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Abstract: Previous studies have investigated patterns of volumetric covariance (i.e. intercorrelation)
among brain regions. Methodological issues, however, have limited the validity and generalizability of
findings from these prior studies. Additionally, patterns of volumetric covariance have often been
assumed to reflect the presence of structural networks, but this assumption has never been tested for-
mally. We identified patterns of volumetric covariance, correlated these patterns with behavioral meas-
ures, and tested the hypothesis that the observed patterns of covariance reflect the presence of underly-
ing networks. Specifically, we performed factor analysis on regional brain volumes of 99 healthy chil-
dren and adults, and we correlated factor scores with scores on the Stroop Word-Color Interference
Test. We identified four latent volumetric systems in each hemisphere: dorsal cortical, limbic, posterior,
and basal ganglia. The positive correlation of the right posterior system with Stroop scores suggested
that larger latent volumes are detrimental to inhibitory control. We also applied Structural Equation
Modeling (SEM) to our dataset (n 5 107) to test whether a model based on the anatomical pathways
within cortico-striatal-thalamic-cortical (CSTC) circuits accounts for the covariances observed in our
sample. The degree to which SEM predicted volumetric covariance in the CSTC circuit depended on
whether we controlled for age and whole brain volume in the analyses. Removing the effects of age
worsened the fit of the model, pointing to a possible developmental component in establishing connec-
tions within CSTC circuits. These modeling techniques may prove useful in the future for the study of
structural networks in disease populations. Hum Brain Mapp 29:1302–1312, 2008. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

The study of volumetric covariance among brain regions
can provide information that complements other techni-
ques aimed at investigating anatomical and functional
connectivity in health and illness. Although total cerebral
volume contributes to covariance of volumes across brain
subregions, volumes of different structures still covary
even after adjusting for overall brain size (i.e. after
accounting for scaling effects) [Allen et al., 2002; Kennedy
et al., 1998; Mechelli et al., 2005]. Those patterns of
volumetric covariance correspond closely, at least for some
brain regions, with known patterns of anatomical connec-
tivity and with patterns of connectivity demonstrated
using diffusion tensor imaging [Lerch et al., 2006]. Normal
patterns of volumetric covariance have been shown to be
altered in studies of disease populations, including schizo-
phrenia [Mitelman et al., 2005], and similar alterations of
covariance patterns have been hypothesized to occur in Alz-
heimer’s disease [Braak and Braak, 1991; Lerch et al., 2006].
Extant studies of volumetric covariance among brain

regions [Herbert et al., 2003; Kennedy et al., 1998; Lerch
et al., 2006; Mechelli et al., 2005; Tien et al., 1996; Wright
et al., 1999] have been beset with various methodological
limitations, including: (1) failure to control for age or total
cerebral volume, both of which can drive volumetric corre-
lations among brain regions that are independent of any
systems-level connectivity; (2) inadequate sample sizes,
particularly relative to the number of brain regions exam-
ined, thereby compromising the statistical stability of fac-
tor analyses or other, similar techniques for analyzing co-
variance; (3) use of measures derived from voxel-based
morphometry (VBM), which may be vulnerable to artifacts
related to coregistration and which are therefore difficult
to interpret biologically; (4) failure to analyze cortical and
subcortical volumes concurrently, or investigating only a
small set of regions based on a priori hypotheses, thus limit-
ing the inferences that can be made about the brain as a
whole; (5) restriction of the analytic approach to a principal
component analysis, which is predominantly a technique for
data reduction that does not allow for the exploration of the
underlying latent causes of volumetric covariance.
In this study, we use factor analysis to identify the latent

causes for the patterns of volumetric covariance observed
across the brain, including both cortical and subcortical
regions, measured in high-resolution magnetic resonance
images (MRIs). We show that our results compare favor-
ably with those obtained in postmortem data from humans
and from other species that have been analyzed using sim-
ilar statistical techniques. We also assess how these latent
structures of volumetric covariance correlate with behav-
ioral and neuropsychological variables. Finally, we use
Structural Equation Modeling (SEM) to test the assumption
that volumetric covariance reflects the presence of ana-
tomical or functional connections within circuits whose
components and connections are highly specified, such
as cortico-striatal-thalamic-cortical (CSTC) circuits [Albin

et al., 1995; Alexander et al., 1990; Haber et al., 1995;
Middleton and Strick, 2002; Voorn and Louk, 2004]. We
attempt to address the methodological limitations of prior
studies by controlling for the effects of age and whole
brain volume (WBV) in analyses of a large sample of
healthy individuals, so as to provide a ratio of subjects per
brain regions examined that would enhance statistical sta-
bility. We also include a large number of children in our
analyses to allow assessment of developmental effects on
patterns of volumetric covariance. We have elected to
study comparatively larger cortical subdivisions to reduce
measurement error and inter-individual variability in re-
gional volumes [Kennedy et al., 1998].

