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Abstract: Pattern classification methods have been widely investigated for analysis of brain images to
assist the diagnosis of Alzheimer’s disease (AD) and its early stage such as mild cognitive impairment
(MCI). By considering the nature of pathological changes, a large number of features related to both
local brain regions and interbrain regions can be extracted for classification. However, it is challenging
to design a single global classifier to integrate all these features for effective classification, due to the
issue of small sample size. To this end, we propose a hierarchical ensemble classification method to
combine multilevel classifiers by gradually integrating a large number of features from both local brain
regions and interbrain regions. Thus, the large-scale classification problem can be divided into a set of
small-scale and easier-to-solve problems in a bottom-up and local-to-global fashion, for more accurate
classification. To demonstrate its performance, we use the spatially normalized grey matter (GM) of
each MR brain image as imaging features. Specifically, we first partition the whole brain image into a
number of local brain regions and, for each brain region, we build two low-level classifiers to trans-
form local imaging features and the inter-region correlations into high-level features. Then, we gener-
ate multiple high-level classifiers, with each evaluating the high-level features from the respective
brain regions. Finally, we combine the outputs of all high-level classifiers for making a final classifica-
tion. Our method has been evaluated using the baseline MR images of 652 subjects (including 198 AD
patients, 225 MCI patients, and 229 normal controls (NC)) from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database. The experimental results show that our classification method can achieve
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the accuracies of 92.0% and 85.3% for classifications of AD versus NC and MCI versus NC, respec-
tively, demonstrating very promising classification performance compared to the state-of-the-art classi-
fication methods. Hum Brain Mapp 35:1305–1319, 2014. VC 2013 Wiley Periodicals, Inc.

Key words: brain disease diagnosis; Alzheimer’s disease; mild cognitive impairment (MCI);
hierarchical classification; local patch; SVM classifier
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INTRODUCTION

Brain images such as magnetic resonance images (MRI)
are providing a powerful in vivo tool to help understand
the disease-induced neural changes, due to Alzheimer’s dis-
ease (AD) or its early stage such as mild cognitive impair-
ment (MCI) [Davatzikos et al., 2010; Hinrichs et al., 2009;
Leung et al., 2010; Li et al., 2011; Magnin et al., 2009; Mueller
et al., 2005; Querbes et al., 2009; Tandon et al., 2006; Wolz
et al., 2011; Zhang and Shen, 2011]. Recently, various classi-
fication methods have been proposed to identify the
changes related to brain diseases and further decode the
disease states by using neuroimaging data [Cuingnet et al.,
2011; Davatzikos et al., 2008a; Fan et al., 2005; Hinrichs
et al., 2009; Magnin et al., 2009; Oliveira et al., 2010; Wolz
et al., 2011]. In most of these classification methods, two
main steps are usually involved, i.e., (1) extraction and/or
selection of discriminative features from the neuroimaging
data, and (2) design of a supervised classifier for performing
classification. Details for these two steps are briefed below.

The original brain images are usually too large and
noisy to be directly input into the classifier for classifica-
tion, and more importantly not all image information is
useful for classification. Thus, feature extraction is neces-
sary and important for extracting more relevant and dis-
criminative features for neuroimage analysis and
classification. In general, three types of MR imaging fea-
tures were often extracted to detect the abnormal brain
structures with AD, which include tissue densities (e.g.,
gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF)), cortical thickness, and both shape and volume
of certain structure such as hippocampus [Cuingnet et al.,
2011]. The volume in the region of interest (ROI), labeled
by warping of a pre-labeled atlas, was often used to inves-
tigate brain abnormality [Lao et al., 2004; Magnin et al.,
2009]. However, since the atlas-based ROI parcellation
may not adapt well to the diseased-related pathology, the
abnormal region may be part of one ROI or span over
multiple ROIs, which may affect the feature discriminabil-
ity. To address this issue, Fan et al. [Fan et al., 2007] pro-
posed to adaptively partition the brain image into a
number of most discriminative brain regions according to
a predefined similarity measure, and then extracted re-
gional features for brain disease classification. Although
the ROI-based methods can significantly reduce the feature
dimensionality and are robust to noise and registration
error, the ROI-based regional features are generally very
coarse and thus not sensitive to detect the small changes
related to brain diseases. This limitation could be

potentially alleviated by the voxel-wise analysis methods,
i.e., using voxel-wise imaging features to identify the small
brain abnormality [Baron et al., 2001; Ishii et al., 2005]. On
the other hand, it was observed that the disease-induced
structural changes also occur in several inter-related-
regions, thus the correlations between different brain
regions could also be extracted for more accurate charac-
terization of brain pathology [Zhou et al., 2011]. By consid-
ering the nature of these pathological changes, the rich
features related to both local brain regions and the inter-
brain regions can be extracted from brain images to avoid
missing the important characterization of disease pathol-
ogy. However, if more irrelevant and noisy information
are included in the feature set, the disease classification
and interpretation could become very difficult due to the
small number of training samples in the neuroimaging
study. For example, the support vector machines (SVM)
classifier, which is often used for classification of brain dis-
ease [Fan et al., 2007; Klöppel et al., 2008; Magnin et al.,
2009; Zhang et al., 2011], experiences a notable drop in
classification accuracy when the number of irrelevant and
noisy features is extremely large [Chapelle et al., 2002].

