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Abstract

Background—Although cholesterol levels are known to be decreased in sickle cell disease 

(SCD), the level of pro-inflammatory high density lipoprotein cholesterol (proHDL) and its 

association with clinical complications and laboratory variables has not been evaluated.

Design and Methods—Plasma levels of total cholesterol, high density lipoprotein cholesterol 

(HDL), proHDL and selected clinical and laboratory variables were ascertained in a cohort of 

SCD patients and healthy African American control subjects in this single center, cross-sectional 

study.

Results—Although total cholesterol was significantly lower in SCD patients compared with 

control subjects, HDL and proHDL levels were similar in both SCD and control groups. In 

univariate analyses, proHDL was correlated with echocardiography-derived tricuspid regurgitant 
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jet velocity. ProHDL was higher in SCD patients with suspected pulmonary hypertension (PHT) 

compared to patients without suspected PHT. ProHDL was positively correlated with lactate 

dehydrogenase, total bilirubin, direct bilirubin, indirect bilirubin, prothrombin fragment 1+2, D-

dimer and thrombin-antithrombin complexes (TAT). In multivariable analyses, only higher lactate 

dehydrogenase and direct bilirubin levels were associated with higher levels of proHDL.

Conclusions—SCD is characterized by hypocholesterolemia. Although proHDL is not 

increased in SCD patients compared with healthy controls, it is significantly associated with 

markers of liver disease. In addition, proHDL is associated with tricuspid regurgitant jet velocity 

and markers of coagulation, although these associations are not significant in multivariable 

analyses.
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Introduction

Sickle cell disease (SCD) is an inherited disorder characterized by the presence of chronic 

hemolysis, ischemia-reperfusion injury and organ damage. Although somewhat 

controversial, it has been proposed that the clinical manifestations of SCD may fall into two 

partially overlapping phenotypes that are characterized by the presence of chronic hemolytic 

anemia and vaso-occlusive complications (1). While the risk of atherosclerosis is thought to 

be low in SCD (2) sickle cell anemia and other related hemoglobinopathies are complicated 

by the presence of vasculopathic complications, including stroke and pulmonary 

hypertension (PHT), which may occur, at least in part, as a result of increased hemolysis (1). 

Although cholesterol levels are reported to be low in patients with various anemias (3-9), the 

association of plasma lipid subsets with clinical complications and laboratory variables in 

SCD has not been extensively evaluated.

In this study, we compared levels of plasma lipids, including total cholesterol and high-

density lipoprotein cholesterol (HDL) in SCD patients and healthy, African-American 

control subjects. As SCD is described as a chronic inflammatory state (10,11), we also 

determined the levels of pro-inflammatory HDL-cholesterol (proHDL) in this patient cohort. 

ProHDL is unable to perform the usual protective functions of HDL in the prevention of 

atherosclerosis, including the inhibition of LDL oxidation. Finally, we evaluated the 

association of selected lipid subsets (total cholesterol, HDL cholesterol and proHDL) with 

clinical complications and laboratory measures of hemolysis, activation of the coagulation 

system, inflammation, and N-terminal pro-brain natriuretic peptide (NT-proBNP) as a 

measure of elevated cardiac filling pressures.

Design and Methods

Patients and Study Design

The study patients represent a cohort followed at the Sickle Cell Clinic at the University of 

North Carolina (UNC), Chapel Hill. The data were collected as part of a study to investigate 
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the pathophysiology of PHT in SCD (12). Consecutive SCD patients seen in the clinic for 

routine follow up, who agreed to participate, were evaluated. Patients with SCD were 

assessed while in the non-crisis, “steady state;” had not experienced an episode of acute 

chest syndrome in the 4 weeks preceding enrollment; and had no clinical evidence of 

congestive heart failure. The control subjects were of African descent, had no known 

medical conditions, were not taking any medications, and were recruited by advertisement. 

Only control subjects who were not overweight or obese (i.e. had a body mass index [BMI] 

< 25) were enrolled. The study was approved by the Institutional Review Board at UNC, 

Chapel Hill and all subjects gave written informed consent to participate.