METHODS

Sample Recruitment and Characterization

Our sample consisted of 107 healthy subjects who
ranged in age from 7 to 57 years (mean 22.8 years, SD:
13.5 years). Subjects were recruited from a list of 10,000
names purchased from a telemarketing company [Peterson
et al., 2001]. The sample was similarly distributed across
gender (males: 54.2%) and was predominantly right-
handed (91.6%). We oversampled children (36.4% of the
cases were <12 years old) so as to capture developmental
effects, which tend to occur more rapidly in children than
in adults. The socioeconomic status (SES), estimated with
the Hollingshead Index of Social Status, indicated that our
sample was primarily middle to upper middle class
(mean: 46.5, SD: 10.8) [Hollingshead, 1975].
Exclusion criteria included: (1) age 60 years or older; (2)

any current Axis I disorder or lifetime history of psychotic
disturbance, substance dependence, tic disorder, OCD,
ADHD, seizure, head trauma with loss of consciousness,
or other neurologic disorder; (3) IQ < 80. Psychiatric diag-
noses were established using the Kiddie-Schedule for
Affective Disorders and Schizophrenia Epidemiologic ver-
sion for children [Kaufman et al., 1997] or the Schedule for
Affective Disorders and Schizophrenia for adults [Endin-
cott and Spitzer, 1978]. From our total sample of 107 sub-
jects, eight had one or more brain regions defined, either
because of technical limitations associated with partial vol-
ume effects, or because tissue contrast was inadequate to
delineate them accurately; therefore, we elected not to risk
adding this measurement noise to the covariance structure
of our data. Thus for factor analysis, which requires that
data for all regions be analyzed, we used data from the
remaining 99 subjects (mean age 21.3 years, SD 13.4 years,
males 53%, right-handed subjects 90.9%). For SEM, not all
regions are necessary for the analysis, and therefore we
used data from all 107 subjects.

Neuropsychological Assessment

IQ estimates based on standard assessments [Naugle
et al., 1993; Peterson et al., 2001; Weschler, 1981] for 88
members of the total sample included Full-Scale IQ (FSIQ)
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(mean: 119.69, SD: 17.46), Verbal IQ (VIQ) (mean: 118.39,
SD: 18.73), and Performance IQ (PIQ) (mean: 116.76, SD:
17.35). In addition, we employed the Stroop task to assess
mental flexibility and response inhibition [Stroop, 1935] in
66 members of the total sample. The Stroop is composed
of three tasks (A, B, and C). In Task A, subjects were asked
to name as quickly as possible the color (red, green, or
blue) of 126 dots, 5.6 mm in diameter, arrayed randomly
in nine columns and 14 rows on an 8.5 3 11 inch sheet of
white paper, scanned left to right and then top to bottom.
In Task B, participants were asked to read as quickly as
possible an equal number of similarly arrayed words
(‘‘red,’’ ‘‘green,’’ or ‘‘blue’’) which were printed in black
ink. In Task C, participants were asked to name as quickly
as possible a similar array of words written in incongruent
colors. To perform task C, subjects had to suppress a pre-
potent response (word reading) and instead name the color
of the ink in which the word was printed. The increase in
time required to complete this task compared with the
time required to complete tasks A or B represented the
effects of interference between word-naming and color-
naming. An index that gauges these interference effects
was derived based on time to complete each of the three
tasks. Stroop interference scores were calculated using the
following formula: C – [(A 3 B)/(A 1 C)] [Golden, 1978].

MRI Acquisition

Structural images were acquired for each subject using a
1.5 Tesla scanner (GE Signa; General Electric, Milwaukee,
WI). Head positioning in the scanner was standardized using
canthomeatal landmarks. A three-dimensional spoiled gradi-
ent-echo sequence was obtained using the following parame-
ters: time to repeat (TR), 24 ms; time to echo (TE), 5 ms; flip
angle, 458; matrix size, 2563 192; no wrap; number of excita-
tions: 2; field of view (FOV): 30 cm; 124 contiguous sagittal
slices, each 1.2-mm thick.

Image Analysis

Morphometric analyses were performed on Sun Ultra 10
workstations using ANALYZE 7.5 software (Rochester,
MN). Images were flipped randomly in the left-right direc-
tion prior to region definition to eliminate the effects of
perceptual bias on lateralized measures. Flips were cor-
rected during the calculation of regional volumes. Inter-
rater reliability of the measurements was assessed on 20
scans each measured by four raters. Intraclass correlation
coefficients were calculated using a two-way random-
effects model [Shrout and Fliess, 1979].

