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Objective. To illustrate the use of ensemble tree-based methods (random forest classi-
fication [RFC] and bagging) for propensity score estimation and to compare these
methods with logistic regression, in the context of evaluating the effect of physical and
occupational therapy on preschool motor ability among very low birth weight (VLBW)
children.
Data Source. We used secondary data from the Early Childhood Longitudinal Study
Birth Cohort (ECLS-B) between 2001 and 2006.
Study Design. We estimated the predicted probability of treatment using tree-based
methods and logistic regression (LR). We then modeled the exposure-outcome relation
using weighted LR models while considering covariate balance and precision for each
propensity score estimation method.
Principal Findings. Among approximately 500 VLBW children, therapy receipt was
associated with moderately improved preschool motor ability. Overall, ensemble
methods produced the best covariate balance (Mean Squared Difference: 0.03–0.07)
and the most precise effect estimates compared to LR (Mean Squared Difference: 0.11).
The overall magnitude of the effect estimates was similar between RFC and LR estima-
tion methods.
Conclusion. Propensity score estimation using RFC and bagging produced better co-
variate balance with increased precision compared to LR. Ensemble methods are a use-
ful alterative to logistic regression to control confounding in observational studies.
Key Words. Propensity scores, tree-based methods, ensemble methods

Evaluation of treatment effectiveness in nonrandomized studies is compli-
cated by exposure group differences on measured and unmeasured character-
istics that are independently related to the outcome. The resulting
confounding can be controlled using propensity scores to balance observed
confounders between treatment groups. The propensity score represents
the probability of receiving treatment conditional on a set of confounders
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(Rosenbaum and Rubin 1983). Individuals with similar propensity scores can
be expected to have similar values on measured background characteristics.
Given a correctly specified propensity score model, once one conditions on
the propensity score, differences in measured characteristics between the
treatment groups should be from chance alone, assuming no unmeasured con-
founders (Rosenbaum and Rubin 1983).

The true propensity score, or the predicted probability of treatment, is
not known. Therefore, researchers must estimate the propensity score, typi-
cally using parametric models (Austin 2011). Logistic regression is one of the
most common methods used to estimate propensity scores, but it requires sev-
eral assumptions. The relation between continuous and ordinal independent
variables and the log odds of the dependent variable must be linear. Further-
more, the model assumes additivity. Therefore, researchers must consider the
functional form of covariates as well as interaction terms (D’Agostino 1998).
Violations can result in misspecification of the propensity score model and a
biased effect estimate (Drake 1993).

Regression tree-based methods, including bagging and random forest
classification (RFC), are nonparametric methods derived from learning-based
algorithms that offer alternative strategies for estimating the propensity score.
The methods use a series of classification trees to estimate the average proba-
bility of membership in a given class. These techniques may improve predic-
tive accuracy compared to classical statistical techniques such as linear and
logistic regression (Breiman 2001b). For example, in simulation studies,
regardless of nonlinearity or nonadditivity, random forest performed well in
terms of covariate balance between treatment groups andmay result in further
reduction in bias of the effect estimate when compared to traditional logistic
regression (Setoguchi et al. 2008; Lee, Lessler, and Stuart 2010).

There has been relatively little investigation into the use of tree-based
methods to estimate the propensity score (Westreich, Lessler, and Funk 2010).
In this article, we illustrate the use of three tree-based methods: bagging, RFC,
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and a single classification tree. We evaluate these methods in the context of an
analysis to understand the effect of physical and occupational therapy services
on the motor skills of preschoolers who were born with very low birth weight
(VLBW). We consider the propensity scores estimated by tree-based methods
in comparison to a logistic regression model. We then compare the distribu-
tion of the estimated propensity scores, the balance of covariates, and the
change in effect estimates after applying inverse probability of treatment
weights (IPTW).

