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Abstract
Individuals display dramatic differences in social communication even within similar social
contexts. Across vertebrates dopaminergic projections from the ventral tegmental area (VTA) and
midbrain central gray (GCt) strongly influence motivated, reward-directed behaviors.
Norepinephrine is also rich in these areas and may alter dopamine neuronal activity. The present
study was designed to provide insight into the roles of dopamine and norepinephrine in VTA and
GCt and their efferent striatal target, song control region area X, in the regulation of individual
differences in the motivation to sing. We used high pressure liquid chromatography with
electrochemical detection to measure dopamine, norepinephrine and their metabolites in
micropunched samples from VTA, GCt, and area X in male European starlings (Sturnus vulgaris).
We categorized males as sexually motivated or non-sexually motivated based on individual
differences in song produced in response to a female. Dopamine markers and norepinephrine in
VTA and dopamine in area X correlated positively with sexually-motivated song. Norepinephrine
in area X correlated negatively with non-sexually-motivated song. Dopamine in GCt correlated
negatively with sexually-motivated song, and the metabolite DOPAC correlated positively with
non-sexually-motivated song. Results highlight a role for evolutionarily conserved dopaminergic
projections from VTA to striatum in the motivation to communicate and highlight novel patterns
of catecholamine activity in area X, VTA, and GCt associated with individual differences in
sexually-motivated and non-sexually-motivated communication. Correlations between dopamine
and norepinephrine markers also suggest that norepinephrine may contribute to individual
differences in communication by modifying dopamine neuronal activity in VTA and GCt.
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Introduction
Vocal communication is central to successful social interactions, yet dramatic differences
can be observed across individuals in the motivation to communicate even within similar
social contexts. In male songbirds, song production plays a crucial role in mate attraction
(Catchpole and Slater, 2008). Males with elevated concentrations of the steroid hormone
testosterone respond to the introduction of a female conspecific with a dramatic increase in
singing behavior; whereas males with low testosterone do not (Pinxten et al., 2002; Riters et
al., 2000). Interestingly however even in males with similarly elevated concentrations of
testosterone a subset of males fails to respond to females with an increase in singing and
courtship behavior (e.g., (Goodson et al., 2009; Riters et al., 2000)). This suggests that
interactions between steroid hormones and other neurochemical systems are likely critical
for the production of male courtship song. Although aspects of vocal production in
songbirds such as song learning, production, and sensorimotor processing have been
relatively well studied (for recent reviews see (Ball et al., 2008; Brainard, 2008; Brenowitz,
2008; Gentner, 2008; Nordeen and Nordeen, 2008; Theunissen et al., 2008; Wild, 2008)),
little is known about the neural basis of individual differences in the motivation to sing
during conspecific interactions.

Across vertebrates, dopaminergic projections from the midbrain to striatal brain regions
strongly influence multiple anticipatory, motivated, reward-directed behaviors (reviewed in
(Berridge, 2007; Fibiger et al., 1992; Panksepp and Moskal, 2008; Schultz, 2010; Wise,
2005)), including sexually-motivated behaviors (e.g., (Hull et al., 1990; Pfaus et al., 1995)).
In male songbirds, peripheral injections of an indirect dopamine receptor agonist
(GBR-12909) stimulate, whereas antagonists (a D1/D2 antagonist cis-flupenthixol and a D1
antagonist SCH-23390) inhibit sexually-motivated, female-directed singing behavior
(Rauceo et al., 2008; Schroeder and Riters, 2006). Tract-tracing studies identify the
midbrain ventral tegmental area (VTA) and mesencephalic central gray (GCt) as primary
sources of catecholaminergic inputs to song control regions, including area X of the avian
striatum (Fig. 1) (Appeltants et al., 2000; Appeltants et al., 2002; Bottjer et al., 1989;
Castelino et al., 2007; Lewis et al., 1981). In male European starlings immunolabeling for
tyrosine hydroxylase (TH; the rate limiting enzyme for catecholamine synthesis) and
autoradiography for dopamine receptors suggest that dopamine in VTA and GCt is more
tightly coupled to sexually-motivated song compared to song produced in non-breeding
condition males (Heimovics et al., 2009; Heimovics and Riters, 2008). The combined results
of several additional studies in starlings and zebra finches using immunolabeling for
immediate early genes (IEGs), IEG/TH double labeling, and electrophysiological recording
also highlight roles for dopamine neurons in both VTA and GCt in the regulation of
sexually-motivated male song production (Bharati and Goodson, 2006; Goodson et al.,
2009; Hara et al., 2007; Heimovics and Riters, 2005; Yanagihara and Hessler, 2006).

