
Role of Procoagulant Microparticles in Mediating Complications 
and Outcome of Acute Liver Injury/Acute Liver Failure

R. Todd Stravitz1, Regina Bowling2, Robert L. Bradford3, Nigel S. Key3, Sam Glover2, Leroy 
R. Thacker4, and Don A. Gabriel2,3

1Section of Hepatology and Hume-Lee Transplant Center, Virginia Commonwealth University, 
Richmond, VA

2Invitrox, Inc., Research Triangle Park, NC

3Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC

4Department of Biostatistics, Virginia Commonwealth University, Richmond, VA

Abstract

Microparticles (MPs), membrane fragments of 0.1–1.0 μm, are derived from many cell types in 

response to systemic inflammation. Acute liver failure (ALF) is a prototypical syndrome of 

systemic inflammatory response syndrome (SIRS) associated with a procoagulant state. We 

hypothesized that patients with ALF develop increased procoagulant MPs in proportion to the 

severity of systemic complications and adverse outcome. Fifty patients with acute liver injury 

(ALI), 78% of whom also had hepatic encephalopathy (HE; ALF), were followed until day 21 

after admission. MPs were characterized by Invitrox Sizing, Antigen Detection and Enumeration, 

a light-scattering technology that can enumerate MPs as small as 0.15 μm, and by flow cytometry. 

Procoagulant activity was assessed by a functional MP-tissue factor (MP-TF) assay. Sixteen 

patients (32%) died and 27 (54%) recovered without liver transplantation (LT). Total MPs (0.15–

1.0 μm) were present in nearly 19-fold higher concentrations in ALI/ALF patients, compared to 

healthy controls (P < 0.0001). MP-TF assays revealed high procoagulant activity (9.05 ± 8.82 

versus 0.24 ± 0.14 pg/mL in controls; P = 0.0008). MP concentrations (0.28–0.64 μm) were higher 

in patients with the SIRS and high-grade HE, and MPs in the 0.36–0.64-μm size range increased in 

direct proportion to SIRS severity (P < 0.001) and grade of HE (P < 0.002). Day 1 MPs (0.28–0.64 

μm) correlated with laboratory predictors of death/LT (higher phosphate and creatinine; lower 

bicarbonate), and day 1 and 3 MPs were higher in patients who died or underwent LT, compared to 

spontaneous survivors (P ≤ 0.01). By flow cytometry, 87% of patients had circulating CD41+ MPs, 

indicating platelet origin. Conclusion: Highly procoagulant MPs of specific size ranges are 

associated with the SIRS, systemic complications, and adverse outcome of ALI/ALF. MPs may 

contribute to the multiorgan system failure and high mortality of ALF.
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Acute liver failure (ALF), the clinical syndrome subsequent to acute liver injury (ALI), is 

characterized by coagulopathy, hepatic encephalopathy (HE), and, frequently, death without 

liver transplantation (LT).1 An intense systemic inflammatory response syndrome (SIRS),2 

often in the absence of infection, predicts multiorgan system failure (MOSF) and death.3 

Although proinflammatory cytokines originating from the necrotic liver may trigger the 

systemic complications of ALF, mediators of the syndrome are incompletely defined, and 

others with effects on vascular endothelium and hemostasis likely coexist.4

Although abnormalities in hemostasis are an invariable feature of ALF syndrome, patients 

rarely develop bleeding complications despite dramatically elevated international normalized 

ratio of prothrombin time (INR).5 Indeed, patients with ALF appear more prone to 

thrombotic, rather than bleeding, complications,6 and intrahepatic thrombosis may 

exacerbate the initial injury.7 Recently, we6,8 and others9 have suggested that patients with 

ALF generally maintain normal or hypercoagulable global hemostasis, as determined by 

thromboelastography (TEG) and thrombin generation assays. Moreover, maximal clot 

strength by TEG increases in proportion to the number of SIRS components, possibly 

resulting from increased release of factor VIII and von Willebrand factor from activated/

injured endothelial cells (ECs),10 providing a plausible explanation for the absence of 

bleeding, even in the most critically ill subjects with the highest INR.