Study Measurements

Measurement of Lipid Profiles and other Laboratory Variables

Total cholesterol was quantified using a cholesterol oxidase/esterase kit from Wako 

Chemical, Inc. (Richmond, VA). HDL was isolated from whole plasma with a solution of 

dextran-sulfate-MgCl2 (10 g/l, 0.5 M) (Berkeley HeartLab Inc., Alameda, CA), which 

precipitates apoB-containing lipoproteins. HDL was quantified using an HDL cholesterol E 

kit (Wako Diagnostics, Richmond, VA). ProHDL was determined using a modified method 

of a previously published cell-free assay (13). Briefly, HDL was incubated with CuCl2 (5 

μmol/l, final concentration) for 1 hour at 37°C in a 384-well microtiter plate (MJ Research 

Inc., Waltham, MA). After incubation, 10 μl of 2′,7′-dichlorodihdrofluorescein (H2DCF) 

solution (0.2 mg/ml) was added to the HDL-Cu2+ mixture in a total volume of 50 μL. Rates 

of fluorescence (Excitation at 485 nm; Emission at 530 nm) were determined over the next 2 

hours at 30 minute intervals using a Spectra Max Gemini EM fluorescence plate reader 

(Molecular Devices, Sunnyvale, CA). The results for proHDL are presented as slopes of the 

increase in dichlorofluorescein fluorescence over time.

Commercially available enzyme-linked immunosorbent assay kits were used to measure 

human soluble vascular cell adhesion molecule-1 (sVCAM-1), D-dimer and thrombin anti-

thrombin complexes (TAT) (R&D systems, Minneapolis, Minnesota, USA), and 

prothrombin fragment 1+2 (F1+2) (Dade Behring, Marburg, Germany). Samples were 

assayed in duplicate and as per manufacturer's instructions. Measurements of routine 

laboratory tests were obtained at the McClendon Clinical Laboratory at UNC Hospitals.

SCD-Related Clinical Complications

Clinical complications in SCD patients were ascertained at the time of evaluation and 

defined using accepted definitions (14-16). Tricuspid regurgitant jet velocity (TRV) was 

measured by Doppler echocardiography as previously described (17). The estimated 

pulmonary artery systolic pressure (PASP) was calculated using the modified Bernoulli 

equation, and PHT was suspected if the PASP value, adjusted for age, sex, and body mass 

index exceeded the upper limits of normal in the reference ranges (18). All the 

echocardiograms were interpreted by a cardiologist blinded to all patient data. Only 

associations of total cholesterol, HDL and proHDL with the selected clinical and laboratory 

variables were performed because the study subjects were not required to be fasting. While 

fasting is recommended to minimize the influence of postprandial hyperlipidemia, serum 
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total cholesterol and HDL can be measured in fasting or non-fasting individuals (19). We 

have also observed differences in proHDL levels between non-fasted transgenic sickle cell 

(Berk) and control mice (Pritchard KA Jr, unpublished data).

Statistical Analyses

The normality assumption was not satisfied for continuous laboratory variables based on 

Shapiro-Wilk normality tests. Continuous variables were compared using Wilcoxon rank-

sum test. Categorical variables were compared using Pearson's chi-square test for two 

groups or Kruskal-Wallis one-way analysis of variance for more than two groups. The 

association of continuous variables with lipid variables was explored using Spearman rank 

correlations. Multiple regression analyses were conducted to investigate the association of 

each lipid variable with clinical and laboratory variables. Because the lipid variables were 

skewed, the bootstrap method was used with 10,000 replications to estimate the p value and 

95% confidence interval (20). A backward selection procedure was used for variable 

selection. The deletion criterion was based on a p value greater than 0.05 and the variable 

with the largest p value was deleted first at each step. The final model included only those 

variables which were statistically significant at 0.05 level. Reported p values are for 

individual tests, unadjusted for multiple comparisons because of the exploratory nature of 

this study. All analyses were performed using SAS (version 9.2, SAS Institute, Inc. Cary, 

NC).

Results

Demographics and Laboratory Characteristics

The demographic and laboratory characteristics of all the study subjects are shown in Table 

1. One hundred and seventeen patients with SCD (HbSS: 91; HbSC: 13; HbSβ0 thalassemia: 

5; and HbSβ+ thalassemia: 8) and 11 healthy, African American, control subjects (HbAA: 

11) were evaluated. There were no significant differences in age and gender distribution 

when SCD patients were compared to control subjects. As expected, patients with SCD had 

significantly higher WBC counts, platelet counts, reticulocyte counts, hemoglobin F, lactate 

dehydrogenase, and total and indirect bilirubin compared with control subjects, while 

hemoglobin was significantly lower in SCD patients compared with control subjects.