Of the song control regions to which VTA and GCt project (Fig. 1), Area X shows among
the most consistent and extreme differences in song-associated activity or gene expression
across social contexts (e.g., (Hessler and Doupe, 1999; Jarvis et al., 1998; Riters et al., 2004;
Teramitsu et al., 2010)). Area X is a component of the songbird basal ganglia circuit that
underlies song learning and context-appropriate song variability in adults (Doupe et al.,
2005; Leblois et al., 2010; Scharff and Nottebohm, 1991). Dopamine receptor stimulation
influences neuronal activity in area X (Ding and Perkel, 2002; Ding et al., 2003); and
dopamine levels in area X measured using microdialysis are higher during female-directed
than undirected singing (Sasaki et al., 2006). Differential patterns of D1 and D2 receptor
dopamine subtype colocalization with the IEG egr1 (referred to in birds by the acronym
ZENK (Mello et al., 1992)) are also observed during directed and undirected singing in male
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zebra finches (Kubikova et al., 2010). Furthermore, pharmacological blockade of dopamine
D1 receptors in area X disrupts context-dependent changes in song variability in male zebra
finches singing female-directed compared to undirected song (Leblois et al., 2010).

Although VTA and GCt are sources of dopaminergic projections to area X (Fig. 1), both of
these regions are also rich in noradrenergic alpha-2 receptors and the norepinephrine
synthesizing enzyme dopamine beta hydroxylase (DBH; (Heimovics et al., 2011; Heimovics
and Riters, 2008; Mello et al., 1998; Waterman and Harding, 2008)). DBH immunolabeled
fibers in both GCt and VTA are found in close apposition to area X projecting neurons
(Castelino et al., 2007). Past data demonstrate that norepinephrine depletion using the
noradrenergic specific neurotoxin DSP-4 disrupts female-directed song production and
reduces norepinephrine levels in area X (Barclay et al., 1996). DSP-4 also abolishes context-
dependent differences observed in IEG activation in Area X associated with female-directed
compared to undirected song (Castelino and Ball, 2005). These findings suggest that
norepinephrine may modulate individual differences in sexually-motivated singing behavior
by acting directly in area X or indirectly by acting in part on dopamine neurons within VTA
and GCt.

In the present study we used high pressure liquid chromatography to examine levels of
dopamine, norepinephrine, and their metabolites in micropunched samples from area X,
VTA, and GCt in male European starlings (Sturnus vulgaris) singing in the presence of a
female. Courtship in male starlings typically involves a male flying (often away from a
female) to a nesting territory from which he produces high rates of song (rates above those
observed when a female is not present (Eens, 1997; Riters et al., 2000)). Within a group of
breeding condition male starlings however, some males respond to a female with a reduction
in song production (e.g., (Heimovics et al., 2009; Heimovics and Riters, 2007; Riters et al.,
2000)). Given that song in response to a female functions to attract mates (Eens et al., 1990;
Eens et al., 1993), our assumption is that males that elevate song production in response to a
female are sexually motivated. In contrast, we assume that males that reduce song in
response to a female are less or non-sexually motivated (or perhaps sexually inhibited by
competing males). The goal of the present study was to use these naturally occurring
individual differences in the motivation to sing in male starlings to provide further insight
into the role of catecholamines in the motivation to communicate.

Material and Methods
All protocols were approved by the University of Wisconsin Institutional Animal Care and
Use Committee and adhered to methods approved by the National Institutes of Health Guide
for the Care and Use of Laboratory Animals.

Capture and housing
We captured twenty four adult male and ten adult female starlings in November and
December 2004 on a single farm northwest of Madison, WI using fly-in traps. Immediately
after capture, we housed birds indoors in single sex cages (91cm × 47cm × 47cm) in the
University of Wisconsin-Madison Department of Zoology animal facilities on a light cycle
mimicking the natural outdoor photoperiod. In January 2005, we shifted the photoperiod to
18L:6D for six weeks to render the birds photorefractory, a condition in which the
hypothalamic-pituitary-gonadal (HPG) axis is insensitive to photoperiods with more than 11
hr light per 24-hr period (i.e., > 11L:13D) and gonads regress (Dawson et al., 2001). We
then shifted the photoperiod to 6L:18D for six weeks to induce photosensitivity, a condition
in which the HPG axis responds to photoperiods >11L:13D with gonadal recrudescence and
increased circulating levels of steroid hormones (Dawson et al., 2001). Birds remained on
6L:18D until four weeks prior to behavioral observations when they were photoperiod and
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hormone manipulated to induce a breeding season-typical endocrine state and behavior (see
next section).

Hormone implants
Four weeks prior to the first day of behavioral observations, we implanted males with
subcutaneous (s.c.) testosterone (T) implants (two, 14mm lengths of silastic tubing [Dow
Corning, inner diameter (i.d.): 1.47mm; outer diameter (o.d.): 1.96mm] packed for 10mm
with crystalline testosterone proprionate and sealed with silastic glue [Sigma]). We
implanted females with implants of estradiol (E2; two, 17mm lengths of silastic tubing
packed for 13mm with 17β-estradiol sealed and with silastic glue [Sigma]). T and E2
implants were used because past studies in our lab indicate that in captivity, un-implanted
birds are slow to exhibit the full suite of behaviors typical of the breeding season. Past data
using this treatment in a separate group of males resulted in T concentrations of 1539.96 pg/
ml, sd = 711.68, n = 17 (Heimovics et al., 2011), which is within the physiological range
observed in studies of wild caught starlings during the breeding season (Dawson, 1983;
Riters et al., 2002). For implant surgery, we lightly anesthetized each bird using isoflurane
gas anesthesia, and made a small incision in the skin just posterior to the last rib on the left
side. We inserted implants under the skin, sutured the incision, and allowed birds to recover
on a heated pad. After recovery, we assigned each bird a unique combination of colored leg
bands (for individual recognition), placed them back into single-sex cages, and shifted to
them to a photoperiod of 11L:13D.