Regional cerebral volumes

An isointensity contour function was used along with
manual editing to isolate the cerebrum exclusive of the
cerebellum. Cerebral hemispheres were divided using a
curved hermite spline surface that was interpolated from
standardmidline landmarks. Our parcellation scheme subdi-

vided the cerebrum into eight regions (frontal, premotor, sen-
sorimotor, parietal, occipital, orbitofrontal, subgenual, mid-
temporal, and inferior occipital). This scheme utilizes one
horizontal plane passing through the anterior commisure
(AC)–posterior commisure (PC) line (tangent to the top of the
AC and bottom of the PC) and three coronal planes–one tan-
gent to the genu of the corpus callosum, one tangent to the
anterior border of the AC, and one through the PC at midline
[Peterson et al., 2001; Tailarach and Tournoux, 1988] (Fig. 1).
We measured the volumes of each of these eight regions,
including both gray andwhite matter.
Volumes of pure cortical gray matter for each parcellation

were obtained using a gray-scale threshold that was calcu-
lated as the mean of samples of pure gray matter and pure
white matter made bilaterally at four standard locations
throughout the cerebrum (frontal, temporal, parietal, and
occipital regions). The automated classification of tissues was
then edited manually in each of the three views to yield pure
cortical gray matter. Intraclass correlation coefficients were
>0.98 for volumes of graymatter in each cortical subregion.

Amygdala and hippocampus

Amygdala and hippocampus volumes were defined by
manual tracing in the coronal plane using previously
described techniques [Kates et al., 1997; Watson et al.,
1992]. The anterior limit of the amygdala was the most an-
terior slice in which the AC crossed the midline. When the
boundary between amygdala and hippocampus was not
clear, it was defined as the line connecting the inferior
horn of the lateral ventricle with the amygdaloid sulcus. If
the sulcus was not clearly identifiable, the boundary was
defined as a straight horizontal line connecting the inferior
horn of the lateral ventricle with the surface of the uncus.
The posterior limit of the hippocampus was the last slice
in which the crus of the fornix and the fimbria could be
identified. Intraclass correlation coefficients were >0.85 for
the amygdala and >0.90 for the hippocampus.

Figure 1.

Parcellation units defined using standard anatomical landmarks.

The medial view is a parasagittal slice, allowing visualization of

structures within the hemisphere. Crbl, cerebellum; DPF, dorsal

prefrontal; IO, inferior occipital; MT, mid-temporal; OF, orbito-

frontal; PM, premotor; PO, parieto-occipital; SG, subgenual; SM,

sensorimotor. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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Whole brain volume

Whole brain volume (WBV) was used to control for the
generalized effects of scaling. The measure included gray
and white matter as well as ventricular CSF (cerebrospinal
fluid) and CSF spaces within the brain.

Statistical Analyses

These were performed using SAS
1

v 9.1 (SAS Institute,
Cary, NC) and SPSS 13.0 (SPSS, 2004) software packages.
Distributions and outliers for each variable were assessed
by calculating mean, variance, skew, and kurtosis and by
visually inspecting Q/Q plots and box plots.

Exploratory factor analysis

Regional brain volumes were regressed individually
with either age or WBV or both. Residuals were then cal-
culated for each individual regression and used to con-
struct the covariance matrices. Residual plots and residual
Q/Q plots were also produced for each regression. We an-
alyzed a total of four covariance matrices: (1) one gener-
ated using raw volumes, (2) one generated using residuals
obtained after controlling for WBV (and therefore after
controlling for scaling effects), (3) one generated using
residuals after controlling for age, and (4) one obtained
using residuals generated after controlling for both WBV
and age. Two independent factor analyses based on each
covariance matrix were performed separately, using vol-
umes from the right and left hemispheres. This strategy
was chosen to decrease the number of variables to be
entered in the factor analysis (i.e. to increase the subject-to-
variable ratio). Squared multiple correlations were used as
prior communality estimates. A maximum likelihood
method was employed to extract factors, and then a vari-
max rotation was applied. The number of eigenvectors to
be extracted was based on inspection of the scree-plot. A
variable was considered clearly to load on one factor if the
loading on the factor was 0.40 or greater. Finally, a promax
rotation was applied to the factor structure to assess
whether an oblique rotation (which allows factors to be
correlated) yielded a substantially different factor struc-
ture. Because the oblique rotation yielded the same factor
pattern, however, only the varimax rotation is reported.

Regression analyses using factor scores

Estimated factor scores were calculated for each subject
and regressed separately on psychometric and behavioral
measures. PIQ and VIQ were not entered in the same
regression model because of their high inter-correlation.

SEM of volumes within CSTC circuits

Whereas exploratory factor analysis (EFA) does not
make any assumption about the underlying structure of

the data and is most commonly used as a theory-building
tool [Kline, 2005], SEM is a form of covariance analysis that
allows testing of a priori propositions about causality among
variables. Thus, SEM requires specification of a causal model
that is subsequently tested on observed data. The causality
that is tested is a statistical one that represents the linear
influence of an independent variable on a dependent one.
The model is called ‘‘structural’’ because it assesses causal
statistical relationships among latent variables, which repre-
sent theoretical constructs that underlie specific manifesta-
tions of those constructs in measured observations (manifest
variables). Explicit theories or models of the causal relation-
ships among the latent variables are specified a priori, and
their fit to observed data is assessed. To fit the observed data
well, these explicit models should constructed to be as parsi-
monious as possible, and they should be based on previous
empirical evidence for the existence of the proposed causal
pathways. SEM and related techniques have been used in
previous imaging studies to assess models of functional con-
nectivity across brain regions [Glabus et al., 2003].
We chose to study CSTC circuits using SEM because