To address the above problem, principle component
analysis (PCA) [Jolliffe, 2005] is popularly used to perform
linear transformation of the data into a lower dimensional
feature space for reduction of feature dimensionality
[Davatzikos et al., 2008b; Yoon et al., 2007]. However, the
main problem related to PCA is that the feature extraction
is done independently from the subsequent classification
task, thus potentially affecting the final classification
results. Another popular solution to the above problem is
to select the most discriminative features and eliminate the
redundant features for further reduction of feature dimen-
sionality and improvement of classification performance
[Chu et al., 2012; Davatzikos et al., 2008a; Fan et al., 2005;
Zhou et al., 2011]. For example, Chu et al. have compared
four different feature selection methods followed by a lin-
ear SVM classifier [Chu et al., 2012]. Their experimental
results show that feature selection does improve the classi-
fication accuracies, but it depends on the method used.
Since the disease-induced brain structural changes often
happen in the local focused regions, rather than isolated
voxels, the local spatial contiguity of the selected features
should be carefully considered for achieving better classifi-
cation performance. For this purpose, the neighboring vox-
els with discriminative features (identified by feature
selection) were jointly used for classification [Vemuri
et al., 2008]. Although promising results have been
reported for brain image analysis in the above studies, it is
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still potentially advantageous to investigate building and
combining multiple classifiers for making full use of the
rich imaging and structural information, for improved
classification performance.

In this article, we propose a novel classification framework
for analysis of voxel-wise neuroimaging data based on hier-
archical fusion of neuroimaging features and decisions of
multi-level classifiers in a layer-by-layer and local-to-global
fashion. The spatially normalized grey matter (GM) of each
T1-weighted MR brain image is computed as imaging fea-
tures for classification. Note that the hierarchical classification
framework was often used to solve the complex problem by
gradually decomposing it into a number of easier-to-solve
tasks [Scalzo and Piater, 2007; Singh et al., 2008]. A hierarchi-
cal generative model was also proposed to model the spatial
relations and high-level appearance between correlated fea-
tures and further generate the adaptive patch features to a
SVM classifier for object classification in [Scalzo and Piater,
2007]. In addition, a hierarchical feature fusion model was
proposed to combine feature fusion and decision fusion in
[Scalzo et al., 2008]. Different from all these methods, we pro-
pose a hierarchical classification method that builds multilevel
classifiers with supervised learning to gradually integrate
imaging and spatial-correlation features for more accurate
classification. The individual classifiers at the same level eval-
uate the classification abilities of the imaging features in dif-
ferent brain regions. On the other hand, the high-level
classifiers work on larger brain regions than the low-level
classifiers. Figure 1 shows the hierarchical structure of our
proposed classification framework. Specifically, the whole
brain image is first partitioned into a number of local three-
dimensional patches, with each containing only a subset of
whole feature space. Second, for each patch, two different
low-level classifiers are specially built with the use of local
imaging and spatial-correlation features, respectively. Third,
instead of directly combining low-level classifiers to make a
final decision, the classifier outputs and the statistical imaging
features at different brain regions are further integrated into a
feature vector to construct the respective high-level classifiers
for classification. Finally, the classification outputs of all high-
level classifiers are combined to make the final classification.

The main contributions of this article can be summar-
ized as follows. (1) A classification framework based on
the hierarchical fusion of multi-level classifiers is proposed
to gradually transform the high-dimensional imaging and
structural data into more and more compact representa-
tions. Thus, this large-scale classification problem is
hierarchically decomposed into a set of easy-to-solve
small-scale problems, which is expected to improve the
classification performance. (2) The imaging and spatial-cor-
relation features of the whole brain image are extracted
and gradually integrated into a hierarchical framework for
more efficient and accurate classification. (3) The local spa-
tial contiguity of image features is greatly respected in
classification by using a hierarchical spatial structure that
is built from small local patches to larger brain regions. It
is worth noting that this article is the extension of our
recently published workshop article [Liu et al., 2012], with

some major differences as listed next. First, more detailed
description and illustration of our method are provided in
all sections, for allowing other people to better understand
our method. Second, in the result section, we have also
provided the new classification results between NC and
MCI, the comparison with existing methods (Comparison
With Existing Methods section), the list and analysis of the
top-selected brain regions (Top Selected Regions section),
and the discussion (Discussion section).

The rest of this article is organized as follows. Method sec-
tion presents the details of the proposed classification frame-
work. In Results section, experiments are presented to
demonstrate the classification accuracy and the advantage of
the proposed method. Finally, we conclude this article and
discuss the possible future directions in Conclusion section.

METHOD

In this section, we will present our proposed classifica-
tion algorithm. Figure 2 shows the flow chart of the pro-
posed hierarchical classification algorithm by gradual
fusion of multilevel classifier decisions and features. In the
proposed method, the low-level classifiers are used to
respectively transform the imaging and spatial-correlation
features of a local patch, with supervised learning, into
more compact representations (such as in certain

Figure 1.

The hierarchical structure of the proposed classification frame-

work by using a two-dimensional slice for illustration, where the

white squares denote local patches. The small, middle and large

dots denote the low-level, high-level, and final classifiers, respec-

tively, and the blue circles denote the brain regions where the

high-level classifiers are placed. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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intermediate feature spaces). Then, the outputs of these
low-level classifiers together with the coarse-scale imaging
features (i.e., statistical measures of local patches) are inte-
grated to build the high-level classifiers, with each evaluat-
ing the features in different large brain regions. Finally, the
classification is performed by ensemble of the outputs of all
high-level classifiers. Accordingly, the proposed hierarchi-
cal classification framework can be divided into five main
steps: Imaging features, patch extraction, construction of
low-level classifiers, construction of high-level classification,
and final classification, as detailed one by one in the next.