Behavioral observations
Two weeks after T-implant surgery, we placed males into two separate outdoor aviaries
(3.7m × 2m × 2.8m) in two social groups of twelve birds each. The outdoor aviary contained
seven nestboxes, branches for perching, food, and water. Males habituated to the aviaries for
2 weeks prior to initiation of behavioral observations. We behaviorally tested birds in social
groups because we were interested in examining individual variation in singing behavior as
it occurs within a dynamic social system. We observed social groups for one hour a day for
five days over the course of one week. Each hour-long behavioral observation period
consisted of thirty minutes with a female present in the aviary and thirty minutes without a
female present in the aviary. We counterbalanced the order of each thirty minute session
across days, and used a novel female each day. We used a point sampling technique (Eens et
al., 1990) to quantify song. Specifically, during each thirty minute period we noted at sixty
second intervals if any member of the social group was singing. We used these five days of
behavioral observations to estimate the proportion of time each male spent singing both in
the absence and the presence of a female. All observations took place between 0900 and
1200, and the outdoor photoperiod ranged from 14L:10D to 15L:9D across the entire length
of the experiment. Behavioral data analyses are detailed below in the Data Analysis section.

Tissue Processing
One day after the last day of behavioral observations, we sacrificed males using rapid
decapitation. Brains were removed, snap frozen in isopentane on dry ice, and stored at
−80°C until sectioning. We verified the presence of T-implants at this time, and all males
had implants with some T remaining. We sectioned brains using a cryostat set to −10°C in
the coronal plane into 300μm-thick sections. We identified sections containing area X, VTA,
and GCt using landmarks and a songbird brain atlas (Stokes et al., 1974). We selected these
areas based on our interest in dopamine and motivation and existing literature reviewed in
the introduction. We collected micropunched samples of each brain region using a sample
corer (Fine Science Tools, Foster City, CA). For Area X we used a sample corer with an o.d.
of 3mm and i.d. of 2mm. For GCt and VTA, we used a sample corer with an o.d. of 1.8mm
and i.d. of 1mm. We collected punches bilaterally from Area X and VTA (Fig. 2) and a
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single punch, centered on the midline, from GCt (Fig. 2). We expelled punches into a
microcentrifuge tube cooled to −10°C inside of the cryostat. Microcentrifuge tubes were
subsequently placed on dry ice until all punches from one brain were collected, and then
stored at −80°C until assay.

Quantification of Monoamine Metabolites and Protein
When monoamines are secreted into the synapse, enzymes metabolize them. Thus, as
indices of monoamine secretion, we quantified levels of their principal metabolites (Moore,
1986). Using previously described protocols (Sockman and Salvante, 2008), we measured
tissue concentrations of dopamine and the dopamine metabolites 3,4-dihydroxyphenylacetic
acid (DOPAC) and homovanillic acid (HVA), and norepinephrine and the norepinephrine
metabolite 3-methoxy-4-hydroxy-phenylglycol (MHPG) using reversed-phase high-pressure
liquid chromatography (HPLC) with electrochemical detection (Kilts et al., 1981). Briefly,
we separated compounds using a Monochrom C18 3 μm column (100 × 4.6 mm,
MetaChem) with a mobile phase (1 L, pH 3.5) consisting of sodium phosphate (7.1 g), citric
acid (5.76 g), disodium EDTA (50 mg), sodium octyl sulfonate (400 mg) and methanol
(13%). We maintained electrode potential at 650 mV with respect to an Ag/AgCl reference
electrode. We prepared standard solutions containing a fixed amount (30 ng) of the internal
standard (isoproterenol, Sigma) and variable amounts of each monoamine and their
metabolites. We included a five-point standard curve in each assay (5 × 50 μL injections),
and used linear regression to fit a line through the standard curve points (R2 > 0.99 for each
of the components in each assay).

The HPLC assay was run on single samples. Immediately before assay we added mobile
phase (225 μl) containing 30 ng isoproterenol to each tube. We sonicated the samples and
then centrifuged them at 16,000 g for 15 minutes at 4°C. We aspirated the supernatant and
injected 50 μl from each sample into the HPLC system. We calculated the monoamine and
metabolite contents by first correcting their peak heights for percent recovery of the internal
standard (i.e., the height of the isoproterenol peak) for each sample and then compared the
values to those obtained for the corresponding monoamine and metabolites in the standard
curve.

We measured the protein content of each sample by dissolving the remaining sample pellet
in 100 μl 0.2 N NaOH and performing the Bradford protein-dye binding assay (Quick Start
Bradford Protein Assay, Bio-Rad) with bovine serum albumin (Bio-Rad) as a standard on a
μQuant microplate spectrophotometer (BioTek) (Bradford, 1976).