these circuits have been investigated extensively and are
anatomically well described in multiple animal models
[Albin et al., 1995; Alexander et al., 1990; Haber et al.,
1995; McHaffie et al., 2005; Middleton and Strick, 2002;
Voorn and Louk, 2004]. Therefore, a causal model for this
human imaging study rests on a solid empirical founda-
tion from extensive prior animal studies. The specific
model tested here is shown in Figure 2. Arrows indicate
statistical pathways of linear influence from one (inde-
pendent) variable upon another (dependent) variable. We
elected to enter overall cortical volume, instead of individ-
ual subregions within cortical gray matter, as the only ex-
ogenous latent variable influencing volumes of the basal
ganglia nuclei because virtually the entire cortical mantle
projects to the basal ganglia [Heimer, 2003], and because
use of overall volume limited the numbers of paths tested
in the model, thereby enhancing its overall statistical sta-
bility. Based on prior animal studies, cortical volume was
postulated to determine volumes of both the putamen and
caudate nuclei; in turn, caudate and putamen volumes
were postulated to determine volumes of the globus pal-
lidus, which then influenced thalamic volumes further
downstream. We entered putamen, caudate, and globus
pallidus as latent variables representing shared variance
between homologous structures in the left and right hemi-
spheres [Raz et al., 2005]. We included feedback projections
from the thalamus to the putamen and caudate nuclei,
because the globus pallidus is known in animals to project to
the centromedian and parafascicular nuclei of the thalamus,
which in turn project back to the striatum [Smith et al., 2004].
The known feedback paths from the thalamus to the cortex in
animals could not be modeled here, because introducing
paths that pointed to the exogenous latent variable rendered
ourmodel statistically unstable.
Data were analyzed in SAS

1

using the PROC CALIS
procedure [Hatcher, 1994]. The analysis of covariance
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structure was conducted using maximum likelihood esti-
mation. The model v2/v2 df ratio was used as a prelimi-
nary measure of overall fit, with conventional values for

an acceptable fit being <2. Because the null hypothesis
was that the specified model would fit the data (i.e., the
predicted and observed covariance matrices would not dif-
fer significantly), non-significant v2 P-values were required
as evidence to support the specified model. Comparative
indices of fit reflected the improvement in fit obtained
when using the hypothesized model instead of the null or
baseline model. Therefore, a Non-Normed Fit Index
(NNFI) > 0.9 and a Comparative Fit Index (CFI) > 0.9
were interpreted as indicating a reasonable fit for the com-
bined model. We also used the Root Mean Square Error of
Approximation (RMSEA), an index of the error between
the model and the observed data, with values <0.05 or
<0.08 indicating excellent and modest approximations,
respectively [Stevens, 2002]. Convergence of the estimated
covariance matrix with the sample covariance matrix was
assessed by inspection of the matrix of normalized resid-
uals. Parameter estimates for both manifest and latent vari-
able equations were calculated and construed as indicating
the strength of each individual path within the model. In
post hoc assessments of the strength of each path within
the model, we considered as significant those nonstandar-
dized parameter estimates in which the absolute t-values
were >1.96. Finally, R2 values for latent variables were
evaluated because they provided a measure of the variance
that was explained by each structural path.

RESULTS

Exploratory Factor Analysis in the

Left Hemisphere

We performed an EFA on data from 99 subjects for vol-
umes in the left side of the brain (Table I) with a subject-
to-variable (STV) ratio of 6.6. We carried out EFA without
controlling for age and WBV and controlling for either

TABLE I. Exploratory factor analyses of left and right gray matter volumes

Left hemisphere Right hemisphere

Limbic
factor

(factor 1)

Dorso-cortical
factor

(factor 2)

Posterior
factor

(factor 3)

Basal ganglia
factor

(factor 4)

Posterior
factor

(factor1)

Limbic
factor

(factor 2)

Dorso-cortical
factor

(factor 3)

Basal ganglia
factor

(factor 4)

Frontal cortex 8 52 8 3 29 6 47 17
Premotor cortex 49 26 233 227 30 26 34 244
Sensorimotor cortex 13 69 6 22 7 18 67 0
Parietal-occipital cortex 13 71 230 210 26 22 60 0
Orbitofrontal cortex 64 4 220 20 44 59 27 24
Subgenual cortex 83 13 13 225 5 73 10 242
Midtemporal cortex 58 39 23 8 27 56 37 22
Inferior occipital cortex 25 11 75 24 273 35 8 12
Caudate 0 21 28 22 10 211 12 21
Putamen 28 1 25 55 9 7 26 70
Globus pallidus 7 3 214 62 3 3 13 38
Amygdala 53 7 232 22 71 36 21 21
Hippocampus 3 21 3 10 25 15 2 6
Brainstem 222 24 25 210 232 25 26 24
Thalamus 3 28 251 15 52 213 13 5

Figure 2.