Plasma Lipids in Sickle Cell Disease Patients and Healthy Controls

The median level of total cholesterol was significantly lower in SCD patients than in control 

subjects (102.5 mg/dL [interquartile range {IQR}: 86.5, 112.5 mg/dL] vs. 125.4 mg/dL 

[IQR: 111.0, 152.7 mg/dL], p = 0.0036). However, there were no statistically significant 

differences in the levels of HDL (42 mg/dL [IQR: 34.0, 52.9 mg/dL] vs. 49.0 mg/dL [IQR: 

44.8, 58.0 mg/dL], p = 0.075) and proHDL (3.1 fluorescence units {FU} [IQR: 2.2, 4.2 FU] 

vs. 3.4 FU [IQR: 2.0, 4.8 FU], p = 0.61) when SCD patients were compared with control 

subjects. When the four SCD genotypes were compared, there was a trend for a difference in 

the level of total cholesterol (SS: 102.2 mg/dL [IQR: 86.4, 120.0 mg/dL] vs. Sβ0: 153.4 

mg/dL [IQR: 152.1, 154.1 mg/dL] vs. Sβ+: 103.5 mg/dL [IQR: 82.5, 141.7 mg/dL] vs. SC: 

91.0 mg/dL [IQR: 86.5, 123.3 mg/dL], p = 0.055), but no differences were seen in the levels 
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of HDL (SS: 43.3 mg/dL [IQR: 34.0, 53.8 mg/dL] vs. Sβ0: 36.4 mg/dL [IQR: 31, 45.6 

mg/dL] vs. Sβ+: 36.1 mg/dL [IQR: 32, 56 mg/dL] vs. SC: 42 mg/dL [IQR: 40.0, 50.5 mg/

dL], p = 0.75) or proHDL (SS: 3.3 Fluorescence Units {FU} [IQR: 2.2, 4.3 FU] vs. Sβ0: 2.0 

FU [IQR: 1.6, 3.0 FU] vs. Sβ+: 2.6 FU [IQR: 1.6, 3.3 FU] vs. SC: 3.2 FU [IQR: 2.4, 4.0 FU], 

p = 0.60). When SCD patients were grouped based on presumed disease severity (SS/Sβ0 

thalassemia vs. SC/Sβ+ thalassemia), there were no statistically significant differences in the 

levels of total cholesterol, HDL, or proHDL (Supplementary data, Table 1S).

In patients with SCD, proHDL was correlated with HDL (r = 0.68 [95% Confidence Interval 

{CI}: 0.57, 0.77], p < 0.0001), but there was no correlation with total cholesterol (r = −0.043 

[95% CI: −0.23, 0.14], p = 0.65).

Association of Pro-Inflammatory HDL Cholesterol, Total Cholesterol and HDL Cholesterol 
with Demographic and Clinical Variables in Patients with Sickle Cell Disease

No significant correlations were observed between age and proHDL (r = 0.17, p = 0.067), 

total cholesterol (r = 0.14, p = 0.12) or HDL (r = 0.14, p = 0.12). There were also no 

significant correlations between BMI and proHDL (r = 0.001, p = 0.99) or HDL (r = − 

0.092, p = 0.33), although there was a trend towards a significant correlation between BMI 

and total cholesterol (r = 0.18, p = 0.053). Total cholesterol level was higher in female SCD 

patients than in male patients (104.1 mg/dL [IQR: 91.6, 126.8 mg/dL] vs. 93.6 mg/dL [IQR: 

83.8, 109.7 mg/dL], p = 0.016) but there were no gender differences in proHDL or HDL.

Echocardiography-derived TRV was significantly correlated with proHDL (r = 0.28, p = 

0.016), but no correlations were observed between TRV and either total cholesterol (r = 

−0.11, p = 0.35) or HDL (r = −0.031, p = 0.79). ProHDL was higher in patients with 

suspected PHT (3.6 FU [IQR: 2.7, 5.0 FU] vs. 2.9 FU [2.0, 4.0 FU], p = 0.0099) and was 

lower in patients with a history of priapism (2.7 FU [IQR: 2.0, 4.0 FU] vs. 3.7 FU [IQR: 2.7, 

4.6 FU], p = 0.035) than in patients without these complications (Table 2). Total cholesterol 

was lower in patients with suspected PHT than in those not suspected to have PHT (95.9 

mg/dL [IQR: 80.1, 109.5 mg/dL] vs. 104.9 mg/dL [IQR: 90.2, 123.9 mg/dL], p = 0.011). 