In the presence of a relatively prothrombotic state, patients with ALF also frequently 

develop thrombocytopenia. 11 In other acute illnesses characterized by a prominent SIRS, 

such as sepsis, thrombocytopenia portends an ominous prognosis,12–14 particularly in 

patients with declining platelet counts after admission. 15 Although platelet fragmentation is 

well recognized in sepsis as part of disseminated intravascular coagulation (DIC), platelet 

fragmentation has not been studied in patients with ALF, who often have a DIClike 

phenotype, except for factor VIII levels, which tend to be low in DIC, but very high in 

ALF.10,16

Microparticles (MPs) are membrane fragments (ranging in size from 0.1–1.0 μm) derived 

from many cell types.17 Activation of cells or platelets by systemic inflammation initiates an 

enzymatically catalyzed reaction whereby chards of plasma membrane bleb inside out into 

the circulation, exposing procoagulant phosphatidylserine and cellular epitopes conferring 

functionality. MPs are particularly prothrombotic when they display tissue factor (TF), a 

transmembrane protein.18,19 Increasing experimental evidence suggests that MPs play a 

functional role in regulating vascular tone in patients with cirrhosis20 and sepsis,21 

conditions that bear many similarities to ALF syndrome.22 Recent advances in light-

scattering technology have permitted the enumeration and sizing of very small MPs of 0.15–

0.5 μm, below the limit of detectability by standard flow cytometry, allowing an exploration 

of the role of MPs in disease pathogenesis.23

We hypothesized that patients with ALI/ALF may develop increased procoagulant MPs in 

plasma as a function of the severity of the SIRS. Furthermore, we sought to explore a 

potential pathogenic role of MPs in the systemic complications and outcome of patients with 

ALI/ALF.
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Patients and Methods

Patients

This work was approved by the Ancillary Studies Committee of the Acute Liver Failure 

Study Group (ALFSG), and patients or their nearest of kin provided informed consent under 

the ALFSG Registry modified for the collection of platelet-poor plasma (PPP) by the 

institutional review board of Virginia Commonwealth University (VCU; Richmond, VA). 

Fifty consecutive patients with ALI/ALF were recruited prospectively from admissions at 

VCU Medical Center. ALI was defined as liver injury in a patient with no known previous 

liver disease, an admission INR of ≥1.5, and a duration of illness of ≤26 weeks. ALF was 

defined as ALI in the presence of HE. Some patients in the current study population also 

participated in two previous studies exploring hemostasis in ALI/ALF.6,8 For the present 

study, 13 healthy volunteer controls were also recruited for the collection of 5 mL of whole 

blood for plasma. Controls were of similar age (39 years) and gender distribution (54% 

female) as the study population (P = 0.6 and 0.2, respectively).

SIRS components were determined at time of admission to the study by standard criteria, 

and the presence of the SIRS was defined as two to four positive SIRS components.24

Complications of ALI/ALF, including bleeding, thrombosis, and infection, were defined 

previously6 and occurred late after admission (on or after day 3). Bleeding sites included 

gastric mucosal erosions (N = 6) and cutaneous (N = 3), none of which lead to the need for 

blood transfusion. Thrombotic events included occlusion of renal replacement therapy 

(RRT) catheters (N = 6), portal venous thrombosis (N = 2), and limb vessel thrombosis (N = 

1). Sites of infection included lung (N = 5), urine (N = 4), blood (N = 3), and ascites (N = 1) 

and were identified relatively late after admission (>3 days after admission). As per ALFSG 

protocol, outcomes (death, LT, or transplantfree survival [TFS]) were determined at day 21 

after admission.

Laboratory Methods

Standard laboratories were collected on admission to the hospital (day 1) and daily for 7 

days. For the analyses herein, laboratories drawn on days 1 and 3 after admission were 

analyzed. Whole blood from days 1 and 3 was also collected for PPP in 5-mL citrated 

Vacutainer tubes. Because enrolled patients were purposely chosen to represent a wide range 

of liver injury severity, blood was drawn by in-dwelling venous catheters, radial artery 

catheters, and butterfly needle catheters, depending upon whether patients were in a floor 

bed or intensive care unit, and the availability of vascular access. Blood was centrifuged at 

1,500×g for 20 minutes at room temperature, aliquotted, and PPP was frozen at −80°C 

within 2 hours of drawing.