Imaging Features

Although the proposed classification framework makes
no assumption on a specific neuroimaging modality, for
demonstrating its performance, the T1-weighted MR
images, which have been widely used for detection of AD
and MCI in the past decades, are used in this work. Before
extraction of the imaging features for classification,
pre-processing of these brain images is performed for reli-

able feature extraction. Specifically, all T1-weighted MR
brain images are first skull-stripped and cerebellum-
removed after a correction of intensity inhomogeneity [Sled
et al., 1998]. Then, each brain image is segmented into three
brain tissues, e.g., gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF). Finally, all the three tissues of
each brain image are spatially normalized onto a standard
space by a mass-preserving deformable registration algo-
rithm [Shen and Davatzikos, 2003]. Since GM is more
related to AD and MCI than the WM and CSF, the spatially-
normalized GM volumes, which are also called as GM tissue
densities, are used as the imaging features for classification
in this work. The voxel-wise GM densities describe both
GM information in the original subject and also its local geo-
metric deformation relative to the selected brain template.

Patch Extraction

Given a GM tissue density map and patch size w � w �
w, a simple way to extract the local patch is to uniformly
divide the whole-brain image into a number of three-

Figure 2.

The flow chart of the proposed hierarchical classification algorithm. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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dimensional patches. However, this partition does not con-
sider the different discriminability of individual brain
regions and thus is not optimal for extraction of the dis-
criminative local patches. To alleviate this problem, we
first perform the t-test on each voxel with the training
image set and select the voxels with significant group dif-
ference (i.e., with the resulting P value of t-test smaller
than 0.05) among all the voxels in the image space. Sec-
ond, for each selected voxel, we compute the mean of the
P values in its local neighborhood of size w � w � w and
then use the mean P value to sort all selected voxels in
ascending order. The first three-dimensional patch of size
w � w � w is extracted to be centered at the voxel with
the smallest mean P value, followed by the second local
patch centered at the voxel with the second smallest mean
P value. Note that each new extracted patch should have
less than 50% overlap with the previous extracted patches,
i.e., the distance between the centers of any two patches is
larger than w/2. Finally, by repeating the above step until
all selected voxels are visited, we can obtain a set of three-
dimensional local patches with size w � w � w, i.e., totally
K patches denoted as P ¼ fP1; :::;Pk; :::;PKg.

Construction of Low-Level Classifiers

For each extracted local patch Pk, we build two low-
level classifiers C1;k and C2;k based on different types of
low-level features related to the patch. Specifically, to cap-
ture both imaging and structural information from the
neuroimaging data, two types of features are extracted for
each patch, i.e., the local imaging features (GM densities
of each patch) and the correlations between pairs of local
patches (namely spatial-correlation features in this article),
respectively. Instead of building a single low-level classi-
fier by fusion of these two types of features, we propose to
build an independent classifier with each type of features.
In this way, the difficult task in classification of high-
dimensional features is now divided into a number of eas-
ier-to-do classification tasks using much lower-dimen-
sional features. Then, based on the respective low-level
imaging features, the classifier C1;k can be constructed
with a supervised learning method such as SVM.

The second low-level classifier C2;k is constructed for
each patch based on the spatial-correlation features, which
characterize the relationship between different patches of
the same subject and thus can capture more rich informa-
tion about the pathology of AD and MCI. To do this, each
patch is first represented by a feature vector that consists
of the GM densities in that local patch. Then, the interac-
tion between two patches within the same subject is com-
puted as the Pearson correlation coefficient of their
corresponding feature vectors (consisting of the GM den-
sities in patches), to measure the similarity of imaging fea-
tures between a pair of patches. When a patient is affected
by AD or MCI, the correlation value of a particular brain
patch with another patch will be potentially affected due

to some factors such as atrophy. It is worth noting that the
correlation provides a second-order measurement of the
GM densities of the local patches. As a higher-order mea-
surement, this new feature is more descriptive [Zhou
et al., 2011] and can provide complementary information
different from local GM densities for classification. Consid-
ering that the correlations can be computed between any
pair of local patches in each subject, the feature dimen-
sionality of all correlations is K � [K � 1]/2, which is usu-
ally larger than 5,000. This will make it difficult to train a
single classifier. Thus, for efficient training, we build a
low-level classifier for each patch by using the correlations
of this patch with all other patches in the same image, and
thus obtain K low-level classifiers finally. Therefore, for all
K extracted patches, we can obtain totally 2K low-level
classifiers, which can be denoted as
Ci ¼ fCi;1; :::;Ci;k; :::;Ci;Kg; i ¼ 1; 2:

High-Level Classification

After constructing two sets of low-level classifiers
Ci ¼ fCi;1; :::;Ci;k; :::;Ci;Kg; i ¼ 1; 2: from all K local patches,
a common ensemble approach is to directly combine the
classifier outputs to make the final classification. However,
since the low-level classifiers are built with the features
from local patch, their performances may be limited espe-
cially when the affected brain regions are larger than the
local patch. The limited performance of the low-level clas-
sifier will affect the final ensemble classification perform-
ance. To alleviate this problem, we propose to combine the
decision outputs of low-level classifiers, along with the
coarse-scale imaging features in each local patch, to build
multiple high-level classifiers placed at different larger
brain regions. The high-level classification results on dif-
ferent brain regions are finally combined to make the final
classification.