CONCEPTUALOVERVIEW

Classification Trees

Classification tree analysis is a nonparametric method commonly used in data
mining where a set of independent variables are used to predict membership
of observations in a given class of the dependent variable. The method evalu-
ates the relation between predictors and treatment with a learning algorithm
using decision trees to partition observations into nodes with similar probabil-
ities of class membership in the treatment group (Breiman 2001b). The dataset
is partitioned until nodes, or branches of the tree, are as homogenous as possi-
ble with respect to class membership (Breiman et al. 1984). The tree begins
with a root node and continues to split until the nodes reach either a given
sample size or a given level of impurity reduction. With each partition of the
tree, groups of subjects with the majority of a given level of the response are
isolated. This daughter node is considered to have a more “pure” or homoge-
nous response compared to the parent node. Researchers may set a stopping
rule, allowing the classification tree to stop splitting once the difference in
impurity between the parent and daughter nodes reaches a given threshold.
At each terminal node, the algorithm predicts the response class by classifying
the response according to the class that received the largest number of votes
(Strobl, Malloy, and Tutz 2009).

Despite the popularity of this data mining method, results from a single
classification tree are highly variable and are known to be unstable (Strobl,
Malloy, and Tutz 2009). For example, the rank of each variable in the classifi-
cation tree as well as the cut point of the variable is strongly dependent upon
the distribution of observations in the data. With small changes in the data
structure, the order of variable selection or the cut point of the variable may
change, resulting in an alternative tree structure (Strobl, Malloy, and Tutz
2009).
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Bagging and Random Forest Classification

Both bagging and RFC are tree-based methods that attempt to improve the
stability of tree-basedmethods that rely on a single tree. These methods aggre-
gate predictions over multiple individual classification trees to improve the
overall predictive performance of the algorithm. Bagging, or bootstrap aggre-
gation, randomly draws a series of bootstrap samples from the data and creates
individual classification trees for each sample. With each bootstrap sample,
the data will vary slightly from the previous sample. Furthermore, each indi-
vidual tree can vary, perhaps substantially, from the previous tree. The algo-
rithm then aggregates the predicted probability of class membership over the
series of classification trees (Breiman 2001a).

Random forest classification also utilizes the same bootstrap aggregation
approach. However, random forest adds an additional level of variability to
the algorithm. During construction of the individual classification trees, a ran-
dom sample of predictor variables is chosen to split the data at each node.
Therefore, each individual tree is even more diverse compared to the trees
from bagging alone (Strobl, Malloy, and Tutz 2009).

Although individual classification trees are inherently unstable, bagging
and RFC have been shown to produce robust estimates. In both empirical and
simulation studies, estimates aggregated over a series of classification trees
show improvements in prediction accuracy when compared to a single classi-
fication tree (Breiman 1996, 1998; Dietterich 2000; Buhlmann and Yu 2002).
Bagging may equalize the influence of given observations in the data (Strobl,
Malloy, and Tutz 2009). Thus, data points that strongly influence the classifica-
tion algorithm are downweighted (Strobl, Malloy, and Tutz 2009). Further-
more, the additional level of variability introduced by RFC creates additional
diversity between trees with a smaller upper bound of error (Breiman 2001a).
Overall, these methods produce a more robust final estimate with decreased
variability (Breiman 2001a).

METHODS

We illustrate the use of three tree-based methods: bagging, RFC, and a single
classification tree, as well as parametric logistic regression in an analysis that
evaluates the effect of physical and occupational therapy services on motor
performance among preschool children who are VLBW and “at risk” for
developmental coordination disorder (DCD). DCD is a condition defined as
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an impairment in the development of motor coordination among children
without known physical or neurological impairments (American Psychiatric
Association 2000). Children with DCD are at increased risk for low academic
performance, low self-esteem, and limited physical activity which may con-
tinue into adolescence (Cairney et al. 2005a,b; Missiuna et al. 2007). Chil-
dren who are born VLBW are six times as likely to have DCD compared to
their normal birth weight peers (Edwards et al. 2011).

Population and Variables

This study is described in detail elsewhere (Watkins et al. unpublished data).
Briefly, using data from the Early Childhood Longitudinal Study Birth Cohort
(ECLS-B), our sample included approximately 500VLBW children who were
without known mobility problems and appeared to be meeting normal devel-
opmental motor milestones at 9 months. Researchers asked families between
9 months and 2 years of age whether their child had ever received physical or
occupational therapy services. We considered the child exposed if the child
ever received either therapy during this time period.