MP Sizing and Enumeration—MPs were analyzed by Invitrox Sizing, Antigen 

Detection, and Enumeration (ISADE; Invitrox, Inc., Research Triangle Park, NC).23 Batches 

of 10–20 PPP samples, randomly selected, were injected into the detection chamber using a 

fixed volume of 200 μL/sample. Testing time for sizing and enumeration was 6 minutes/

sample. To eliminate any contribution from buffer/diluent, background counts were 
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subtracted from each sample result. The concentration of MPs was recorded as log10 MP/mL 

for the following size distributions: 0.15–0.27, 0.28–0.35, 0.36–0.64, and >0.64 μm. The 

ability of ISADE to resolve a mixture of standard control polystyrene beads with known 

sizes (0.2, 0.24, 0.3, 0.35, 0.4, and 0.5 μm) is shown in Fig. 1A. Both the size and number of 

beads were accurately reported with a small scatter of size around each peak, which resulted 

from a small variation in bead size, confirmed by scanning electron microscopy (SEM).

MP tissue factor (MP-TF) activity assay. MPs were isolated from 250 uL of PPP by 

centrifugation (20,000×g for 30 minutes at 4°C). The MP pellet was resuspended by 

sonication in 250 uL of HEPES-buffered saline containing 0.5% bovine serum albumin 

(BSA) (20 mM of HEPES, 120 mM of NaCl, and 1 mg/mL of BSA). A previously 

described25 two-stage chromogenic assay was employed with the following modifications. 

First, MPs were incubated for 2 hours with 2.5 mM of CaCl2, 1 nM of factor VIIa, and 150 

nM of factor X (FX) in the presence and absence of a TF blocking antibody (Ab). Next, 

absorbance measurements (to measure generated FXa) were made for every 30 seconds for 

30 minutes after the addition of ethylenediaminetetraacetic acid and FXa chromogenic 

substrate (Pefachrome 8595; Centerchem, Inc., Norwalk, CT). TF activity was calculated in 

relation to an Innovin TF standard.

Flow cytometry was performed on a Becton Dickinson BD LSRII (Becton Dickinson, 

Franklin Lakes, NJ) as per International Society on Thrombosis and Hemostasis 

standardization.26 Briefly, PPP (10 μL) at 37°C was stained with Ab for 15 minutes. 

Secondary Ab was added for an additional 10 minutes. Samples were then diluted with 0.9 

mL of Annexin V binding buffer (BD) with or without calcium. An equal volume of 

Beckman Coulter Flow-Count beads (Beckman Coulter, Inc., Brea, CA) were added to the 

samples. Ten thousand sample events were collected within the MP gate, and results were 

compared to isotope controls.

Statistical Analyses

MP concentrations in each size distribution were log10-transformed for analysis. Continuous 

variables were analyzed for normality of distribution and expressed as mean ± standard 

deviation (SD) or median (range) and analyzed by analysis of variance or Wilcoxon’s/

Kruskal-Wallis’ rank-sums test, as appropriate. Categorical variables were analyzed by chi-

square test and correlation of continuous data by Pearson’s correlation (r value). Both uni- 

and multivariate logistic regression was used to model TFS using demographic and MP data. 

For stepwise logistic regression modeling, a P = 0.25 significance level was required for 

entry into the model, whereas a P = 0.05 significance was required for a covariate to remain 

in the model. Data were analyzed using JMP 8.0, and multivariate analyses were performed 

with SAS (SAS Institute Inc., Cary, NC). Significance was defined as a P value ≤0.05.

Results

Relationship of Baseline Patient Characteristics to Outcome

Demographic, clinical, and laboratory parameters of the study population are depicted in 

Table 1 according to outcome, either spontaneous recovery (TFS) or LT/death. Mean age of 
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the entire population was 43 years, approximately two thirds were women, and half had 

acetaminophen (APAP) hepatotoxicity. Etiologies of liver injury in the non-APAP group 

included hepatitis B (in 7), idiosyncratic drug reactions (in 6), autoimmune hepatitis (in 5), 

indeterminate (in 3), and ischemia/herpes simplex virus/heat shock/Amanita mushroom 

poisoning (in 1 each). Hepatic encephalopathy (ALF) was present in 39 patients (78%) on 

admission, 24 of whom (62%) developed high-grade (grade 3/4) encephalopathy within the 

first 7 days of admission. The SIRS was present on admission in 28 patients (56%). In 

univariate analysis, predictors of death/LT included older age (P = 0.017), non-APAP 

etiology (P = 0.010), development of high-grade HE (P = 0.005), presence of SIRS on 

admission (P = 0.019), higher admission lactate (P < 0.0001), phosphate (P = 0.037), total 

bilirubin (P = 0.016), activated partial thromboplastin time (aPTT; P = 0.010), and factor 

VIII (P = 0.013), and lower alanine aminotransferase (ALT; P = 0.0003), bicarbonate (P = 

0.019), and fibrinogen (P = 0.007).