There was also a trend for lower levels of total cholesterol in patients with histories of 

priapism (86.3 mg/dL [IQR: 80.1, 108.5 mg/dL] vs. 102.8 mg/dL [IQR: 86.5, 120.3 mg/dL], 

p = 0.063) and leg ulcers (93.6 mg/dL [IQR: 83.8, 109.5 mg/dL] vs. 103.1 [IQR: 90.9, 123.8 

mg/dL], p = 0.084). HDL was lower in patients with a history of priapism than in those 

without this complication (38.0 mg/dL [IQR: 33.0, 45.7 mg/dL] vs. 48.2 mg/dL [IQR: 37.4, 

55.6 mg/dL], p = 0.015).

Correlation of Pro-Inflammatory HDL Cholesterol, Total Cholesterol and HDL Cholesterol 
with Markers of Hemolysis, Coagulation Activation, Endothelial Injury and Inflammation in 
Patients with Sickle Cell Disease

Lipid subsets were evaluated for correlations with markers of hemolysis (hemoglobin, 

reticulocyte count, lactate dehydrogenase, as well as total and indirect bilirubin), coagulation 

activation (F1+2, D-dimer and TAT), endothelial injury (sVCAM-1), inflammation (white 

blood cell count, absolute neutrophil count and absolute monocyte count) and other selected 

laboratory variables (platelet count, fetal hemoglobin, direct bilirubin and NT-proBNP) in 
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our patient cohort. ProHDL was directly correlated with lactate dehydrogenase (r = 0.31, p = 

0.0008), total bilirubin (r = 0.23, p = 0.013), direct bilirubin (r = 0.48, p < 0.0001), indirect 

bilirubin (r = 0.21, p = 0.028), F1+2 (r = 0.33, p = 0.0062), D-dimer (r = 0.27, p = 0.0053) 

and TAT (r = 0.22, p = 0.023) (Table 3; Supplementary data - Figures 1A-G). However, no 

correlations were observed between proHDL and hemoglobin, reticulocyte count, fetal 

hemoglobin, white blood cell count, or sVCAM-1. There was a modest correlation between 

total cholesterol and fetal hemoglobin (r = 0.19, p = 0.045), with inverse correlations 

between total cholesterol and lactate dehydrogenase (r = −0.20, p = 0.031), total bilirubin (r 

= −0.22, p = 0.019), indirect bilirubin (r = − 0.20, p = 0.034), and sVCAM-1 (r = −0.34, p = 

0.0002). There appeared to be a positive correlation between total cholesterol and 

hemoglobin (r = 0.16, p = 0.085), although this did not achieve statistical significance. 

Finally, HDL was correlated with platelet count (r = −0.21, p = 0.025) and direct bilirubin (r 

= 0.39, p < 0.0001).

Multivariable Analyses

Multiple regression analysis was conducted to investigate the association of total 

cholesterol, HDL and proHDL with selected clinical and laboratory variables in SCD 

patients. The initial model included clinical variables (history of stroke, avascular necrosis, 

history of leg ulcers, history of acute chest syndrome, history of smoking, suspected PHT 

and number of pain episodes in the previous year) and laboratory variables (absolute 

neutrophil count, absolute monocyte count, hemoglobin, platelet count, lactate 

dehydrogenase, total bilirubin, direct bilirubin, sVCAM-1, D-dimer, F1+2 and TAT). In the 

final model, using only significant covariates after the model selection, sVCAM-1 was 

significantly and inversely associated with total cholesterol (estimate: −0.015, p = 0.003); 

TAT was significantly associated with HDL (estimate: 0.068, p = 0.039); and direct 

bilirubin (estimate: 1.4, p = 0.047) and lactate dehydrogenase (estimate: 0.0011, p = 

0.00024) were significantly associated with proHDL (Table 4). This means that for a 

continuous variable such as direct bilirubin, we expect an increase in proHDL by 1.4 FU for 

every 1 mg/dL increase in direct bilirubin, given the same level of lactate dehydrogenase.

Discussion

Patients with SCD have previously been reported to have lower total cholesterol and LDL 

levels compared with healthy, control subjects (3-9). Although it has been suggested that 

hypocholesterolemia is not due to increased erythropoiesis, but rather is a consequence of 

anemia (3), a study of patients with chronic anemia, including those with high erythropoietic 

activity, low erythropoietic activity and healthy, control subjects reported the presence of 

hypocholesterolemia only in patients with anemia and increased erythropoietic activity (21). 