Data analysis
We summed the point-sampled singing behavior in the presence of a female across the 5
days of behavioral observation. We also summed the point-sampled singing behavior in the
absence of a female across the 5 days of observation. Because data were expressed as a
proportion (number of point samples with song out of 150 (i.e. 5 days with 30 possible point
samples each day)), the sums were then arcsine transformed to improve normality using the
following equation: 2 × arcsine√(# observed songs/150) (as recommended by Lehner
(Lehner, 1996)). Males that produced 50% or more of their total song in the presence of a
female were assigned to the sexually-motivated group. Males that sang less than 50% of
their total song in the presence of a female (that is males that sang most of their song when
no female was present) were assigned to the non-sexually-motivated group. (These groups
are similar to courting and non-courting phenotypes identified in zebra finches by Goodson
and collaborators (Goodson et al., 2009)). We corrected concentrations of dopamine,
norepinephrine, DOPAC, HVA, and MHPG for total level of protein in the punch expressed
as picograms (pg) per milligram (mg) of protein. Data were analyzed using Statistica 6.0
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software (Stat Soft, Inc., Tulsa, OK, USA). We ran repeated measures ANOVAs to examine
the mean number of minutes across the 5 test days at which males were singing with and
without a female present entered as a repeated measures variable and male group (sexually-
and non-sexually-motivated) as a between subjects variable. We ran separate Pearson
correlation analyses to examine the relationship between song in response to a female in
sexually-motivated and non-sexually-motivated males and dopamine, DOPAC, HVA,
norepinephrine, and MHPG in each brain region. When significant correlations were
identified, we followed the correlation analyses with a homogeneity of slopes multiple
regression analysis to determine whether the slopes of the relationships between song and
catecholamine markers differed between males in the sexually-motivated and non-sexually-
motivated groups. If data did not meet the assumptions of parametric statistics, they were
log transformed. In all cases, log transformed data met the assumptions of parametric
statistics. p < 0.05 was considered statistically significant.

We performed multiple regression analyses to provide insight into the possibility that
norepinephrine activity modulates dopamine activity within VTA and GCt (as suggested by
(Castelino et al., 2007)). For these analyses, dopaminergic measures were entered as
dependent variables. Specifically, for GCt and VTA, 3 analyses were run, one with
dopamine, one with DOPAC, and one with HVA entered as the dependent variable. For each
analysis measures of norepinephrine and MHPG and the group to which a male was
assigned (sexually-or non-sexually-motivated) were entered as predictor variables. For
multiple regression analysis of VTA results of both forward and backward analyses were
identical. For analysis of GCt DOPAC and HVA numerical results differed slightly but
significant contributors were identical and the best model based on overall adjusted R2,
residual plots, and the standard error is reported (results of the forward regression in all
cases). Individuals identified as statistical outliers (i.e., individuals with standardized
residuals > 2 times the standard deviation of residuals) were identified and results are
reported without these individuals when they substantially weakened the models (based on
overall adjusted R2, residual plots, and the standard error). This was only the case for GCt
dopamine and GCt DOPAC (detailed in results).

We ran additional multiple regression analyses to provide insight into the extent to which
dopamine in VTA and GCt influences catecholamine activity in area X (a major efferent
projection for these regions; Fig. 1). For these analyses, each of the 5 catecholamine markers
in area X was entered as a dependent variable in separate analyses. For each analysis the
dopamine measures for VTA and GCt were entered as predictor variables. (These measures
were not correlated.) Significant results of both forward and backward analyses were
identical, and no outliers were identified.

Results
Sexually-motivated and non-sexually-motivated males

Fourteen males produced greater than 50% of their total song when a female was present
compared to when no female was present and were assigned to the sexually-motivated
group. Ten males produced greater than 50% of total song when a female was absent
compared to when a female was present and were assigned to the non-sexually-motivated
group. A repeated measures ANOVA revealed a significant interaction (F1,22 = 33.49, p =
0.000008; Fig. 3A and B) but no significant main effects for singing behavior in the
presence compared to the absence of a female in sexually-compared to non-sexually-
motivated males. Post hoc Fisher’s LSD tests indicated that sexually-motivated males
significantly increased singing behavior in response to a female (p = 0.00001); whereas,
non-sexually-motivated males reduced singing behavior in response to a female (p = 0.01;
Fig. 3A and B).
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Paired comparisons revealed no statistically significant differences between sexually-
motivated or non-sexually-motivated males for any catecholamine marker, and these
between subjects comparisons will not be discussed further. For all analyses differences in
sample sizes reflect missing data due to tissue damage or cases in which detectable peaks for
a particular monoamine or metabolite were not identified (indicating a problem with that
measure).

Although behavior varied along a continuum (Fig. 3), significant correlations were identified
between song in response to a female and catecholamine markers in distinct brain regions
only when males were categorized as sexually or non sexually motivated (results presented
below). Correlations were not significant when males from the two groups were combined,
although trends were observed for VTA MHPG (r = 0.43, p = 0.06), GCt dopamine (r =
−0.40, p = 0.06), and GCt MHPG (r = 0.38, p = 0.07; p > 0.18 for all other correlations).

