figure 1). We observed no SNP to be associated with
disease status at a genome-wide level of significance (p < 5×10−8) in stage 1 (Figure 2). The
most statistically significant association was noted with SNP rs7610073 located in intron 2
of the gene GRM7 (metabotropic glutamate receptor 7) on chromosome 3p26 (risk allele
frequency 0.64; OR per allele = 1.22; p = 7.4×10−7). A second signal was also noted ~486
kb upstream of GRM7 (rs10510333: risk allele frequency = 0.18; OR per allele = 1.24; p =
8.2×10−6). The associations with these 2 markers were independent and remained
statistically significant when both were included in the same model (p-values of 8.3×10−7

and 9.3×10−6, respectively). Shown in Table 1 are the genotyped SNPs with p-values < 10−5

in stage 1, as well as SNPs that replicated in stage 2 (discussed below).

We selected 66 genotyped SNPs with association p-values less than 2×10−4 for replication
testing in the stage 2 studies. None of these SNPs replicated with stage 2-wide significance
of < 0.0008 (0.05/66), but 2 replicated with a p-value < 0.05 and an OR in the same
direction as that observed in stage 1 (Table 1). Combining results from stages 1 and 2, no
SNP achieved genome-wide significance. The smallest combined p-values were noted for
the two SNPs that replicated in stage 2: rs4322600 located ~100 kb upstream of the gene
GALC (galactosylceramidase) on chromosome 14q31 (risk allele frequency = 0.78, OR per
allele = 1.18, p = 4.3×10−6) and rs10510333 located ~486 kb upstream of GRM7 on
chromosome 3p26 (risk allele frequency = 0.18, OR per allele = 1.15, p = 1.5×10−5) (Table
1). We found no strong statistical evidence that the associations with these two loci differ by
ER status (p-values for heterogeneity in case-only testing: rs10510333: p = 0.67; rs4322600:
p = 0.85)

Using the MIXSCORE program, we simultaneously tested the null hypothesis of no
association and admixture at each loci defined by the 66 most significant variants identified
in Stage 1. SNP rs7610073, which had the largest MIX score of 24.5 (p = 7.5×10−7) also had
the smallest p-value in the first stage (Supplemental Table 4). The risk allele (the “A” allele
for rs7610073) was not strongly differentiated (60% in HapMap YRI versus 81% in
HapMap CEU) and the MIX score p-value was almost identical to the p-value from our
association scan. Association p-values were generally stronger than the SUM or MIX score,
so admixture did not make a substantive contribution in joint evidence of admixture and
association for these 66 SNPs, as indicated in Supplemental Table 4. All together, these
findings seem to indicate that the associations at the most significant loci in Stage 1 are not
influenced by differences in local ancestry between cases and controls, meaning that any
causal variants in these regions are not appreciably differentiated in frequency between
cases and controls.

Discussion
Genome-wide studies of common and rare genetic variation conducted in multiple
populations will be required to reveal the complete spectrum of susceptibility alleles that
contribute to risk of breast cancer globally. In a genome-wide scan of common genetic
variation in > 3,000 African American cases and > 2,700 controls, followed by replication
testing of the most significant associations (p < 2×10−4) in an independent set of > 3,500
cases and > 11,000 controls, we identified two suggestive associations with breast cancer
risk that replicated in stage 2 at p < 0.05 [chromosome 14q31 (p = 4.3×10−6) and 3p26 (p =
1.5×10−5)]; however, these associations did not reach the standard level of genome-wide
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significance. These regions have not been highlighted in previous GWAS conducted in other
racial/ethnic populations and each association requires further validation in additional
studies.

Populations of African ancestry have greater genetic diversity and lower levels of LD among
chromosomal loci (Campbell and Tishkoff 2008; Reed and Tishkoff 2006). Because of LD
patterns and allele frequencies that differ from non-African populations, GWAS results from
European or Asian populations are not always replicable in populations of African ancestry
(Chen et al. 2010; Huo et al. 2012; Hutter et al. 2011; Ruiz-Narvaez et al. 2010; Zheng et al.
2009a). Fine-mapping of known breast cancer risk loci in populations of African ancestry
have revealed risk-associated markers that are more relevant to African populations and
contribute to modeling of genetic risk in this population (Chen et al. 2011; Ruiz-Narvaez et
al. 2010; Udler et al. 2009). Large GWAS in populations of African ancestry, with proper
control of population structure, will be required to discover additional disease susceptibility
variants that better define the genetic profile of breast cancer in this population.

A strength of the present study is that it includes most existing case-control studies of breast
cancer conducted in women of African ancestry. In this 2-stage design, we had 80%
statistical power to identify a common risk variant (frequency of ≥ 10%) that conveys a risk
per allele of 1.3 at genome-wide significance (p = 5×10−8). Thus, we were able to rule out
variants with large effects if they were among the top 0.007% in stage 1 (and thus taken to
stage 2) and were adequately tagged by the common SNPs on the 1M array. However, we
are likely to have missed some milder associations. In previous GWAS of breast cancer in
European ancestry populations, most risk variants eventually identified were not among the
most statistically significant in stage 1 and were only revealed through testing of large
numbers of SNPs in additional replication stages. To identify novel risk loci for breast
cancer in African ancestry populations will require continued collaborative efforts and
investigators willing to test larger numbers of SNPs in their respective studies.

Our attempt to apply joint admixture and association mapping, using MIXSCORE, did not
provide additional suggestive risk variants beyond those found using association methods
alone. This suggests that the associations observed at the most significant regions in Stage 1
are not weakened by ancestry differences between cases and controls, and thus, the
biologically functional alleles are unlikely to be highly differentiated in frequency between
cases and controls. Because of the limited number of ER-negative cases in stage 1 (n = 988)
and stage 2 (n = 423) the statistical power to look at subtypes with rate differences (e.g. ER-
negative disease, more common in African American than European American women) was
limited and not attempted for GWAS or admixture testing. However, in collaboration with
GWAS of ER-negative breast cancer in European ancestry populations, which have
substantially larger numbers of ER-negative cases, we have identified a novel locus for ER-
negative breast cancer at 5p15 (TERT) (Haiman et al. 2011b). Genetic variation at this locus
may contribute in part to the higher incidence of ER-negative disease subtypes in women of
African ancestry (frequency of 0.56 in African Americans and frequency of 0.26 in Whites)
(Haiman et al. 2011b). As for the analysis of overall breast cancer, larger studies of breast
cancer in women of African ancestry will be needed to search for novel risk loci for ER-
negative disease subtypes that are important for and may be limited to this population.

This study is the first genome-wide investigation of common genetic variation in
relationship with breast cancer risk in women of African ancestry. The suggestive
associations noted with risk variants at 14q31 and 3p26 require further validation in
additional samples of African ancestry as well as in other populations. Identification of
common risk variants for breast cancer in African ancestry populations will require testing a
larger number of the most statistically significant SNPs from stage 1 in additional samples.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
The distribution of observed versus expected -log10 p-values from stage 1 adjusted for age,
study and the first principal component (PC1)
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Fig. 2.
A Manhattan plot showing the -log10 p-values which test for case-control association to
disease for genotyped and imputed SNPs by chromosome in stage 1
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