In addition, significant inverse correlations were observed between serum levels of 

cholesterol and soluble transferrin receptor, a marker of high erythropoietic activity in the 

absence of iron deficiency, suggesting that hypocholesterolemia is associated with increased 

erythropoiesis. Although our findings of decreased total cholesterol levels in SCD patients 

and their association with measures of hemolysis in univariate analysis appear to confirm 

and extend these findings, no associations were observed between total cholesterol and any 
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measures of hemolysis in multivariable analyses, suggesting that hypocholesterolemia in 

SCD is not solely due to increased hemolysis.

While multiple studies show that HDL level is a strong predictor of cardiovascular risk 

(22-24), there is evidence that in some circumstances HDL may be dysfunctional (i.e. it fails 

to prevent the formation of and/or fails to inactivate biologically active LDL-derived 

oxidized phospholipids) or pro-inflammatory (i.e. it enhances the formation of biologically 

active oxidized phospholipids) (25-30). Elevated plasma concentrations of oxidized LDL are 

associated with coronary artery disease (31), and patients with acute coronary syndromes 

have higher levels of malondialdehyde-modified LDL than patients with stable coronary 

artery disease (32). High levels of proHDL have been observed in patients with 

inflammatory diseases such as systemic lupus erythematosus and rheumatoid arthritis (33). 

Although SCD is frequently referred to as a chronic inflammatory disease (10,11), we found 

no significant difference in the level of proHDL when SCD patients were compared with 

healthy African American controls. In addition, there were no associations between proHDL 

and any of the evaluated inflammatory markers in our study patients. The observed level of 

proHDL in this study, combined with the lower cholesterol levels in SCD patients compared 

with healthy, control subjects may contribute to the low incidence of atherosclerosis 

observed in SCD.

The association of proHDL with measures of hemolysis in univariate analysis was 

somewhat discordant. Although correlations were observed with lactate dehydrogenase, as 

well as total and indirect bilirubin, no significant associations were observed with 

hemoglobin or reticulocyte count. Furthermore, the observed association of proHDL with 

both lactate dehydrogenase and direct bilirubin in the final model of the multivariable 

analysis, combined with usual increases in the levels of lactate dehydrogenase and direct 

bilirubin in liver disease, suggest that proHDL may be associated with liver dysfunction. 

The liver plays a central role in lipoprotein metabolism and is responsible for both 

degradation and synthesis of lipoproteins (34). Inflammation and injury of the liver induces 

a variety of metabolic changes that can negatively impact lipoprotein metabolism. Thus 

during chronic states of inflammation and oxidative stress, such as those that are known to 

occur in SCD (35,36), the injured liver may be unable to metabolize HDL properly (37), 

which may explain the observed correlations between proHDL and both lactate 

dehydrogenase and direct bilirubin in our patient population.

The negative correlation between total cholesterol and sVCAM-1 in both the univariate and 

multivariable analyses suggests that hypocholesterolemia may contribute to endothelial cell 

injury in SCD. This finding was surprising, and is in contrast to the observation that basal 

VCAM-1 protein expression is higher in hyperlipidemic mice (ApoE [−/−]) than in wild-

type mice (38). In addition, both VCAM-1 mRNA and protein levels are further increased 

by high fat diet, with a correlation of VCAM-1 mRNA and protein levels to plasma 

cholesterol, LDL and HDL, but not to triglyceride levels. Induction of VCAM-1 by high fat 

diet in blood vessel walls may be dependent on inflammation, initiated by modified 

lipoprotein particles such as oxidized phospholipids and short-chain aldehydes, which in 

turn activate VCAM-1 transcription via activation of NF-κB (39). It is possible, however, 

that extremes of cholesterol levels (i.e. too high or too low) may be detrimental to health by 
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causing endothelial cell injury. An alternative explanation is that the increased 

erythropoiesis associated with SCD may contribute to both lower cholesterol levels and 

increased endothelial injury for, as yet, unknown reasons.

SCD is also described as a hypercoagulable state (40). We observed an association between 

proHDL and F1+2, TAT and D-dimer in univariate analyses, suggesting that proHDL may 

promote coagulation activation in SCD. However, proHDL was not independently 

associated with markers of coagulation activation. The absence of significant associations 

between proHDL and markers of coagulation activation in the final model of the 

multivariable analysis may be a result of the association of proHDL with lactate 

dehydrogenase, a biomarker that has been reported to be associated with markers of 

coagulation activation (41). Oxidized LDL has been reported to significantly enhance tissue 

factor expression induced by the inflammatory mediator, bacterial lipopolysaccharide (LPS), 

in a time- and dose-dependent manner (42). In another study, low concentrations of oxidized 

LDL has been shown to enhance tissue factor expression in human monocyte-derived 

macrophages, whereas higher concentrations attenuate tissue factor expression both at 

baseline as well as following LPS stimulation (43). As proHDL enhances the formation of 

biologically active oxidized phospholipids, increased levels of proHDL likely contributes to 

coagulation activation by increasing levels of oxidized LDL.