VTA dopamine markers
Dopamine, DOPAC, and HVA in VTA correlated positively with song produced in the
presence of a female in sexually-motivated males (dopamine: r = 0.64, p = 0.017; DOPAC: r
= 0.61, p = 0.026; HVA: r = 0.56, p = 0.045) but not non-sexually-motivated males
(dopamine: r = −0.46, p = 0.301; DOPAC: r = −0.15, p = 0.742; HVA: r = −0.27, p = 0.558;
Fig. 4A-C). Homogeneity of slopes multiple regression analyses indicated that the slopes
differed significantly between the two groups for dopamine (p = 0.03) but not DOPAC (p =
0.229) or HVA (p = 0.148).

VTA norepinephrine markers
Norepinephrine in VTA correlated positively with song in the presence of a female in
sexually-motivated males (r = 0.60, p = 0.031). A non-significant trend was identified for
norepinephrine in VTA to correlate negatively with song in non-sexually-motivated males (r
= −0.74, p = 0.058; Fig. 4D). A homogeneity of slopes multiple regression analysis
indicated that the slopes differed significantly between the two groups (p = 0.003). No
significant correlations between song and MHPG in VTA were identified in either sexually-
motivated or non-sexually-motivated males (p > 0.18 for all correlations; Fig. 4E).

Contributions of norepinephrine and MHPG to dopamine markers in VTA
Results of 3 separate multiple linear regression analyses revealed significant contributions of
both VTA norepinephrine and VTA MHPG concentrations to VTA dopamine, a significant
contribution of VTA norepinephrine concentrations to VTA DOPAC, and a significant
contribution of VTA norepinephrine and VTA MHPG concentrations to VTA HVA
(statistical results presented in Table 1).

GCt dopamine markers
Dopamine in GCt correlated negatively with song in the presence of a female in sexually-
motivated males (r = −0.67, p = 0.017) but not non-sexually-motivated males (r = −0.36, p =
0.304; Fig. 5A). In contrast, DOPAC in GCt correlated positively with song in non-sexually-
motivated males (r = 0.76, p = 0.030) but not sexually-motivated males (r = 0.12, p = 0.710;
Fig. 5B). A homogeneity of slopes multiple regression analysis indicated that the slopes did
not differ significantly between the two groups for dopamine (p = 0.740) but they did differ
significantly for DOPAC (p = 0.042). No significant correlations were identified between
song and HVA in GCt for either sexually-motivated or non-sexually-motivated males (p >
0.50 for all correlations; Fig. 5C).
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GCt norepinephrine markers
No significant correlations were identified between song in the presence of a female for
either sexually-motivated or non-sexually-motivated males and norepinephrine or MHPG in
GCt p > 0.16 for all correlations; Fig. 5D and E).

Contributions of norepinephrine and MHPG to dopamine markers in GCt
Results of 3 separate multiple linear regression analyses revealed a significant contribution
of GCt norepinephrine concentrations to GCt dopamine, a significant contribution of GCt
norepinephrine concentrations to GCt DOPAC, and a significant contribution of GCt MHPG
concentrations to GCt HVA (statistical results presented in Table 1). One outlier was
removed from the analysis of GCt dopamine and one from the analysis of GCt DOPAC
(based on criteria detailed in the Data Analysis section). When these outliers were included,
models were not significant (p = 0.14 and 0.09, respectively).

Area X dopamine markers
Dopamine in area X correlated positively with song in the presence of a female in sexually-
motivated males (r = 0.68, p = 0.015) but not non-sexually-motivated males (r =−0.08, p =
0.839; Fig. 6A). However, a homogeneity of slopes multiple regression analysis indicated
that the slopes did not differ significantly between the two groups (p = 0.25). No significant
correlations between song and DOPAC or HVA in area X were identified for sexually-
motivated or non-sexually-motivated males (p > 0.24 for all correlations; Fig. 6 B and C).

Area X norepinephrine markers
In contrast to dopamine, norepinephrine in area X did not correlate with song in the presence
of a female in sexually-motivated males (r = 0.20, p = 0.536) but correlated negatively with
song in non-sexually-motivated males (r = −0.71, p = 0.031; Fig. 6D). A homogeneity of
slopes multiple regression analysis indicated that the slopes differed significantly between
the two groups (p = 0.022). No significant correlations were identified between song and
MHPG in area X for males singing either sexually-motivated or non-sexually-motivated
song (p > 0.70 for all correlations; Fig. 6E).

Contributions of dopamine in VTA and GCt to markers in area X
Results of 5 separate multiple linear regression analyses revealed a significant contribution
of VTA dopamine concentrations to area X dopamine and significant contributions for both
VTA and GCt dopamine concentrations to area X DOPAC (statistical results presented in
Table 2). Dopamine in VTA and GCt did not contribute significantly to variance in any
other marker.