High-level features

We combine three types of high-level features to build
each high-level classifier at a specified brain region as
described below. The first two types of high-level features
are the outputs of two low-level classifiers C1;k and C2;k in
each local patch k. Instead of using the class label, the out-
put of each low-level classifier is computed as the continu-
ous value that evaluates the probability of each patch
belonging to different classes. For example, it can be
treated as an estimate of the class posterior probability as
used in Tu and Bai [2010]. Specifically, for the SVM classi-
fier that outputs the relative distance to the decision
boundary (i.e., the signed distance), we can use a logistic
function to convert the classifier output into a probability,
belonging to [0 1]. The classifier output can be considered
as the patch-level representation of the low-level imaging
features and is thus more relevant to class label. With the
supervised learning, the high-dimensional imaging feature
space is now transformed into the compact high-level
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feature space. Therefore, we can treat the outputs of low-
level classifiers as the inputs for high-level classification in
the certain intermediate feature space.

The third type of high-level features is the statistical
measures that are computed as the mean and standard
deviation of the GM densities in each local patch. Although
these statistical features capture the coarse-scale imaging in-
formation with limited discriminative information, they can
achieve higher robustness to noise and thus are useful for
high-level classification, as will be demonstrated in the ex-
perimental results. All these three types of features com-
puted from the local patches in a specified brain region will
be concatenated into a feature vector to train the high-level
classifier that is responsible for the specific large brain
region, as detailed below. In addition, for each feature fi in
the training samples, it will be normalized using equation
fi ¼ fi�f i

ri
, where f i and ri are the mean and standard devia-

tion of the feature fi across all training samples. Similarly,
this normalization process will be applied to the corre-
sponding feature of each test sample.

High-level classifiers

The information related to the disease can be distributed
over some distant brain regions with arbitrary shape and
size. To maximize the prediction accuracy, the high-level
classifier should be instantiated at the informative brain
regions, i.e., through coarse subdivision of the brain vol-
ume. Similar to the process of extracting three-dimensional
local patches as described above, local patches can be
agglomerated to form the highly-informative brain regions
with respect to the disease classification, and then the
high-level classifiers can be constructed to maximize the
discriminability of the high-level features in each brain
region. Also as introduced below, the size of each brain
region can be optimized to achieve the best performance
for its respective high-level classifier, and the obtained
sizes can be different across different brain regions.

Specifically, we first perform the cross-validation test on
the low-level classifiers with the training data, and thus
obtain their classification accuracies, which evaluate the
classification abilities of the local patches. Then, the local
patches are sorted according to the classification accuracies
of the low-level classifiers constructed with the local GM
densities, and the first brain region is centered at the local
patch with the highest classification accuracy. To obtain
the most informative brain region, we first change the size
of brain region (i.e., the radius from the first selected
patch) within a predefined range, and then use all high-
level features within this brain region to train a high-level
classifier. In the meanwhile, the classification performance
will be cross-validated for each size of brain region.
Finally, we can select a brain region that can yield the
highest classification accuracy, and place the first high-
level classifier on this brain region. After building the first
high-level classifier, the second and other subsequent
high-level classifiers are similarly constructed one by one,

with their respective brain regions partially overlapped by
less than 50%. Finally, we can obtain a set of M high-level
classifiers trained with the high-level features in M differ-
ent brain regions, i.e., HC ¼ fHC1; :::;HCj; :::;HCMg. It is
worth noting that each brain region for building the high-
level classifier may not have the same number of patches
or the same number of features.

It is worth noting that our proposed hierarchical classifi-
cation framework is not limited to any particular choice of
classifier model. Many state-of-the-art classifiers, such as
SVM and linear discriminant analysis (LDA), can be used to
build the base classifiers. In this work, we choose the linear
SVM classifier without any threshold as the base classifier to
build both the low-level and high-level classifiers. For sim-
plicity, we implement the SVM classifier with a linear kernel
by using the SVM functions provided by MATLAB software
[Kecman, 2001]. The value of the box constraint C for the
soft margin is set to the default value 1, and we also use the
SMO Method to find the separating hyperplane.

Final (Ensemble) Classification

The final classification is made by combination of the M
high-level classifiers with the weighted voting strategy. In
general, the ensemble classifier by fusing multiple classi-
fiers is superior to the single classifier when the predic-
tions of component classifiers have enough diversity
[Brown et al., 2005]. In our case, the multiple high-level
classifiers are trained with the features of different brain
regions, thus giving a certain degree of diversity to
improve the ensemble classification. However, since we
allow the overlap among different brain regions selected
for high-level classifiers, the discriminating capabilities of
some high-level classifiers may be similar to some extent.
In addition, the disease-related pathological changes often
happen in a small number of brain regions. Thus, it is im-
portant to select a subset of high-level classifiers with
larger discriminating capability for more accurate ensem-
ble classification and also for facilitating the interpretation
of classification results. Although the exhaustive search of
all possible classifier combinations allows obtaining the
optimal subset of high-level classifiers for final ensemble, it
is computationally expensive when the number of high-
level classifiers is large. Greedy approach focuses on adding
or removing a specific classifier at each time for maximizing
the improvement in the ensemble performance (Ruta and
Gabrys, 2005), thus taking less computational cost with
good performance. In this article, we employ a forward
greedy search strategy to select an optimal subset of high-
level classifiers for final fusion, as described in Figure 3.