Enumeration, Sizing, and Procoagulant Activity of Microparticles in Plasma of Patients 
With ALI/ALF, Compared to Healthy Controls

Three dominant MP size ranges were detected in plasma from ALF patients and healthy 

controls (0.15–0.27, 0.28–0.64, and >0.64 μm; Fig. 1B). Of total MPs in the range of 0.15–

1.0 μm, a mean of 99.5% were <0.5 μm, the size limit of detection of standard flow 

cytometry (data not shown). Mean total MPs (0.15–1.0 μm) in patients with ALI/ALF were 

present in nearly 19-fold greater number than healthy controls of similar mean age and 

gender distribution (Fig. 2A; P < 0.0001). MPs of all size ranges were present in 

significantly greater concentrations in patients with ALI/ALF than in healthy controls (data 

not shown). TF-dependent procoagulant activity of MPs was determined using an in-house 

MPTF assay. Mean MP-TF activity was 38-fold higher in PPP from 34 ALI/ALF patients, 

compared to 13 healthy control patients (9.05 ± 8.82 versus 0.24 ± 0.14 pg/mL, respectively; 

Fig. 2B; P = 0.0008).

Relationship of MP Number and Size to Admission Laboratories and Late Complications of 
ALF

Table 2 depicts the relationship of log10 MP number/mL according to size with 

complications and laboratories on admission for ALI/ALF. Concentrations of large MPs 

(>0.64 μm) were present in significantly greater number in plasma from patients with non-

APAP, compared to those with APAP hepatotoxicity, but were otherwise similar in patients 

with and without the SIRS on admission and those who developed specific complications of 

ALF. Significant differences were also not observed in concentrations of the smallest MPs 

(0.15–0.27 μm) according to etiology of liver injury, the presence of the SIRS, or specific 

complications of ALF. In contrast, concentrations of MPs of intermediate size (0.28–0.64 

μm) were higher in patients with the presence of the SIRS on admission (9.19 ± 0.91 with 2–

4 SIRS versus 8.71 ± 0.51/mL with 0–1 SIRS; P = 0.033), and those in the 0.36–0.64-μm 

size range were particularly closely related to the number of SIRS on admission (Fig. 3A; P 
= 0.0002). Similarly, MPs of intermediate size (0.28–0.64 μm) were present in higher 

concentration in patients with high-grade HE (grade 3–4) than those with grade 0–2 

encephalopathy (9.24 ± 0.95μm versus 8.74 ± 0.52/mL, respectively; P = 0.026), and those 

in the 0.36–0.64-μm size range were again particularly closely related to the individual grade 
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of encephalopathy (Fig. 3B; P < 0.002). MPs of intermediate size range were also present in 

higher concentration in patients who developed late (after day 3) complications of minor 

bleeding (none requiring blood transfusion) and renal failure requiring RRT. MP 

concentrations of any size range were not significantly different in patients who developed 

infectious or thrombotic complications, compared to those who did not (Table 2A).

Concentrations of MPs of intermediate size range (0.28–0.64 μm), and particularly those in 

the 0.36–0.64-μm range, were also the most strongly related to laboratories associated with 

the SIRS and poor outcome after ALF (Table 2B). Specifically, higher MP concentrations 

were associated with higher phosphate (r = 0.52; P < 0.0001), creatinine (r = 0.31; P = 

0.030), and factor VIII (r = 0.38; P = 0.029) as well as lower bicarbonate (r = −0.44; P = 

0.002) and ALT (r = −0.37; P = 0.009). MP concentrations in the 0.28–0.64-μm size range 

also directly correlated with MP-TF activity in the 34 patients in whom these assays were 

performed (r = 0.43; P = 0.012).