Total cholesterol and proHDL were associated with suspected PHT in univariate analyses. In 

addition, proHDL was significantly correlated with echocardiography-derived TRV. This 

suggests that proHDL may contribute to the pathophysiology of pulmonary vasculopathy in 

SCD. The absence of a significant association between proHDL and suspected PHT in the 

final model of the multivariable analysis may be related to the association of proHDL with 

lactate dehydrogenase, as multiple studies have shown associations of both TRV and 

echocardiography-defined PHT with lactate dehydrogenase in SCD (44,45).

Our study has several limitations. Right heart catheterizations were not obtained to confirm 

the presence of PHT. Extensive tests were not obtained to assess liver function in study 

subjects. As with all cross-sectional studies, this analysis demonstrates associations, but 

cannot prove causation.

In summary, our study confirms and extends the findings of hypocholesterolemia in SCD, 

with an association of lower cholesterol levels with increased sVCAM-1, a marker of 

endothelial injury. The lack of association of markers of hemolysis with lipid variables in 

the final model of the multivariable analysis suggests that hemolysis and increased 

erythropoiesis are unlikely to be the sole causes of hypocholesterolemia in SCD. The level 

of proHDL is not increased in SCD compared to healthy control subjects. Higher proHDL 

levels are associated with TRV, suspected PHT and markers of coagulation activation in 

univariate analyses. The association of proHDL with direct bilirubin and lactate 

dehydrogenase in the final model of the multivariable analysis suggests that proHDL may be 

a biomarker of liver dysfunction in SCD.
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Refer to Web version on PubMed Central for supplementary material.
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Table 1

Demographic and Laboratory Characteristics of Study Subjects

Variable N Sickle Cell Disease Median (IQR) or 
N (%)

N Healthy Controls Median 
(IQR) or N (%)

p Value

Age 117 38(29, 47) 11 37(26,49) 0.5515

Gender (Male) 117 41 (35%) 11 5 (45%) 0.4914

Genotype (SS) 117 91 (78%) 11 0 (0%) <0.0001

Genotype (SC) 13 (11%) 0 (0%)

Genotype (Sβ0) 5 (4%) 0 (0%)

Genotype (Sβ+) 8 (7%) 0 (0%)

Genotype (AA) 0 (0%) 11 (100%)

Body mass index 116 25.6 (22.2, 29.8) 11 22.7 (22.0,23.1)

White Blood Cell (× 109/L) 117 9.2 (7.8, 11.4) 11 6.8 (4.4,9.3) 0.0104

Hemoglobin (g/dL) 117 8.8 (7.6, 10.1) 11 13.4 (12.2,13.9) <0.0001

Platelet Count (× 109/L) 117 410 (314, 498) 11 222 (201,291) <0.0001

Reticulocyte Count (%) 116 6.6 (4.5, 9.4) 11 1.7 (1.3,2.2) <0.0001

Hemoglobin F (%) 116 6.0 (3.2, 10.9) 11 0.5 (0.3, 2.0) <0.0001

Absolute Neutrophil Count (× 109/L) 117 4.8 (3.9, 6.2) 11 3.8 (2.1, 4.5) 0.0068

Absolute Monocyte Count (× 109/L) 117 0.5 (0.3, 0.7) 11 0.3 (0.2,0.4) 0.0026

Lactate Dehydrogenase (U/L) 115 866.0 (65.02, 1214.0) 11 481 (380,537) <0.0001

Total Bilirubin (mg/dL) 117 1.9 (1.0, 3.0) 11 0.5 (0.3,0.6) <0.0001

Direct Bilirubin (mg/dL) 115 0.1 (0.09, 0.1) 11 0.09 (0.09,0.1) 0.0193

Indirect Biliribin (mg/dL) 115 1.7 (0.9, 2.8) 11 0.36 (0.2,0.51) <0.0001

Creatinine (mg/dL) 117 0.7 (0.6, 1) 11 1.0 (0.7,1.1) 0.1589
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Table 2