It is worth noting that the classifier selection in the
above is performed on the training set and thus may not
be optimal for the testing set. To improve the generaliza-
tion, we divide the training set into 10 folds, and in each
fold a subset of classifiers is selected using the forward
greedy search. The selection frequency of each classifier is
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computed over all folds, with the high frequency indicat-
ing the high likelihood of the respective classifier to
improve the ensemble accuracy. Thus, the selection fre-
quency of each high-level classifier is treated as its weight
in the final voting. Specifically, for a test sample x, the
weighted sum of the prediction outputs of M high-level
classifiers is used to make the final classification:

DðxÞ ¼ sign
XM
j¼1

wjPCjðxÞ

0
@

1
A (2)

where PCj (x) is the prediction output of the j-th high-level
classifier PCj (x) for the test sample x, and is the respective
weight assigned to the j-th high-level classifier which is com-
puted as the selection frequency of the j-th high-level classifier
in the 10-fold testing of the forward greedy search method.

RESULTS

Data Set

The data used for evaluation of our proposed hierarchi-
cal classification algorithm were taken from the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) database
(available at: www.loni.ucla.edu/ADNI). The ADNI was
launched in 2003 by the National Institute on Aging
(NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administra-
tion (FDA), private pharmaceutical companies and non-
profit organizations, as a $60 million, 5-year public–private
partnership. The primary goal of the ADNI has been to
test whether serial magnetic resonance imaging (MRI),
Positron Emission Tomography (PET), other biological
markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cog-
nitive impairment (MCI) and early Alzheimer’s disease
(AD). Determination of sensitive and specific markers of

very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of
clinical trials. The Principal Investigator of this initiative is
Michael W. Weiner, M.D., VA Medical Center and Univer-
sity of California, San Francisco. ADNI was the result of
efforts of many co-investigators from a broad range of aca-
demic institutions and private corporations. The study
subjects were recruited from over 50 sites across the US
and Canada. They gave the written informed consent at
the time of enrollment for imaging and genetic sample col-
lection and completed the questionnaires approved by the
Institutional Review Board (IRB) of each participating site.

Our experimental evaluations are based on a portion of
the ADNI database. We use the T1-weighted MR imaging
data from the baseline visit. MRI acquisitions have been
done according to the ADNI acquisition protocol in [Jack
et al., 2008]. T1-weighted MR image data from 652 ADNI
participants are used for evaluation in the experiments.
These 652 subjects include 198 AD, 225 MCI (including
112 stable MCI (sMCI) and 113 progressive MCI (pMCI)),
and 229 NC. Table I presents a summary of the demo-
graphic characteristics of the studied subjects (including
the number, age, gender, and MMSE of the subjects).

The image processing of the T1-weighted MR brain
images was performed as described in Imaging Features
section. The spatially normalized GM tissues, i.e., GM den-
sities (with isotropic voxel size of 1 � 1 � 1 mm3), are
used as the imaging features. To reduce the impact of
noise, registration error, and inter-individual anatomical
variations, the tissue density maps were further smoothed
using a Gaussian filter (with a sigma value of 1.0) and
then down-sampled by a factor of 4 for saving the compu-
tational time and memory cost, without sacrificing the
classification accuracy as confirmed by our experiment.
Final imaging size was of 64 � 64� 64 voxels, with the
voxel size of 4 � 4� 4 mm3. To build the low-level classi-
fiers, we partitioned the GM density map into a number of
three-dimensional local patches. For simplicity, the patch
size was set to 11 � 11 � 11 in the whole image, although
it could be adaptively determined in different brain
regions. In total, we obtained more than one hundred of
patches for each brain image. Then, two low-level classi-
fiers were built for each patch by using the GM densities
and spatial-correlation features, respectively. In our experi-
ments, to evaluate the classification performance, we use a
10-fold cross-validation strategy to compute the

TABLE I. Demographic characteristics of the studied

subjects from ADNI database (denoted as mean 6
standard deviation)

Diagnosis Number Age Gender (M/F) MMSE

AD 198 75.7 � 7.7 103/95 23.3 � 2.0
MCI 225 75.2 � 7.4 154/71 26.7 � 1.8
NC 229 76.0 � 5.0 119/110 29.1 � 1.0

Figure 3.

Classifier selection with forward greedy search.
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classification accuracy (ACC), which evaluates the propor-
tion of correctly classified subjects among the whole test
population. In addition, we also compute the sensitivity
(SEN), i.e., the proportion of AD (or MCI) patients correctly
classified, and the specificity (SPE), i.e., the proportion of
correctly classified normal controls for further evaluation. In
each time, one fold of the data set was used for testing,
while the other remaining nine folds were used for training.
The training set was further divided into 10 folds to opti-
mize the parameters in our method, which include the size
of the brain region in building the high-level classifiers and
the weight assigned to each high-level classifier in final
ensemble.

Classification Results

We conducted two experiments to investigate the effec-
tiveness of the proposed hierarchical classification algo-
rithm in identification of AD (or MCI) from normal
controls. The first experiment was performed to test the ef-
ficacy of different features used for classification. In gen-
eral, three types of features, i.e., GM-density-based
classifier outputs (GCO), correlation-based classifier out-
puts (CCO), and statistical measures (SM), are extracted
from each patch to build the high-level classifiers. To eval-
uate the efficacy of these features, we computed the classi-
fication accuracy by ensemble of the high-level classifiers
built with different features. When using GCO or CCO
features, or their combinations, usually 20 to 30 high-level
classifiers were obtained for final ensemble. Since the sta-
tistical measure (SM) is a kind of coarse-scale feature with
limited discrimination in small brain region, we obtained
only one SM-based high-level classifier, instantiated on a
relatively large brain region. The classification results with
respect to the use of different features and their combina-
tions are summarized in Tables II and III for classification
of AD versus NC and MCI versus NC, respectively.