Relationship of MP Concentration and Size to Outcome of ALI/ALF

MPs of intermediate size (0.28–0.64 μm) were significantly related to the outcome of 

ALI/ALF at day 21 (Fig. 4), whereas MPs of smallest (0.15–0.27 μm) and largest (>0.64 

μm) size ranges were not (data not shown). MP log10 concentrations of MPs of 0.28–0.64 

μm on day 1 were greater in patients who died or were transplanted by day 21 than in 

transplantfree survivors (9.31 ± 0.94 versus 8.71 ± 0.51/mL; P = 0.006; Fig. 4A). Similarly, 

MP concentrations in plasma from day 1 were higher in patients who died, compared to 

those who survived overall (Fig. 4B; P = 0.010). MP concentrations in plasma from day 1 

correlated modestly with concentrations in samples from day 3 (r = 0.39; P = 0.012), which 

were available in 43 patients; 3 patients died between days 1 and 3. MP concentrations in the 

intermediate size range increased from days 1 to 3 in 20 patients and decreased in 23 

patients, but the changes between days 1 and 3 were not significantly related to outcome 

(data not shown). However, MP concentrations in plasma from day 3 were also higher in 

those who died or underwent LT by day 21 than in transplant-free survivors (Fig. 4C; P = 

0.0002) and in patients who died, compared to those who survived overall (Fig. 4D; P < 

0.05). Concentrations of MPs greater than ~log108.5 in day 3 plasma identified all but 1 

patient who died or underwent LT (Figs. 4C,D).

Because certain static patient characteristics were found in univariate analyses to affect 

outcome and MP concentrations (Tables 1 and 2), we performed stepwise multivariate 

logistic regression analysis using predictors with P < 0.25 (age, gender, and etiology) to 

determine whether MP concentrations were independently associated with death/LT. Only 

MP concentration (0.28–0.35, 0.36–0.64, or 0.28–0.64 μm) was found to be independently 

associated with outcome in the final multivariate models across the three size ranges (Table 

3). In the first model, each 10-fold increase in the number of MPs of 0.28–0.35 μm size 

increased the likelihood of death/LT by 4.9-fold (P = 0.042), whereas APAP etiology 

decreased the likelihood of death/LT by approximately 75% (P = 0.038). In the second 

model, each 10-fold increase in MP of 0.36–0.64 μm size increased the likelihood of 

death/LT by 11-fold (P = 0.003), whereas APAP was not an independent predictor of 

outcome. In the third model, each 10-fold increase in MP of 0.28–0.64 μm size increased the 
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likelihood of death/LT by 6.8-fold (P = 0.027), whereas APAP etiology was also not an 

independent predictor of outcome.

Phenotyping of MPs

Using Abs against specific cell membrane markers, we performed flow cytometry on PPP 

from a subset of 31 patients with ALI/ALF. Markers were chosen according to sites of injury 

in ALF and known sources of MPs in circulation in patients with prominent SIRS (platelets, 

hepatocytes, monocytes, and ECs). CD41, a marker of platelet membranes, was detected in 

PPP from 27 of 31 (87%) patients (Fig. 5). Asialoglycoprotein receptor (ASGPR), a specific 

marker of hepatocyte plasma membranes, was present in the MP fraction of 7 (23%) 

patients. In contrast, CD18+ MPs derived from monocytes and CD144+ MPs derived from 

ECs were detected in a small minority of plasma samples (3 and 1 patients, respectively). 

Although there were no significant associations between phenotypes and severity of ALI/

ALF, the numbers of patients in these subgroups was too small to analyze. Thus, flow 

cytometry determined that platelets are the predominant source of circulating MPs in 

patients with ALI/ALF.

Discussion

The data presented suggest that plasma MP concentrations of a specific size range are 

associated with the systemic complications and adverse outcome of patients with ALI/ALF, 

and that MPs thereby represent an important link between systemic inflammation and 

activation of hemostasis in this syndrome. Specifically, higher concentrations of MPs (0.28–

0.64 μm) were observed in patients with the SIRS, high-grade HE, and in those who 

developed renal failure and/or minor bleeding complications, and correlated with laboratory 

predictors of poor outcome (phosphate, bicarbonate, and creatinine). Furthermore, plasma 

MP concentrations were significantly higher in patients who died or underwent LT than in 

spontaneous survivors and higher in patients who died, compared to those who survived; 

multivariate logistic regression analysis identified MPs in the 0.28–0.64-μm range as 

independently associated with death/LT, particularly in the 0.36–0.64-μm range. Although 

MPs of multiple phenotypes were present, the majority of patients had detectable MPs of 

platelet origin, and MP-TF assays demonstrated that circulating MPs in these patients were 

markedly procoagulant.