Association of Lipid Variables with Clinical Complications in Patients with Sickle Cell Disease

Lipid Variable Clinical Variable N Yes (Median, IQR) N No (Median, IQR) p value

Total Cholesterol History of Stroke 14 99.6 [83.0, 108.5] 103 103.0 [86.5, 123.3] 0.54

Avascular necrosis 48 103.3 [90.9, 121.7] 69 99.8 [85.0, 122.5] 0.35

History of leg ulcer 31 93.6 [83.8, 109.5] 86 103.1 [90.9, 123.8] 0.084

Use of hydroxyurea 65 102.4 [86.5, 120.1] 51 102.5 [86.8, 122.8] 0.85

History of retinopathy 37 96.7 [85.5, 117.2] 80 103.1 [88.3, 123.9] 0.22

Pain crisis ≥ 3 in previous year 66 102.4 [83.9, 117.9] 51 103.3 [89.6, 130.2] 0.38

History of acute chest syndrome 101 102.5 [86.4, 123.3] 16 102.6 [92.3, 112.0] 0.96

History of priapism 18 86.3 [80.1, 108.5] 67 102.8 [86.5, 120.3] 0.063

Suspected pulmonary hypertension 33 95.9 [80.1, 109.5] 84 104.9 [90.2, 123.9] 0.011

HDL-Cholesterol History of stroke 14 48.5 [32.0, 70.8] 103 42.0 [34.4, 50.6] 0.32

Avascular necrosis 48 43.5 [32.0, 56.3] 69 42.0 [35.0, 50.9] 0.71

History of leg ulcer 31 42.6 [33.0, 53.8] 86 42.0 [35.3, 52.9] 0.65

Use of hydroxyurea 65 42.6 [32.4, 52.0] 51 42.0 [35.0, 55.4] 0.71

History of retinopathy 37 40.0 [34.4, 48.2] 80 44.1 [34.0, 55.1] 0.39

Pain crisis ≥ 3 in previous year 66 42.9 [32.4, 53.8] 51 42.0 [35.0, 52.9] 0.80

History of acute chest syndrome 101 42.6 [34.0, 52.9] 16 41.4 [37.0, 52.9] 0.78

History of priapism 18 38.0 [33.0, 45.7] 67 48.2 [37.4, 55.6] 0.015

Suspected pulmonary hypertension 33 41.2 [34.4, 55.0] 84 42.8 [34.0, 52.4] 0.97

Pro-inflammatory HDL-Cholesterol History of stroke 13 3.4 [2.6, 4.1] 100 3.1 [2.1, 4.2] 0.41

Avascular necrosis 46 3.2 [2.4, 4.5] 67 3.0 [2.1, 4.0] 0.47

History of leg ulcer 31 3.8 [2.1, 4.6] 82 2.9 [2.2, 3.7] 0.094

Use of hydroxyurea 65 2.9 [2.1, 4.1] 47 3.3 [2.3, 4.3] 0.29

History of retinopathy 35 3.0 [2.2, 4.0] 78 3.2 [2.1, 4.3] 0.60

Pain crisis ≥ 3 in previous year 66 3.2 [2.2, 4.3] 47 3.1 [2.1, 4.0] 0.98

History of acute chest syndrome 99 3.2 [2.1, 4.2] 14 3.0 [2.5, 4.0] 0.95

History of priapism 18 2.7 [2.0, 4.0] 63 3.7 [2.7, 4.6] 0.035

Suspected pulmonary hypertension 30 3.6 [2.7, 5.0] 83 2.9 [2.0, 4.0] 0.0099
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Table 3

Correlation of Lipid Variables with Laboratory Measures of Hemolysis and Inflammation in Patients with 

Sickle Cell Disease

Lipid Variable Laboratory Variable Number of Patients r value (95%) Confidence Interval p value