Researchers directly assessed preschool gross motor performance using
items from the Bruininks-Oseretsky Test of Motor Proficiency (Bruininks,
1978) the Movement Assessment Battery for Children (Henderson and Sug-
den 1992), and the Early Screening Inventory-Revised (Meisels et al. 1997).
These norm referenced assessments are commonly used to evaluate motor
ability among preschool children (Rydz et al. 2005; Piek, Gasson, and Sum-
mers 2008). Researchers directly reported the child’s ability to complete the
following locomotor tasks on a pass/fail basis: skipping eight consecutive
steps, hopping on one foot five times, walking backwards six steps on a taped
line, and standing on one foot for 10 seconds.

On the basis of a priori substantive knowledge, we created a directed
acyclic graph and determined a minimum sufficient conditioning set of con-
founders (VanderWeele and Robins 2009). A directed acyclic graph is a
diagram that provides a graphical representation of the causal relation
between two variables. The diagram guides the researcher in determining con-
founders of the relation between the treatment and the outcome (Rothman,
Greenland, and Lash 2008). The final confounders in our analysis included
the following: gestational age, birth weight, length of the child’s hospital stay
after birth, age at which the child began to walk with assistance, race/ethnicity,
parental education, socioeconomic status, and the child’s 9-month Bayley
Short Form-Research Edition (BSF-R) motor Tscore. The BSF-R is a subset of
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items taken from the standardized Bayley Scales of Infant Development, Sec-
ond Edition to assess children’s cognitive, motor, and language skills (Bayley
1993).

Propensity Score

In this observational study, treatment assignment into physical and occupa-
tional therapy services was not randomized. Children and their families may
participate in therapy treatment based on a host of factors including their
child’s functional ability and access to health care. Therefore, the distribution
of baseline characteristics between children in the treated and untreated
groups may differ and children between these two groups would not be
“exchangeable”. We estimated the average treatment effect of early childhood
physical and occupational therapy using a propensity score approach to con-
trol for confounding.

Estimating the Propensity Score

We estimated the conditional probability of treatment given the identified con-
founders stated above using the following four methods: bagging, RFC, a sin-
gle classification tree, and logistic regression.

Using the R statistical platform (Gentleman and Ihaka 2008), we first
used the RandomForest package (Liaw and Wiener 2002) to estimate the pre-
dicted probability of class membership in the therapy group given the follow-
ing covariates: gestational age, birth weight, length of the child’s hospital stay
after birth, age at which the child began to walk with assistance, race/ethnicity,
parental education, socioeconomic status, and the child’s 9-month BSF-R
Motor Tscore. Race/ethnicity and parental education were entered as a series
of indicator variables; all other variables were entered as continuous variables.
We set the random forest algorithm to generate 1,000 individual classification
trees. The suggested default for the number of random splitting variables at
each node is the square root of the number of variables in the algorithm (Liaw
and Wiener 2002). Our model included 19 variables, so we set the default to
four variables chosen at each split.

We checked the sensitivity of the error rate to our chosen parameters by
allowing the number of trees to vary between 250 and 1,000 and the number
of randomly chosen variables to vary between two and seven. The error rate
for the algorithm is generated from the 33 percent of the data remaining that
were not used to form the classification trees. For example, with each

Tree-Based Methods and Propensity Scores 1803



bootstrap sample, the remaining data (�33 percent) not in the sample are
entered into the classification tree. The error in these out-of-bag predictions is
collected over the series of trees to determine the final error rate over the for-
est. The error rate is considered to be robust if the predicted probabilities of
class membership are aggregated across a sufficient number of trees (Liaw and
Wiener 2002). However, if the number of trees are too few, then the error rate
may be upwardly biased (Bylander 2002). The algorithm may, therefore, be a
better predictor of the outcome than suggested by the error rate.

We then implemented the Ipred package (Peters and Hothorn 2012) and
the Tree package (Ripley 2012) using the R statistical software to estimate the
predicted probabilities of having class membership in the treatment group
using bagging and a single classification tree, respectively. For both models,
we entered the same covariates as in the RFC algorithm. In the Ipred package,
we generated a series of 1,000 trees and checked the sensitivity of the error rate
by varying the number of trees between 250 and 1,000. For both methods, the
splitting variables were chosen by the algorithm in a hierarchical fashion
based on impurity reduction.