SEM of the CSTC circuit latent variables is denoted by ovals and

manifest variables by rectangles. Disturbance factors and errors

(both latent variables) are also represented by ovals as they are not

measured and are respectively indicated with the letter D and E. In

standard SEM language, estimated residuals for the manifest varia-

bles are called ‘‘errors’’ and estimated residuals for the latent varia-

bles are called ‘‘disturbance factors.’’ Thick arrows represent the

structural paths. Thin arrows represent the manifest paths. All cor-

tex, sum of all cortical regional volumes; L cau, left caudate volume;

R cau, right caudate volume; L put, left putamen volume; R put, right

putamen volume; L gp, left globus pallidus volume; R gp, right globus

pallidus volume; L thal, left thalamus volume; R thal, right thalamus

volume; e, measurement error.
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covariate, one at a time. When covariate effects were not
removed, we could not discern a clear factor structure
because of the effects of scaling on the analyses, which
produced one factor that accounted for most of the overall
variance, as well as three other factors that could not be
interpreted. When the effects of only one covariate at a
time were removed, a factorial structure could then be dis-
cerned (less so in the right hemisphere), although its inter-
pretation was difficult for cortical areas because they are
more sensitive to the effects of age and WBV. Thus, we
report results for analyses in which we removed the effects
of both covariates first because those results were most
readily interpretable.
From the covariance matrix obtained after removing the

effects of age and WBV, we extracted four eigenvectors that
accounted for 55, 22, 18, and 13%, respectively, of the total
shared variance. Regions in the left hemisphere that loaded
on the first factor included, in order, the subgenual, orbito-
frontal, andmidtemporal cortices, the amygdala, and the pre-
motor cortex. We interpreted this first factor as a ‘‘limbic sys-
tem.’’ Brain areas that loaded on the second factor included
the sensorimotor, parieto-occipital, and prefrontal cortex. We
interpreted this second factor as a ‘‘dorsal cortical system.’’
The third factor was associated with loadings of opposite
signs for the inferior occipital cortex and left thalamus. We
construed this third factor as a ‘‘posterior system’’. The
globus pallidus and putamen loaded on the fourth factor,
which we interpreted as a ‘‘basal ganglia system.’’

Exploratory Factor Analysis in the

Right Hemisphere

We also performed EFA on data from the same 99 sub-
jects for volumes in the right side of the brain (Table I).
From the covariance matrix obtained after removing the
effects of age and WBV, we extracted four eigenvectors
which accounted for 45, 18, 17, and 14%, respectively (and
94% overall), of the total shared variance. Right-hemi-
sphere brain regions that loaded on the first factor
included, in order, the inferior occipital cortex, thalamus,
orbitofrontal cortex, and amygdala from negative to posi-
tive loadings, which we interpreted as a ‘‘ventral-posterior
system.’’ Brain areas that loaded on the second factor
included the subgenual, orbitofrontal, and midtemporal
cortices, which we interpreted as a ‘‘limbic system.’’ The
third factor was associated with loadings of sensorimotor,
parieto-occipital, and frontal cortices, thus representing a
‘‘dorsal cortical system.’’ Finally, the putamen loaded on
the fourth factor, which also showed negative loadings for
premotor and subgenual cortices. We interpreted this
fourth factor as a ‘‘basal ganglia system.’’ The orbitofrontal
and subgenual regions both loaded onto more than one
factor. Thus across the analyses of the left and right hemi-
spheres, the results from EFA reveal that the brain is
organized into four volumetric systems in both hemi-
spheres, with some minor variation as to the identity of
the loading regions.

Regressions of Factor Scores

Regressions of factor scores with Stroop interference
scores in subjects for whom these scores were available
(N 5 63) were significant in the right hemisphere for the
ventral-posterior system (PE 5 0.00341, P 5 0.02, adjusted
R2 5 0.069) (Fig. 3). Factor scores did not correlate signifi-
cantly with gender, SES scores, or IQ scores. Because some
of these measures were not available for the entire sample,
these correlation analyses may have suffered from reduced
statistical power to detect real effects.

SEM

Modeling CSTC circuits using volumetric measures
without controlling for age or WBV showed an acceptable
overall fit with the data (Model v2 P value 5 0.08, Model
v2/v2 df ratio 5 0.91, NNFI 5 0.98, CFI 5 0.98, RMSEA
estimate 5 0.06, N 5 107). Normalized residuals yielded a
distribution centered on zero, with no residual >2. Small
normalized residuals (<2) with symmetric distribution
centered on zero are preferable, as they indicate that the
model predicts the observed covariances well. All paths

Figure 3.