As we can see from these results, the statistical meas-
ures (SM) have limited information and thus result in low
classification accuracy when only this type of features is
used for classification. However, the SM can improve the
classification accuracy when combined with other two

types of features. In addition, GCO are generated based on
the GM densities of each local patch, while CCO are gen-
erated based on the correlations between pairs of patches.
These two types of features can provide complementary
information for classification, and thus the combination of
GCO and CCO improves the classification accuracy.
Finally, combination of these three types of features by
our proposed hierarchical method can further improve the
classification performance.

The second experiment was conducted to test the effec-
tiveness of the hierarchical fusion used in the proposed
classification framework. Specifically, we compared the
performance of the proposed hierarchical fusion method
with those of other two possible classification methods.
The first possible classification method is to build a single
global classifier for final classification, by using PCA to
reduce the dimensionality of GM density features. In par-
ticular, the dimensionality of the reduced feature space by
PCA was optimally determined via the 10-fold cross-vali-
dation using the training set. We changed the feature
dimensionality within a predefined range (i.e., from 10 to
the number of training samples) and selected the dimen-
sionality with the minimum classification error rate for the
test set. The PCA-based classification method is used as an
example of conventional classification method with a sin-
gle global classifier, to be compared with our proposed
method that uses the ensemble of multilevel classifiers.
The second classification method is to directly ensemble
the decisions of both the GM-density-based and correla-
tion-based low-level classifiers using the weighted voting.
The weight assigned to each individual classifier is deter-
mined using the same strategy as used in the proposed
hierarchical classification method (Final (Ensemble) Classi-
fication section). The classification results and their com-
parisons with respect to different methods are
summarized in Tables IV and V for classification of AD
versus NC and MCI versus NC, respectively. Also, their
receiver operating characteristic (ROC) curves for classifi-
cation of AD versus NC and MCI versus NC are given in
Figures 4 and 5, respectively. These results demonstrate
that both classification methods by fusion of multiple clas-
sifiers can achieve better performance than the single clas-
sifier. Moreover, the proposed hierarchical fusion method

TABLE II. Performance comparison for classification of

AD versus NC on different features

Classification features ACC (%) SEN (%) SPE (%)

Statistical measures (SM) 85.3 83.4 86.9
GM-density-based classifier

outputs (GCO)
90.2 88.9 91.3

Correlation-based classifier
outputs (CCO)

89.7 89.4 89.9

SM þ GCO 91.1 89.5 92.5
SM þ CCO 90.8 88.4 93.0
GCO þ CCO 90.9 89.4 92.1
SM þ GCO þ CCO 92.0 90.9 93.0

TABLE III. Performance comparison for classification of

MCI versus NC on different features

Classification features ACC (%) SEN (%) SPE (%)

Statistical measures (SM) 74.1 73.4 74.7
GM-density-based classifier

outputs (GCO)
83.7 80.1 87.3

Correlation-based classifier
outputs (CCO)

82.5 81.8 83.0

SM þ GCO 84.4 80.5 88.2
SM þ CCO 83.2 81.0 85.2
GCO þ CCO 84.2 82.3 86.0
SM þ GCO þ CCO 85.3 82.3 88.2
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can further improve the classification performance com-
pared with the direct fusion method. Specifically, the pro-
posed hierarchical classification can achieve a high
accuracy of 92.0% (with sensitivity of 91.0% and specificity
of 93.0%) for classification of AD versus NC and 85.3% for
classification of MCI versus NC, respectively.

For interpreting our results, we further visualize the patches
that are selected for disease classification using GCO features.
Since a linear SVM classifier is used in our experiment, the
classifier weights are used to show the contribution of each
voxel in the selected patches. Figure 6a,b show the weight
maps for the voxels in the selected patches when used for AD
versus NC and MCI versus NC classifications, respectively.

On the other hand, to illustrate the contributions of the
correlation classifier (CCO), we show in Figure 7a three-
dimensional graph overlaid on a three-dimensional trans-
parent brain, which is generated with the BrainNet Viewer
package (available at: http://www.nitrc.org/projects/
bnv/). The nodes of the graph denote the selected patches,
while the thickness of the graph edge indicates the weight
of the linear SVM classifier built with the respective patch
correlations. For better illustration, the important patches
and classifier weights are selected as follows. First, we sort
the correlation classifiers in ascending order of their classi-
fication accuracies and select top 10 classifiers. Then, for
each selected classifier, the patches with 10 highest classi-
fier weights are selected as the important patches. Finally,
all selected patches are used to generate the graph nodes,
and the corresponding classifier weights are used to gener-
ate the graph edges. Figure 7a,b show the three-dimen-
sional graphs for the cases of AD versus NC and MCI
versus NC classification, respectively.

Comparison with Existing Methods

Furthermore, we compare the results of the proposed
classification method with some results recently reported

in the literature, which were also obtained based on the
baseline MRI data of ADNI subjects. In particular, four
recent classification methods for AD and MCI diagnosis
are compared as briefly described in the following.

• In [Hinrichs et al., 2009], the linear program (LP)
boosting method with novel additional regularization
was proposed to incorporate the spatial smoothness of
MR imaging space into the learning process and

TABLE V. Comparison of three methods for MCI versus

NC classification

Classification methods
ACC
(%)

SEN
(%)

SPE
(%)

Area under
ROC (%)

Single classifier 79.4 79.2 79.5 87.8
Direct fusion of low-level classifiers 83.2 81.8 84.7 89.5
Proposed hierarchical fusion 85.3 82.3 88.2 91.0

Figure 4.