Discussion
Little is known about the neural regulation of the motivation to communicate in any
vertebrate species. In male songbirds the steroid hormone testosterone clearly plays a role in
sexually-motivated-song production (Ball et al., 2004; Pinxten et al., 2002; Riters et al.,
2000), yet as observed in the present and past studies (e.g., (Heimovics et al., 2009;
Heimovics and Riters, 2007; Riters et al., 2000)) even with similarly high testosterone
concentrations some males do not sing in response to females. This suggests that
neurochemical systems in addition to testosterone must contribute to the production of
sexually-motivated-male song. Given the role of midbrain dopaminergic projections to
striatal brain regions in a variety of anticipatory, reward-directed, motivated behaviors
(reviewed in (Berridge, 2007; Fibiger et al., 1992; Panksepp and Moskal, 2008; Schultz,
2010; Wise, 2005)), we predicted that variation in dopamine activity in VTA and GCt and
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their efferent striatal target, area X would be associated with individual variation in vocal
production. The present results support this idea, highlighting distinct patterns of
catecholamine activity within area X, VTA, and GCt in association with the propensity of
subgroups of males to produce sexually-motivated and non-sexually-motivated song.

In the present study males assigned to the sexually-motivated and non-sexually-motivated
groups sang at similarly high rates; however they differed substantially in the amount of
song they produced in response to a female. Males assigned to the sexually-motivated group
significantly increased song production in response to a female; whereas males assigned to
the non-sexually-motivated group showed a reduction in song output in the presence of a
female. A primary function of male starling song in the breeding season is mate attraction
(Eens et al., 1990; Eens et al., 1993), thus we consider the differences in the context in
which males preferentially sing to reflect distinct differences in the motivational state of
birds in the two groups. Although singing behavior varied along a continuum significant
correlations were only observed between singing and catecholamine markers in specific
brain regions when males were categorized by group, further indicating that males in these
groups belong to distinct subpopulations.

Dopamine markers in area X and VTA correlated positively with sexually-motivated song
Dopamine concentrations in Area X and VTA as well as dopamine metabolites in VTA
correlated positively only with sexually-motivated song. These findings are similar to recent
data from our laboratory in male starlings showing that the density of TH in VTA and Area
X correlated exclusively with sexually-motivated song and not song produced in flocks of
non-breeding condition males (Heimovics and Riters, 2008). These correlations were not
observed for the noradrenergic marker dopamine beta hydroxylase, suggesting they reflected
dopamine innervation. The present results also parallel work in male zebra finches showing
that numbers of VTA neurons double labeled for TH and Fos correlate with courtship song
production (Goodson et al., 2009). Past studies also demonstrate that the activity of
dopaminergic neurons in VTA (Yanagihara and Hessler, 2006) and dopamine concentrations
in Area X (Sasaki et al., 2006) are elevated during female-directed, sexually-motivated song
and low during undirected song. Patterns of D1 and D2 receptor colocalization with egr1
expression are also consistent with lower dopamine release in area X during undirected song
(Kubikova et al., 2010).

In songbirds, tract-tracing studies identify VTA as a source of dopaminergic input to Area X
(Fig. 1) (Bottjer et al., 1989; Lewis et al., 1981), and female-directed singing behavior can
be considered a reflection of sexual incentive motivation. Thus, the present data taken
together with past work highlight dopamine acting within the VTA→Area X neural circuit
as an important modulator of sexual, incentively-motivated vocal communication. Past data
suggest the VTA may play a role in the motivation to engage in directed communication
across contexts and species. For example, correlations have been found between IEG
labeling in VTA and agonistically-motivated male song directed towards another male
(Maney and Ball, 2003), and in rats both dopamine neuron specific lesions in VTA and
dopamine antagonists injected into the VTA selectively reduced vocalizations produced in
anticipation of social interaction (Burgdorf et al., 2007).

Norepinephrine in VTA correlated positively with sexually-motivated song
Norepinephrine in VTA also correlated positively with sexually-motivated song. The role of
norepinephrine in VTA in sexually-motivated song or other sexually-motivated behaviors
has not been well-characterized. In rats, norepinephrine can alter firing of dopamine neurons
in VTA (Arencibia-Albite et al., 2007; Grenhoff and Svensson, 1989; Grenhoff and
Svensson, 1993; Guiard et al., 2008). Thus cross-talk between dopamine and norepinephrine
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in the VTA may fine-tune sexually-motivated song. This idea is supported by the significant
contribution of both norepinephrine and MHPG to variance in dopamine and its metabolites
in VTA detected in the present study.

Norepinephrine in area X correlated negatively with non-sexually-motivated song
The negative correlation found between non-sexually-motivated song and norepinephrine in
area X is consistent with past data in male starlings demonstrating negative correlations
between norepinephrine concentrations in area X and song rate (as well as song bout length)
by males singing alone (i.e., males singing undirected, non-sexually-motivated song;
(Salvante et al., 2010)). We additionally observed a trend (p = 0.058) for norepinephrine in
VTA to correlate negatively with non-sexually-motivated song, which should be examined
in future research. Past data show that DSP-4 depletion of noradrenergic neurons increases
IEG expression in area X during directed singing (Castelino and Ball, 2005), and studies
show that activity in VTA dopamine neurons can be suppressed by norepinephrine (e.g.,
(Guiard et al., 2008)). It is thus possible that the negative correlations between song rate and
norepinephrine in area X and possibly VTA observed here reflect an inhibitory role for
norepinephrine in these regions on non-sexually-motivated singing behavior.