Correlation of factor scores with behavioral measures (Stroop

scores) Right hemisphere. Scatterplot representing the relation-

ship between scores for the ventral-posterior system (factor 1)

on the y-axis and Stroop scores on the x-axis. The scatterplot

indicates that larger latent volumes for the ventral posterior sys-

tem are correlated with worse performance on the Stroop task

(i.e. inability to suppress automatic responses). Factors scores

are conventionally reported as standardized and centered scores

and they range between 21.83 and 11.86 with raw volumes

that load on this factor ranging from 1,054 mm3 (Right Amyg-

dala) to 54,401.25 mm3 (Parieto-Occipital Cortex).
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were statistically significant (t-values > 1.96), with the
exception of the feedback paths from thalamus to the puta-
men and caudate. Standardized parameter estimates for
significant paths are provided in Figure 4 (Panel A). Three
latent variables had R2 values >0.25 (R2

putamen 5 0.56,
R2
caudate 5 0.43, R2

globuspallidus 5 0.55).
When controlling only for age, the fit of the model to

the observed data was more limited than when not con-
trolling for those effects (Model v2 P value 5 0.0021,
Model v2/v2 df ratio 5 2.05, NNFI 5 0.95, CFI 5 0.96,
RMSEA estimate 5 0.09, N 5 107). None of the values of
normalized residuals was >2. All paths continued to show

t-values >1.96, with the exception of the feedback paths
from thalamus to the putamen and caudate. Standardized
parameter estimates for significant paths are provided in
Figure 4 (Panel B). Three latent variables had R2 values
>0.25 (R2

putamen 5 0.37, R2
caudate 5 0.48, R2

globuspallidus 5

0.60).
When controlling for the effects of scaling across brain

regions by covarying for WBV, the model fit the data well
(Model v2 P value 5 0.15, Model v2/v2 df ratio 5 1.28,
NNFI 5 0.98, CFI 5 0.98, RMSEA estimate 5 0.05, N 5

107). None of the values of normalized residuals was >1.5.
Only cortical–striatal paths and striatal–pallidal paths

Figure 4.

SEM of CSTC circuits. Panel A: Without covariates. Panel B:

Controlling for age effects. Panel C: Controlling for scaling

effects. Panel D: Controlling for age and scaling effects latent

variables are denoted by ovals and manifest variables by rectan-

gles. Disturbance factors and errors are also represented by

ovals as they are not measured and are respectively indicated

with the letter D and E. In standard SEM language, estimated

residuals for the manifest variables are called ‘‘errors’’ and esti-

mated residuals for the latent variables are called ‘‘disturbance

factors.’’ Thick arrows represent the hypothesized structural

paths. Thin arrows represent the manifest paths. Structural paths

for which the parameter estimates are significant are indicated

by thick arrows. Non-significant paths are indicated by thick bro-

ken arrows. Standardized parameter estimates are reported.
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continued to show t-values >1.96. Standardized parameter
estimates for significant paths are provided in Figure 4
(Panel C). Two latent variables showed R2 values >0.25
(R2

putamen 5 0.35, R2
globuspallidus 5 0.28).

Finally, the fully adjusted model constructed from volu-
metric measures obtained after controlling for age and
WBV showed an acceptable overall fit, with the exception
of a non-optimal model v2 P-value (Model v2 P value 5

0.03, Model v2/v2 df ratio 5 1.57, NNFI 5 0.96, CFI 5

0.97, RMSEA estimate 5 0.07, N 5 107). Normalized resid-
uals yielded a distribution centered on zero, with only one
residual >2 (residual referring to the covariance between
volumes of the right caudate and right putamen). Only
paths leading from the putamen or caudate to the globus
pallidus yielded parameter estimates having significant
t-values (>1.96). Standardized parameter estimates for sig-
nificant paths are provided in Figure 4 (Panel D). Only
one latent variable had R2 values >0.25 (R2

globuspallidus 5

0.26).

DISCUSSION

To our knowledge, this is the first study to apply both
Exploratory Factor Analysis and SEM to anatomical brain
measures from a large sample of children, adolescents,
and adults. Factor analyses of volumetric covariances dem-
onstrated that the latent structure of regional brain vol-
umes in each hemisphere is organized into dorsal cortical,
limbic, posterior, and basal ganglia systems. These systems
can be interpreted as latent standardized volumes (they
are standardized because we controlled for scaling effects).
The latent volumes of one system in the right hemisphere
(the posterior system) correlated with behavioral measures
of response inhibition, and we interpreted these findings
as signifying that larger latent volumes in this system are
associated with poorer behavioral performance. Finally, we
used SEM to test and confirm hypotheses concerning
structural connectivity within CSTC circuits. Our findings
indicated that the CSTC model is sensitive to the effects of
age, thus suggesting the presence of strong developmental
determinants of anatomical volumes in cortical-subcortical
pathways. Furthermore, we demonstrated that the causal
paths of volumetric covariance in the CSTC circuit follow
the paths of known anatomical and functional circuitry
described previously in animal studies.