In most previous publications, the detection and characterization of MPs has been impaired 

by limitations in technology that relied on flow cytometry.23 Specifically, flow cytometry 

cannot reliably size and enumerate MPs <0.5 μm, an important point of emphasis 

considering our finding that >99% of circulating MPs in patients with ALF were <0.5 μm. 

ISADE, a novel light-scattering technology, determines particle size directly from the 

intensity of light scattered at a defined angle, assessing single particles one at a time, and 

resolving MPs accurately to a size of 0.15 μm. The current work demonstrates the power of 

this technology over standard flow cytometry because it allowed the accurate enumeration of 

MPs in the 0.28–0.64-μm range, where the most important differences were observed in our 

study population. A recent investigation of hemostasis in 20 patients with ALF found a 4-

fold increase in TF-independent procoagulant activity in the MP fraction of PPP, compared 
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to healthy controls,9 supporting our findings using ISADE and flow cytometry. However, 

such functional assays do not provide information about MP size distribution or cell of 

origin.17

The ability of ISADE to enumerate MPs by size may represent a distinct advantage of this 

technology, because size profoundly affects MP physical properties and functionality and 

therefore likely determines specificity. For example, MPs of specific size differ in surface 

area and angles of curvature, which, in turn, influences the surface chemistry and stability of 

the MP. Smaller MPs carry smaller numbers of epitopes and are more adherent to cell 

surfaces because the entropy term for the interaction is smaller. They also display greater 

distortion of epitopes bound to their surface because of their greater angle of curvature. In 

contrast, larger MPs require higher amounts of energy to stabilize interaction between a 

target cell and the MP. Particle size also affects its distribution within the microcirculation. 

Therefore, the findings in the present work that MPs of 0.28–0.64 μm correlate with many 

aspects of ALF syndrome, and that the 0.36–0.64-μm size range correlates particularly 

strongly, may be highly relevant.

Increasing experimental evidence suggests that MPs are effectors of inflammation and 

coregulators of hemostasis and/or thrombosis in acute and chronic diseases.27–30 In patients 

with sepsis, MPs play an important role as messengers from inflammatory cells to ECs, 

myocardial cells, and smooth muscle cells, leading to microcirculatory thrombosis, 

peripheral tissue ischemia, and circulatory collapse.21 These features of septic shock also 

characterize patients with ALF with MOSF.2 Platelet MPs, in particular, are candidate 

effectors of sepsis and ALF syndromes, because patients with both conditions may develop 

microvascular thrombosis leading to peripheral tissue hypoxia. 31,32 The data reported herein 

support a pathogenic role for MPs in the 0.28–0.64-μm size range in mediating ALF 

syndrome. The direct correlation between MP number and factor VIII levels also suggests 

that MPs may play a role in vascular endothelial cell activation/injury of ALF, the severity of 

which directly correlates with mortality. 10,33 Whether MPs serve as mediators of the 

systemic complications of ALF or are simply biomarkers of inflammation cannot be 

determined conclusively from our data; however, it appears likely that they represent both 

the cause and the effect of systemic inflammation.

Recent studies have also incriminated MPs in the pathogenesis of chronic liver diseases 

(CLDs).30 Patients with cirrhosis have increased circulating MPs derived from leukocytes, 

ECs, and hepatocytes, compared to healthy controls, and concentrations of MPs increase 

with increasing severity of cirrhosis.20 MPs isolated from PPP of subjects with cirrhosis 

were shown in vitro and in experimental animals to impair vasoconstrictor response and may 

thereby cause the vasoplegia of end-stage liver disease. Similarly, T-lymphocyte-derived 

CD4+ and CD8+ MP numbers were higher in patients with nonalcoholic fatty liver disease 

and chronic hepatitis C than healthy controls and correlated with disease activity.34,35 In 

contrast to the present work, the number of CD41+ (platelet-derived) MPs in these 

populations with CLD were not significantly higher than healthy controls nor were they 

proportional to the severity of disease. However, both of these studies were performed using 

flow cytometry and may have thereby missed a possible effect of platelet-derived MPs, most 

of which (as shown herein) are below the limit of detection by flow cytometry. These studies 
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and the present work suggest that increased production of platelet MPs may be restricted to 

acute conditions characterized by a prominent SIRS.