ROC curves of three methods in AD vs. NC classification.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Figure 5.

ROC curves of three methods in MCI vs. NC classification.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

TABLE IV. Comparison of three methods for AD versus

NC classification

Classification methods
ACC
(%)

SEN
(%)

SPE
(%)

Area under
ROC (%)

Single classifier 86.4 83.9 88.6 92.9
Direct fusion of low-level

classifiers
89.7 86.9 92.1 93.9

Proposed hierarchical fusion 92.0 91.0 93.0 95.2
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improve the classification accuracy. Only classification
results for AD versus NC were provided in this article.

• In [Cuingnet et al., 2011], 10 methods on different types
of MRI-based features, which included five voxel-wise
imaging feature based methods, three cortical thickness
based methods, and two hippocampus based methods,
were compared for classification of AD versus NC and
MCI versus NC with the linear SVM classifier. The best
results, which were obtained using voxel-wise GM den-
sities, were provided for comparison in our article.

• In [Zhang et al., 2011], 93 volumetric features were
extracted from the 93 regions of interest (ROI) in GM
densities for both AD and MCI classification and a single
SVM classifier was constructed to make classification.

• More recently, four types of MRI-based features, i.e.,
hippocampal volume, tensor-based morphometry, corti-
cal thickness, and manifold-learning based features,
were combined to achieve improved classification accu-
racies with both linear discriminant analysis (LDA) and
SVM classification approaches in [Wolz et al., 2011]. For
comparison, we present their best results that were
obtained with the LDA classification approach.

The classification results of the above four methods,
along with our proposed method, for classification of AD
versus NC and MCI versus NC are summarized in Tables
VI and VII, respectively. These results further validate the
efficacy of our proposed classification method.

It is worth noting that, in Tables VI and VII, we just list
the results of different methods reported in the literature.

These different methods may not use exactly the same sub-
jects from ADNI, and thus the comparison of their results
needs to be careful. In the following, we compare the per-
formance of our proposed with a specific method reported
in the literature, by using the same dataset. In [Chu et al.,
2012], the impact of sample size and feature selection on
brain classification were extensively studied by using the
GM features and SVM classifier. In particular, they com-
pared four different feature selection methods, i.e., one
prior-knowledge based method, two data-driven methods,
and one hybrid method. Their experimental results showed
that the most accurate classification was achieved by feature
selection using the prior knowledge about the regions of
brain atrophy found in previous studies, i.e., using all GM
voxels in the hippocampal and parahippocampal mask.
Therefore, this prior-knowledge based method is used here
for comparison. Specifically, by using our template with 93
manually-delineated ROIs [Kabani et al., 1998], we can label
all GM voxels in the hippocampal and parahippocampal
regions for each subject, and then we can use a linear SVM
for classification. For fair comparison, the same training and
testing data sets are used as our method. This prior-knowl-
edge based method produces classification accuracy (ACC)
of 84.5%, along with SEN of 82.3% and SPE of 86.4%, for
classification of AD versus NC. A simple paired t-test of the
accuracies in each fold of cross validation was also per-
formed to test the difference between our method and this
prior-knowledge based method. The obtained P value,
1.7954e-004, indicates that our method is statistically better
than the prior-knowledge based method.

Figure 6.

The weight maps for the voxels in the selected patches for (a) AD vs. NC classification and (b)

MCI vs. NC classification. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Top Selected Regions

For better understanding of the brain regions selected
by the proposed method for AD or MCI classification, we
picked out the most discriminative patches according to

the hierarchy of classifiers based on the training data set.
Since our proposed hierarchical classification method
builds multilevel classifiers on different brain regions, the
classification accuracy of the respective classifier indicates
the importance of the corresponding brain region in

Figure 7.

The three-dimensional graphs generated with the nodes indicating the important patches and the

edge thickness indicating the weight of the correlation classifier for (a) AD vs. NC classification

and (b) MCI vs. NC classification. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

TABLE VI. Comparison of classification accuracies for AD versus NC

Methods Subjects Features Classifier ACC (%) SEN (%) SPE (%)

(Hinrichs et al., 2009) 183 (AD þ NC) Voxel-wise GM LP boosting 82.0 85.0 80.0
(Cuingnet et al., 2011) 137AD þ 162NC Voxel-wise GM SVM 88.6 81.0 95.0
(Zhang et al., 2011) 51AD þ 52NC 93 ROI GM volume SVM 86.2 86.0 86.3
(Wolz et al., 2011) 198AD þ 231NC Four types of MRI featuresa LDA 89.0 85.0 93.0
Proposed method 198AD þ 229NC Voxel-wise GM Hierarchical fusion 92.0 90.9 93.0

aFour types of MRI features include hippocampal volume, tensor-based morphometry, cortical thickness, and manifold-learning based
features.
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classification. Specifically, we first selected the brain region
related to the high-level classifier with the highest accu-
racy. From the selected brain region, we then selected the
local patches that give high accuracy with respect to the
GCO and CCO in the low-level classification. It is worth
noting that the patch selection is performed on the training
data only. Thus, the selected patches at each cross-validation
fold may be different. For example, we checked the selected
patches from all cross-validation folds, and found that some
selected patches do vary across different folds. Thus, we
compute the frequencies of the voxels included in the
selected patches in all folds. For illustration purpose, we gen-
erated the frequency maps for the voxels in the selected
patches during the cross-validations for AD and MCI classifi-
cations (see Fig. 8). It can be observed from Figure 8 that the
most-affected regions detected by our classification method
include hippocampus, parahippocampal gyrus, entorhinal
cortex, and amygdala, which are consistent with those
reported in the literature for AD and MCI studies [Cuingnet
et al., 2011; Hinrichs et al., 2009; Zhang et al., 2011].