Factor Analyses

Our in vivo evidence for the existence of discrete dorsal
cortical and limbic volumetric systems within the human
brain is similar to findings from prior morphological stud-
ies in humans and animals. One human imaging study, for
example, identified a fronto-parietal and a limbic-paralim-
bic system based on estimates of the degree of heritability
of each regional volume in the brain [Wright et al., 2002].
Furthermore, a multivariate analysis of volumetric meas-
ures from brains in 131 species across three orders (insecti-

vores, bats, and primates) demonstrated that the isocortex
and the olfactory bulb (along with other classically limbic
areas) load onto two separate factors [Finlay and Darling-
ton, 1995].
We also identified a discrete basal ganglia system, com-

prising slightly differing structures in each hemisphere. In
the left hemisphere, this system included the putamen and
globus pallidus, whereas in the right hemisphere, it in-
cluded the putamen together with the subgenual and pre-
motor cortices. These findings in the right hemisphere are
consistent with extensive neuroanatomical evidence sug-
gesting that the ventral striatum is closely linked anatomi-
cally to subgenual cortices [Haber et al., 1995; Heimer,
2003] and that the dorsal striatum is linked anatomically
with the premotor cortex [Herrero et al., 2002; Middleton
and Strick, 2000]. We have no clear explanation, however,
for the differences in factor loadings between hemispheres
identified within this system.
We identified a posterior volumetric system that in-

cluded the inferior occipital cortex and thalamus in both
hemispheres, as well as the orbitofrontal cortex and amyg-
dala in the right hemisphere. Our finding of right-left
asymmetry in the constituent components of this posterior
system (i.e. inclusion of the amygdala and orbito-frontal
cortex on the right side but not on the left) is supported
by the prior observation that volumetric correlations of the
right and left amygdala with other brain regions differ
across hemispheres [Mechelli et al., 2005]. Moreover, these
anatomical asymmetries in the amygdala may have func-
tional correlates. The right amygdala and right visual areas
exhibit enhanced functional coupling, with the right amyg-
dala likely providing top-down modulation of sensory
input to visual areas, possibly biasing right-sided visual
systems toward emotionally salient stimuli [Noesselt et al.,
2005]. This functional distinction of the right and left
amygdala agrees with our findings. We believe that the
left posterior system may represent a simple visual net-
work, whereas the right posterior system represents a ven-
tral posterior emotional–attentional network that includes
not only the occipital cortex and thalamus, but also the
amygdala and the orbitofrontal cortex. This hypothesized
function of the right posterior system is consistent with the
preferential role of the right hemisphere in mediating
attentional processes [Corballis, 2003; Pardo et al., 1991;
Posner and Petersen, 1990] and with the inclusion of the
orbitofrontal cortex (OFC) in an emotional attentional sys-
tem that detects affectively salient stimuli [Corbetta and
Shulman, 2002; Schoenbaum et al., 2006].

Regressions of Factor Scores With Measures

of Cognitive Functioning

We observed a positive association between scores on
the Stroop task and factor scores for the posterior cortical
system in the right hemisphere (Fig. 3), perhaps reflecting
the preferential role of this system for mediating inhibitory
control and attentional processes [Marsh et al., 2006; Peter-
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son et al., 1999]. Indeed, this volumetric system includes
the visual cortices, amygdala, and thalamus, which we
have postulated constitute an emotional–attentional sys-
tem, and all of which participate in the attentional net-
works that subserve performance of the Stroop task
[Compton et al., 2003; Peterson et al., 2002]. Higher factor
scores accompanied worse performance on the Stroop,
suggesting that larger latent volumes of this system are
associated with worse Stroop performance and, by exten-
sion, with poorer emotional-attentional control. This find-
ing is consistent with prior evidence that better intellectual
performance accompanies decreasing thickness of the corti-
cal mantle [Sowell et al., 2001, 2003, 2004].

SEM of CSTC Circuits

Volumetric covariance is often presumed, though it has
not thus far been proved, to represent the presence of
underlying structural or functional circuits across brain
regions that covary in volume. We therefore used SEM to
test the assumption that volumetric covariance represents
underlying anatomical or functional connectivity among
these regions. Our results showed that paths of causal sta-
tistical influence among volumes follow known anatomical
paths within CSTC circuits. Furthermore, SEM demon-
strated that known anatomical connections accounted for
volumetric covariances only under certain conditions. In
the model containing no covariates, all paths were signifi-
cant, except for feedback paths from the thalamus to the
striatum. When controlling only for age, the same paths as
in the unadjusted model remained significant, but the
overall fit for the model was relatively poor. One possible
interpretation for the poorer fit when controlling for age is
that age drives underlying patterns of morphological cau-
sation in the brain.
In contrast, when controlling for scaling effects by cova-

rying for WBV only, the overall fit of the model improved
significantly, which we interpreted as indicating that WBV
obfuscates the underlying patterns of covariance in these
circuits. The effects of WBV may obscure these volumetric
relationships because scaling creates a generalized form of
covariance among brain regions that is not specific to a
given pathway or circuit. Thus, by removing the effects of
WBV on the covariance among volumes, we removed
‘‘noise’’ from the structural model. Although the strength
of individual paths in the model covarying for WBV
appeared smaller than in the prior two models, we empha-
size that the magnitude of the individual parameter
estimates cannot be interpreted reliably across different
models.
Finally, when covarying for both age and WBV, cortico-

striatal and pallido-thalamic paths were no longer signifi-
cant, leaving statistically significant only the paths within
the basal ganglia nuclei themselves. These findings suggest
that the strengths of the cortico-striatal and pallido-tha-
lamic paths are driven primarily by the combined effects