In addition to systemic effects of MPs implied by the association of MP concentrations and 

systemic complications of ALF, procoagulant MPs may also serve to exacerbate the primary 

liver injury. In a mouse model of APAP hepatotoxicity, activation of coagulation within the 

necrotic liver increases the primary APAP-induced injury and is greatly ameliorated by 

heparin administration.7 Furthermore, the prothrombotic effect of APAP is also greatly 

ameliorated in mice expressing low levels of TF, providing indirect evidence that liver-

derived TF may mediate the activation of coagulation.7 Other experimental models also 

support a role for secondary activation of coagulation within the acutely injured liver in the 

pathogenesis of liver failure.36,37 Because thrombin generation requires exposure of anionic 

phospholipids on cellular and/or MP surfaces, intrahepatic MPs would be reasonable 

candidate platforms on which coagulation occurs.

MP-TF assays have also shown that the population of circulating MPs is highly procoagulant 

in a TF-dependent manner. Although this study did not determine the cellular origin of the 

TF-expressing MPs, the measured levels are among the highest we have ever observed in a 

variety of prothrombotic conditions, including cancer,38 sickle cell disease,39 and human 

immunodeficiency virus (Baker and Key, unpublished data). Furthermore, these levels 

exceed, by 3- to 4-fold, the transient peak level of monocyte-derived MPTF activity in 

plasma that we have measured in healthy volunteers receiving endotoxin.40 Although these 

intriguing observations might be explained by the release of TF from the necrotic liver into 

the circulation, proof of this hypothesis awaits confirmation.

There are important limitations to the current study. First, we recognize that the use of flow 

cytometry to phenotype MPs could not determine the cellular origin of most of the MPs in 

the 0.28–0.64-μm size range because of the above-noted poor sensitivity of this technology 

to detect MPs <0.5 μm. Unfortunately, the current state of technology for phenotyping MPs 

is limited to flow cytometry, which indicated that platelets are the major species of larger 

MPs in the circulation. We assume that the smaller MPs of 0.28–0.50 μm are part of a size 

continuum, but proof requires the development of new methods. Second, the manner in 

which blood was drawn for PPP could not be standardized, because the study population 

represented a wide range of acuity of illness. Therefore, less acutely ill patients were more 

likely to have had blood sampled from a butterfly catheter during a brief use of a venous 

tourniquet, and those more acutely ill were more likely to have had blood samples from 

indwelling central venous or radial artery catheters without the use of a tourniquet. We 

speculate that MP number would be increased by the former mode of blood collection. 

However, MP number was higher in the latter population, which would argue that the 

manner of collection did not bias our results.

In conclusion, the data presented suggest that MPs of 0.28–0.64 μm are independent 

predictors of systemic complications and poor outcome in patients with ALI/ALF and 

support a pathogenic role of MPs in ALF syndrome, rather than simply representing markers 

of disease acuity. The marked elevation of MP-TF activity provides an additional mechanism 
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by which patients with ALI/ALF maintain normal or hypercoagulable global hemostasis and 

rarely experience significant bleeding complications.
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Fig. 1. 
MP charcterization by ISADE. (A) Demonstration of the ability of ISADE to resolve a 

mixture of polystyrene beads with sizes of 0.2, 0.24, 0.3, 0.35, 0.4, and 0.5 μm. Both the size 

and number of beads were accurately reported. The low counts noted on either side of each 

bead size results from a small variation in bead size, confirmed by SEM. (B) Enumeration 

and sizing of MPs in PPP from a patient with ALF from disulfuram. Tracings from two 

different freeze-thawed aliquots are shown, demonstrating the small intersample variability 

of the results. Three distinct size ranges were identified, separated by solid black lines. Mid-

sized MPs of 0.28–0.64 μm were most closely associated with ALF complications, 

laboratories, and outcome.
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Fig. 2. 
MP concentration and procoagulant activity in patients with ALI/ALF and normal healthy 

controls. (A) Total log10MP/mL of size range 0.15–1.0 μm in 50 ALI/ALF patients on 

admission to the hospital and 13 healthy controls of similar age and gender distribution (P < 

0.0001). (B). MP-TF activity in 34 ALI/ALF patients on admission to the hospital and 13 

healthy controls (P = 0.0008). Error bars indicate mean ± SD.
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Fig. 3. 
Relationship of MP concentration to number of positive SIRS components on admission for 