Total Cholesterol White blood count 117 −0.031 −0.212 – 0.151 0.74

Absolute neutrophil count 117 0.106 −0.077 – 0.283 0.25

Absolute monocyte count 117 0.022 −0.160 – 0.203 0.81

Hemoglobin 117 0.159 −0.023 – 0.331 0.085

Platelet count 117 −0.014 −0.195 – 0.168 0.88

Reticulocyte count 116 −0.096 −0.273 – 0.088 0.31

Hemoglobin F 116 0.186 0.004 – 0.356 0.045

Lactate dehydrogenase 115 −0.20 −0.370 - −0.018 0.031

Total bilirubin 117 −0.215 −0.382 - −0.035 0.019

Direct bilirubin 115 0.020 −0.164 – 0.202 0.84

Indirect bilirubin 115 −0.197 −0.367 - −0.015 0.034

NT-proBNP 114 −0.048 −0.230 – 0.137 0.61

Soluble VCAM-1 117 −0.336 −0.488 - −0.164 0.0002

Thrombin-antithrombin complexes 109 0.006 −0.183 – 0.193 0.95

D-dimer 105 −0.082 −0.269 – 0.111 0.40

Prothrombin 1+2 69 −0.097 −0.326 – 0.143 0.43

HDL-Cholesterol White blood count 117 −0.020 −0.200 – 0.162 0.8333

Absolute neutrophil count 117 −0.126 −0.300 – 0.057 0.1758

Absolute monocyte count 117 −0.068 −0.247 – 0.115 0.4646

Hemoglobin 117 0.002 −0.180 – 0.183 0.9865

Platelet count 117 −0.206 −0.374 - −0.026 0.0247

Reticulocyte count 116 0.027 −0.156 – 0.208 0.7748

Hemoglobin F 116 −0.088 −0.266 – 0.095 0.3438

Lactate dehydrogenase 115 0.055 −0.130 – 0.235 0.56

Total bilirubin 117 0.103 −0.080 – 0.280 0.27

Direct bilirubin 115 0.389 0.220 – 0.533 <0.0001

Indirect bilirubin 115 0.086 −0.099 – 0.265 0.36

NT-proBNP 114 −0.007 −.0.177 – 0.191 0.94

Soluble VCAM-1 117 −0.012 −0.0193 – 0.170 0.90

Thrombin-antithrombin complexes 109 0.119 −0.072 – 0.299 0.22

D-dimer 105 0.154 −0.039 – 0.336 0.12

Prothrombin 1+2 69 0.171 −0.068 – 0.392 0.16

Pro-inflammatory HDL-Cholesterol White blood count 113 −0.037 −0.220 – 0.148 0.69

Absolute neutrophil count 113 −0.094 −0.274 – 0.092 0.32

Absolute monocyte count 113 −0.001 −0.186 – 0.184 0.99

Hemoglobin 113 −0.140 −0.317 – 0.046 0.14
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Lipid Variable Laboratory Variable Number of Patients r value (95%) Confidence Interval p value

Platelet count 113 −0.108 −0.287 – 0.079 0.26

Reticulocyte count 112 0.122 −0.065 – 0.301 0.20

Hemoglobin F 112 −0.147 −0.324 – 0.039 0.12

Lactate dehydrogenase 111 0.310 0.131 – 0.469 0.0008

Total bilirubin 113 0.233 0.050 – 0.400 0.013

Direct bilirubin 111 0.481 0.322 – 0.611 <0.0001

Indirect bilirubin 111 0.208 0.022 – 0.380 0.028

NT-proBNP 110 0.132 −0.057 – 0.311 0.17

Soluble VCAM-1 113 0.118 −0.068 – 0.296 0.21

Thrombin-antithrombin complexes 105 0.221 0.030 – 0.395 0.023

D-dimer 101 0.274 0.082 – 0.445 0.0053

Prothrombin 1+2 65 0.332 0.096 – 0.533 0.0062

NT-proBNP – N-terminal pro-brain natriuretic peptide

Soluble VCAM-1 – Soluble vascular cell adhesion molecule-1
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Table 4

Multivariable Analysis

Dependent Variable Covariate Number of patients Estimate Standard Error 95% Confidence Interval p value

Total Cholesterol Intercept 117 122.05 5.78 110.71, 133.39 <0.0001

Soluble VCAM-1 −0.015 0.005 −0.026, −0.005 0.003

HDL Cholesterol Intercept 109 43.26 1.52 40.28, 46.23 <0.0001

Thrombin anti-thrombin complex 0.068 0.033 0.0035, 0.13 0.039

Pro-inflammatory HDL Cholesterol Intercept 110 1.91 0.31 1.29, 2.52 <0.0001

Direct bilirubin 1.4 0.71 0.02, 2.78 0.047

Lactate dehydrogenase 0.0011 0.00029 0.0005, 0.0016 0.00024

Soluble VCAM-1 – Soluble vascular cell adhesion molecule – 1

HDL cholesterol – High density lipoprotein cholesterol

LDL cholesterol – High density lipoprotein cholesterol
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