of age and scaling, consistent with findings when covary-
ing for those effects individually. Paths within the basal
ganglia, in contrast, seem to be invariant to age and scal-
ing effects. Thus by hierarchically covarying for differing
covariates, we were able to establish that structural models
should account for the confounding effects of scaling. The
over-sampling of children ensured that we would not dis-
regard the contribution of developmental processes in
establishing cortico-subcortical connections.
We conclude that the effects of age appear to be more

selective and circuit-specific than are those of scaling, and
that these effects likely drive volumetric covariances
between the basal ganglia and other brain regions.
Indeed, white matter tracts that originate or terminate in
the basal ganglia and thalamus are known to mature
through childhood and adolescence [Barnea-Goraly et al.,
2005]. Maturational processes involving both the striatum
and cortex [Marsh et al., 2006; Sowell et al., 1999] could
also plausibly produce volumetric covariation within
CSTC circuits. Similar developmental phenomena have
been noted among cortical areas, with a strengthening of
structural correlations between Broca’s area and the tem-
poral lobe likely reflecting the maturation of language-
related circuits and their underlying white matter tracts
[Lerch et al., 2006].

Limitations

Although our sample size was relatively large, some
investigators believe that the number of subjects included
in a factor analyses should exceed 100 or 200. Neuroimag-
ing samples, however, rarely exceed 200 subjects. We
therefore chose to address the limitation of sample size in
part by ensuring that the ratio of subjects to variables was
greater than 5, a standard criterion for the lower limit on
the numbers of subjects required for an exploratory factor
analysis. We did not apply factor analysis to the left and
the right hemispheres concurrently, because we reasoned
that the high correlation between identical regions across
hemispheres [Mechelli et al., 2005] would produce factors
composed only of homologous regions in the right and left
hemispheres, leaving little variance to be explained by vol-
umetric covariances among non-homologous structures.
Our scheme for parcellating the cerebrum did not provide
regional volumes that followed precise cytoarchitectonic
boundaries, although this is true to varying degrees for all
parcellation schemes of MRI data [Peterson, 2003]. We
note that our use of larger parcellation units offers advan-
tages over finer-grained parcellation schemes, in that
smaller subdivisions contain more measurement error and
greater inter-individual variability [Kennedy et al., 1998],
which would be detrimental to factor analyses involving
those data. Our sample consisted of individuals ranging in
age from 7 to 57 years, allowing us to assess the effects of
age on our measures of volumetric covariation. Clearly,
however, simply controlling statistically for age across the
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sample does not necessarily eliminate all effects of devel-
opment on regional volumes. Regression procedures
account only for a linear effect of age on regional volumes
and the effects of covariates are not identical across all
brain regions. Because we performed individual regres-
sions for each region separately prior to entry of the vol-
umes into factor analyses or SEM, however, we allowed
the effects of age and WBV to vary independently across
regions. Finally, we add that as in all factor analytic tech-
niques, the factor structure that we report should be repli-
cated in an independent sample of subjects using confirm-
atory factor analysis (CFA). The absence of a sufficiently
large replication dataset precluded that analysis.

The Potential Scientific Utility of Latent

Volumetric Variables

Latent volumes may prove useful in the identification of
disease processes that would not be detectable if only indi-
vidual volumes were measured and compared across diag-
nostic groups. Volumetric covariance provides qualita-
tively different information than does the use of individual
regional volumes, and such multivariate techniques are
statistically more powerful than more traditional univari-
ate approaches for the analysis of regional volumes. This
advantage may be especially useful in the study of the
early stages of psychiatric illness, when changes are likely
to be small and distributed. Multivariate analyses similar
to ours have already been successfully employed to study
complex medical datasets [Dempsey et al., 1995; Henessy
et al., 2005]. In general, these techniques provide a useful
framework for the more efficient and statistically more
powerful integration of multidisciplinary and multidimen-
sional datasets, including variables from genetic and devel-
opmental studies [Wright et al., 1999]. Arguably, latent
volumes and the modeling of entire circuits may be more
suitable for correlation with behavioral variables, because
behaviors are likely subserved by distributed networks
rather than by individual regions. More importantly, con-
firmatory models such as ours allow one to minimize mul-
tiple comparisons by dispensing with the need to select a
single brain region to correlate with every other region
[Lerch et al., 2006; Mechelli et al., 2005].
Confirmatory models that explore various anatomical or

functional circuits should be tested to determine whether
pathways within those circuits behave differently in psy-
chiatric patients than in healthy subjects. If volumetric
covariation in the normal brain does indeed follow func-
tional and anatomical pathways, as it appeared to do in
our model, then alterations of connections within the cir-
cuit in disease populations should in principle be detecta-
ble using these models. Structural models of a-priori
defined circuits may disclose specific patterns of abnormal-
ities within different patient populations, ultimately reveal-
ing the disordered brain architecture that underlies specific
neuropsychiatric disorders.
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