Dopamine markers in GCt correlated with sexually- and non-sexually-motivated song
For males singing sexually-motivated song a negative correlation was found between song
and dopamine concentrations in GCt. This finding is consistent with a past study in male
starlings showing a negative correlation between sexually-motivated song and D1 dopamine
receptors in GCt (Heimovics et al., 2009). This suggests that dopamine activity in GCt may
play an inhibitory role in sexually-motivated song behavior; however, given that HPLC
measures in micropunched tissues do not provide insight into whether dopamine is stored or
used, it is also possible that dopamine activity is elevated in males singing at high rates to
females and that the lower concentrations of dopamine reflect increased use. Indeed in male
zebra finches the numbers of TH/IEG double labeled cells in GCt correlated positively with
sexually-motivated song (Goodson et al., 2009). Given the limitations of correlational
studies using dopamine markers, whether dopamine in GCt serves to stimulate or inhibit
female-directed song must be examined using measures of release or site-specific
manipulations in future work.

For males singing non-sexually-motivated song, a positive correlation was found between
song and DOPAC in GCt. It is possible that increased DOPAC reflects increased dopamine
use, which may be reflected in the trend for a negative correlation between song rate and
dopamine concentrations (i.e., as dopamine is used, it may be depleted). However, why the
same patterns would not be observed for dopamine and its metabolites in GCt or VTA
associated with sexually-motivated song is not clear. Site-specific manipulations of
dopamine or measures of dopamine release using microdialysis are needed to more fully
interpret the functional significance of the directions of relationships observed in this study.
Finally, the finding that dopamine markers in GCt correlate with both sexually- and non-
sexually-motivated song suggest a role for this region in vocal behavior across social
contexts. This idea is supported by past studies implicating GCt in agonistically-motivated
song in response to conspecific males (Heimovics et al., 2009; Maney and Ball, 2003) and
activity in TH positive cells in GCt in undirected song (Lynch et al., 2008).

Evidence that dopamine and norepinephrine may interact in VTA and GCt to regulate song
To provide some insight into the possibility that norepinephrine acts locally within VTA and
GCt to modify activity in dopamine neurons, we statistically examined the extent to which
norepinephrine and MHPG explained variance in dopamine markers within each nucleus
using multiple regression analyses. Variation in norepinephrine markers substantially
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contributed to variance in dopamine markers in both VTA and GCt. Both VTA and GCt
send dopaminergic projections to area X (Fig. 1) (Bottjer et al., 1989; Lewis et al., 1981),
and DBH positive neurons are in close apposition to area X projecting neurons in these
regions (Castelino et al., 2007). Multiple studies in rodents demonstrate that norepinephrine
modulates activity in VTA dopamine neurons through alpha-1 and alpha-2 norepinephrine
receptors as well as dopamine receptors (Arencibia-Albite et al., 2007; Grenhoff and
Svensson, 1989; Grenhoff and Svensson, 1993; Guiard et al., 2008). Dopamine also binds to
norepinephrine receptors in birds and mammals (Cornil and Ball, 2008). The correlations
between norepinephrine and dopamine markers in GCt and VTA found here further suggest
interactions between the two catecholamines in modulating context-dependent vocal
production.

Dopamine in VTA and GCt correlates with dopamine markers in area X
Multiple regression analysis revealed positive correlations between dopamine concentrations
in VTA and dopamine concentrations in area X, consistent with prior studies demonstrating
a strong dopaminergic projection from VTA to area X (Bottjer et al., 1989; Lewis et al.,
1981). In contrast, dopamine concentrations in both VTA and GCt related negatively to
DOPAC concentrations in area X. The low concentrations of dopamine in VTA and GCt
found in association with high concentrations of the dopamine metabolite DOPAC in area X
may reflect the use of dopamine received from VTA and GCt projection to area X.

Conclusions
The results of this study indicate that naturally occurring individual variation in the
motivation to sing in response to a female is reflected in catecholamine activity in
projections from midbrain dopaminergic brain regions to the striatum. Midbrain dopamine
systems are central for the production of multiple incentively-motivated, reward-directed
behaviors. The present results suggest that the evolutionarily conserved role for dopamine
projections from VTA to the striatum in motivated behavior also extends to the motivation
to communicate, and that norepinephrine may modulate individual differences in singing
behavior by acting directly in area X or by modifying activity in dopamine neurons in VTA
and GCt.
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Research highlights

• Individual male starlings increased (sexually motivated) or decreased (non-
sexually motivated) song in response to a female

• Dopamine markers and norepinephrine in VTA and dopamine in area X
correlated positively with sexually-motivated song