Discussion

In this article, we have proposed a hierarchical classifica-
tion framework to gradually combine features and classifier
decisions into a unified multilevel model for analysis of MR
images, to assist the diagnosis of AD and MCI. Different
from the conventional classification methods that build a sin-
gle classifier with all input features, the proposed method
divide the difficult task for classification of high-dimensional
features into many low-dimensional classification problems
that are easier to solve. The rich imaging and spatial-correla-
tion features of the whole brain image are extracted and
gradually integrated into a hierarchical framework for more
efficient and accurate classification. Our experimental results
show that the hierarchical fusion of these two features can
improve the classification performance. To the best of our
knowledge, there are no previous studies on combining these
two features for classification. More importantly, the local
spatial contiguity of imaging features is greatly respected in
classification by using a hierarchical spatial structure that is
built from small local patches to larger brain regions. This
strategy can make better use of the local information than the
ROI-based methods [Fan et al., 2007; Zhang et al., 2011]. En-
semble learning is a kind of machine learning technique by

combining multiple weak classifiers to build a strong classi-
fier. Adaboost learning is a popular ensemble learning by
aggregating base classifiers to successively estimate their
errors and focusing more and more on the instances misclas-
sified by previous classifiers. However, AdaBoost is sensitive
to noisy data and outliers since the noisy data will be also
put with high weight in the subsequent classification, thus
degrading the classification performance. The proposed hier-
archical ensemble method is to aggregate multiple local clas-
sifiers gradually by fusing the multilevel classifier decisions
and features into a global classifier, which is more robust to
noisy data and outliers.

We also tested the proposed hierarchical classification
method on the entire brain voxels, without limiting to the
voxels with significant univariate group difference by t-
test. The accuracies of the proposed method on the entire
brain voxels are 91.35% (along with 89.92% SEN, 92.55%
SPE) and 84.86% (along with 81.84% SEN, 87.79% SPE) for
classifications of AD versus NC and MCI versus NC,
respectively. These results further show that the proposed
method is also robust to the size of feature space.

Selecting suitable patch size is important for achieving
good classification performance. If the patch size is too
small, each patch will have no enough information to offer
good performance in the low-level classification, and also
the number of patches or low-level classifiers will be too
large which will significantly increase the computation
cost in the classification. On the other hand, if the patch
size is too large, more redundant or even confounding in-
formation will be included into each patch, which will
affect the localization of informative brain regions and
finally the ensemble classification result. To balance these,
the patch size needs to be optimized, i.e., 11 � 11 � 11 as
we obtained, which leads to about 120 patches on average
in our study. On the other hand, if other sizes are used,
the classification performance may be affected.

As for the number of levels in the hierarchy to build the
base classifiers, our current classification method adopts
three levels of hierarchy. We have compared the experimen-
tal results with one, two, and three levels of hierarchy for
classification in the second experiment. The experimental
results show that the method with three levels of hierarchy
performs better than others, because it can make better use of
the local features and classifier decisions. However, when
increasing the hierarchical levels to be more than three, we
found that the classification performance is not further
improved, but the computation complexity is increased.

TABLE VII. Comparison of classification accuracies for MCI versus NC

Methods Subjects Features Classifier ACC (%) SEN (%) SPE (%)

Cuingnet et al. [2011] 76MCI þ 162NC Voxel-wise GM SVM 81.17 73.00 85.00
Zhang et al. [2011] 99MCI þ 52NC 93 ROI GM volume SVM 72.00 78.5 59.6
Wolz et al. [2011] 167pMCI þ 231NC Four types of MRI featuresa LDA 84.0 82.0 86.0
Proposed method 225MCI þ 229NC Voxel-wise GM Hierarchical fusion 85.3 82.3 88.2

aFour types of MRI features include hippocampal volume, tensor-based morphometry, cortical thickness, and manifold-learning based
features.
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CONCLUSION

In summary, we have presented a hierarchical classifica-
tion algorithm for MRI-based diagnosis of AD and MCI in
this article. To deal with the challenge of high-dimensional
imaging features in the whole brain MRI during AD/MCI
diagnosis, we proposed to gradually aggregate the low-
level imaging features into the compact high-level repre-
sentations via constructing multilevel classifiers with
supervised learning. Thus, the large-scale classification
problem with high-dimensional imaging features can be
decomposed into a hierarchical set of small-scale classifica-
tion problems, which are easier to handle. In addition to
the local imaging features, the spatial-correlations are also

integrated into the hierarchical model for better classifica-
tion. Experimental results on the baseline data of ADNI
subjects show that the ensemble of multiple classifiers per-
forms better than the single global classifier and impor-
tantly the hierarchical fusion of multi-level classifiers can
further improve the classification performance.

Since different imaging modalities can provide comple-
mentary information for disease diagnosis, in the future
work, we will extend our method to include other imaging
features extracted from other modality of data. We will
also investigate more advanced classifier ensemble
method, i.e., sparse multiple kernel learning [Subrahma-
nya and Shin, 2010], for further improvement of the classi-
fication accuracy.

Figure 8.

The frequency maps for the voxels in the selected patches during the cross-validation for (a) AD

classification and (b) MCI classification, with respect to the use of GCO (left) and CCO (right) features.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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