ALI/ALF and grade of HE. (A) Log10MP/mL (0.36–0.64 μm) versus number of positive 

SIRS components on admission (P = 0.0002). (B) Log10 MP/mL (0.36–0.64 μm) versus 

maximal grade of HE during the first 7 days of admission (P = 0.0015). Error bars indicate 

mean ± SD.
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Fig. 4. 
Relationship of MP concentration (0.28–0.64 μm) to outcome of ALI/ALF. (A) 

Log10MP/mL on day 1 of admission according to outcome by day 21, TFS, or death/LT (P = 

0.006). (B) Log10MP/mL on day 1 according to overall survival by day 21 (P = 0.010). (C) 

Log10MP/mL on day 3 of admission according to TFS versus death/LT by day 21 (P = 

0.0002). (D) Log10MP/mL on day 3 according to overall survival by day 21 (P < 0.05). The 

range of MP concentration on day 3 was lower than the range on day 1 samples as a result of 

early mortality of 3 patients with high day 1 MP concentrations. Error bars indicate mean ± 

SD.
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Fig. 5. 
Prevalence of MP phenotypes in plasma of patients with ALI/ALF by flow cytometry.
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Table 1

Demographic and Clinical Characteristics of Study Population on Admission to the Hospital for ALI/ALF

Clinical Feature

Total Study Population Transplant-Free Survivors Death/LT

P*(N = 50) (N = 27) (N = 23)

Demographic and clinical characteristics

 Age, years 43.1 ± 13.5 38.9 ± 13.2 48.0 ± 12.5 0.017

 Female gender, % 64 67 61 0.670

 BMI, kg/m2 28.2 ± 6.8 27.4 ± 5.0 29.1 ± 8.4 0.381

 Etiology of ALF, % 0.010

  APAP 50 67 33

  Non-APAP 50 33 70

 HE grade, % grade 3–4 48 30 70 0.005

 SIRS N, % 2–4 56 41 74 0.019

Laboratories

 Ammonia, μM (venous) 80.3 ± 45.2 72.5 ± 39.3 88.8 ± 50.5 0.227

 Lactate, mg/dL 5.9 ± 5.6 3.1 ± 3.4 9.8 ± 5.7 <0.0001

 Phosphate, mg/dL 3.3 ± 2.2 2.7 ± 1.3 4.0 ± 2.8 0.037

 pH (arterial) 7.35 ± 0.13 7.38 ± 0.13 7.33 ± 0.14 0.230

 Bicarbonate, mg/dL 19.7 ± 7.7 22.0 ± 5.8 17.0 ± 8.8 0.019

 Creatinine, mg/dL 1.0 (0.4–7.5) 0.9 (0.4–7.5) 1.3 (0.4–5.2) 0.340

 Total bilirubin, mg/dL 5.0 (0.3–44.2) 4.4 (0.9–29.4) 13.3 (0.3–44.2) 0.016

 INR 3.4 ± 1.8 3.1 ± 1.3 3.8 ± 2.1 0.175

 aPTT, seconds 47.4 ± 14.7 42.4 ± 9.8 53.0 ± 17.3 0.010

 ALT, IU/L 3,579 ± 2,765 4,813 ± 2,840 2,129 ± 1,852 0.0003

 Fibrinogen, mg/dL 183 ± 71 211 ± 63 142 ± 63 0.007

 Factor VIII, % normal 435 ± 206 364 ± 143 537 ± 243 0.013

*
P refers to comparison of transplant-free survivors and those who died or underwent LT.

Abbreviation: BMI, body mass index.
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Table 3

Step-Wise Multivariate Logistical Regression Analyses of Death/LT Using Demographic and Clinical 

Variables and Microparticle Number According to Size

Model Variables P OR 95% CI

1 Etiology APAP 0.038 0.253 0.069–0.928

MP 0.28–0.35 μm day 1 0.042 4.932 1.060–22.943

2 Etiology APAP 0.078 0.272 0.064–1.159

MP 0.36–0.64 μm day 1 0.003 11.093 2.270–54.223

3 Etiology APAP 0.056 0.280 0.070–1.031

MP 0.28–0.64 μm day 1 0.027 6.776 1.245–36.889

Step-wise logistic regression was performed on variables with a P = 0.25 entry criterion in univariate analysis and P = 0.05 criterion to remain in 
the model. Odds ratios for continuous variables are per unit change.

Abbreviations: OR, odds ratio; 95% CI, 95% confidence interval.
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