• Norepinephrine in area X correlated negatively with non-sexually-motivated
song

• Dopamine markers in GCt correlated negatively with sexually-motivated song
and positively with non-sexually-motivated song

• Individual differences in catecholamine activity in VTA, GCt, and area X may
underlie individual differences in song
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Figure 1.
Dopaminergic projections to the song control system. Sagittal schematic showing
projections from the ventral tegmental area (VTA) and mesencephalic central gray (GCt) to
area X and additional song control nuclei, HVC and the robust nucleus of the arcopallium
(RA). Other abbreviations: LMAN, lateral portion of the magnocellular nucleus of the
anterior nidopallium; DLM, medial portion of the dorsolateral nucleus of the anterior
thalamus; Ram/rVRG, nucleus retroambigualis/rostral ventral respiratory group; nXIIts,
tracheosyringial portion of the hypoglossal nucleus.
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Figure 2.
Illustration of one coronal hemisphere of starling brain. Circles indicate approximate
locations where sample corers were used to microdissect brain tissue from area X (panel A),
GCt and VTA (panel B). Bilateral punches were taken from Area X and VTA. Single,
centered punches were taken from GCt. Abbreviations: A, arcopallium; Cb, cerebellum;
GCt, mesencephalic central gray; HA, apical part of the hyperpallium; HD, densocellular
part of the hyperpallium; HP, hippocampus; ICo, nucleus intercollicularis; mMAN, medial
magnocellular nucleus of the anterior nidopallium; NIII, third cranial nerve; N, nidopallium;
NC, caudal nidopallium; TnA, nucleus taeniae of the amygdala; VTA, ventral tegmental
area.
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Figure 3.
A) Untransformed mean number of minutes + sem and B) the total number of minutes for
each individual at which males in the non-sexually-motivated and sexually-motivated
groups were singing when no female was present and when a female was present. The lines
in panel B connect data points from single individuals. Untransformed data are presented in
these figures to illustrate actual song data with the arcsine transformed values in parentheses
below to aid in interpretation of transformed values in Figs 4 - 6. Analyses were performed
on arcsine transformed data as detailed in the methods. * = significant posthoc results, p <
0.05.
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Figure 4.
Correlations between catecholamine markers in VTA and song. Scatterplots showing
correlations between concentrations of dopamine markers (A - C) and norepinephrine
markers (D and E) and individual variation in singing behavior in non-sexually-motivated
(left column) and sexually-motivated males (right column). Each point represents one
individual and the presence of a solid regression line indicates a significant linear correlation
(p<0.05). * next to marker labels indicates that the slopes of the two correlations for a given
marker differ significantly, p < 0.05.
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Figure 5.
Correlations between catecholamine markers in GCt and song. Scatterplots showing
correlations between concentrations of dopamine markers (A - C) and norepinephrine
markers (D and E) and individual variation in singing behavior in non-sexually-motivated
(left column) and sexually-motivated males (right column). Each point represents one
individual and the presence of a solid regression line indicates a significant linear correlation
(p<0.05). * next to marker labels indicates that the slopes of the two correlations for a given
marker differ significantly, p < 0.05.
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Figure 6.
Correlations between catecholamine markers in area X and song. Scatterplots showing
correlations between concentrations of dopamine markers (A - C) and norepinephrine
markers (D and E) and individual variation in singing behavior in non-sexually-motivated
(left column) and sexually-motivated males (right column). Each point represents one
individual and the presence of a solid regression line indicates a significant linear correlation
(p<0.05). * next to marker labels indicates that the slopes of the two correlations for a given
marker differ significantly, p < 0.05.
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Table 1

Contributions of norepinephrine (NE) markers to dopamine (DA) markers in VTA and GCt based on multiple
regression analyses

DA marker (DV) contributors beta beta s.e. p value

VTA dopamine

adj R2 = 0.76, n = 20, p = 0.000002 VTA NE
VTA MHPG

0.96
−0.31

0.12
0.12

0.000
0.019

VIA DOPAC

adj R2 = 0.70, n = 20, p = 0.000003 VTA NE 0.84 0.13 0.000

VIA HVA

adj R2 = 0.60, n = 20, p = 0.0002 VTA NE
VTA MHPG

0.51
0.46

0.16
0.16

0.005
0.009

GCt dopamine

adj R2 = 0.25, n = 21, p = 0.012 GCt NE 0.54 0.19 0.012

GCt DOPAC

adj R2 = 0.34, n = 19, p = 0.013 GCt NE 0.50 0.20 0.022

GCt HVA

adj R2 = 0.28, n = 22, p = 0.016 GCt MHPG 0.46 0.19 0.027
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Table 2

Contribution of dopamine (DA) in VTA and GCt to markers in area X based on multiple regression analyses

Marker (DV) contributors beta beta s.e. p value

Area X dopamine

adj R2 = 0,32, n = 16, p = 0.013 VTA DA 0.60 0.21 0.013

Area X DOPAC

adj R2 = 0.49, n = 16, p = 0.005 VTA DA
GCt DA

−0.79
−0.59

0.21
0.21

0.002
0.013
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