Lastly, we generated predicted probabilities of receiving physical or
occupational therapy using logistic regression. As in common practice, we
entered potential confounders as main effects. Race/ethnicity and parental
education were modeled as indicator variables; all others were entered into
the model as continuous terms. In addition, we considered the functional form
of the covariates, of which gestational age and baseline motor ability appeared
to have a U-shaped association with preschool motor ability. We entered these
two covariates as quadratic terms.

Statistical Analysis

We generated unique inverse probability of treatment weights using each
method: RFC, bagging, a single classification tree, and logistic regression.
These weights create a pseudo population of children with a distribution of
covariates that represents the combined sample (Bang and Robins 2005). To
estimate the average treatment effect, treated children received a weight of
(1/propensity score). Children in the untreated group received a weight of
(1/(1-propensity score)). To evaluate the balance of each propensity score
method, we then calculated the standardized difference of the weighted con-
founding variables between the treatment groups.

Standardized differences represent the differences between the means
by therapy status in units of standard deviations. The estimate is calculated as
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d ¼ j�xtherapy � �xnotherapyj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2therapy þ s2notherapy=2

q

(Flury and Riedwyl 1986). Although there is no standard criterion to
determine balance between treatment groups, experts suggest a standardized
difference of <0.10 (Normand et al. 2001; Austin and Mamdani 2006; Austin
2007). We then averaged the standardized differences across all confounders
to determine the mean standardized difference (MSD).

Finally, for each of the four methods, we estimated the average effect
of physical and occupational therapy on preschool motor performance
using logistic regression and IPTW in SAS version 9.2 (SAS Institute, Inc.,
Cary, NC, USA). In practice, inverse probability of treatment weights may
often be highly variable. For example, weights may be extreme for treated
subjects with a low propensity for treatment or for untreated subject with a
high propensity for treatment. Stabilization of the weights is suggested to
decrease the variance, which provides a narrower confidence interval
around the estimated effect estimate. We stabilized the weights by multiply-
ing the child’s IPTW by the marginal probability of the treatment that he
or she actually received (Cole and Hernan 2008).

Missing Data

In these data, approximately 7 percent of children were missing at least one
covariate used to estimate the propensity score. Data on motor ability was
missing for approximately 20 percent of the sample. We included only chil-
dren with complete data to estimate the predicted probability of treatment.
Thus, we compare the balance of covariates and the estimated effect estimates
for eachmethod among the same group of children.

RESULTS

A description of this cohort has been presented elsewhere (Watkins et al.
unpublished data). Briefly, the sample included approximately 5001 children
weighing less than 1,500 g at birth of which 6.5 percent of children received
therapy between 9 months and age 2 years. Children who received therapy
were more likely to be white (58.1 percent vs. 38.5 percent) and of male gen-
der (61.3 percent vs. 45.3 percent) and were born 2 weeks earlier in gestation,
on average. Developmentally, the treated children sat independently,
crawled, and walked with assistance on average, 1 month later than the
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untreated children. Five-minute APGAR scores were similar between the two
groups.

Random Forest Classification/Bagging: Error Rate

In our sample of approximately 450 children with complete covariate data,
the random forest algorithm misclassified treatment status 15.7 percent of the
time over 1,000 trees with four variables randomly chosen at each split. Over-
all, there was little change in the error rate with small changes in the number
of splitting variables. The error rate over our chosen range of trees and num-
ber of splitting variables varied by approximately 0.5 percent. The misclassifi-
cation rate for the bagging algorithm over 1,000 trees was 15.7 percent. The
misclassification rate increased to 17.0 percent with only 250 trees (Table 1).

Propensity Score

The mean predicted probability of receiving treatment for the children who
received therapy ranged between 0.16 and 0.20 across the RFC and bagging
tree-based methods and the main effects logistic regression model. The single
classification tree yielded a predicted probability of treatment that was
approximately twice that of the other three methods for children who received
therapy. The mean predicted probability of treatment for children who did
not receive therapy ranged between 0.05 and 0.07 across all four methods
used to estimate the propensity score. Children in the treatment groups
received similar weights across estimation methods with the exception of the
single classification tree algorithm, which led to a higher propensity for

Table 1: Out-of-Bag Error Rates* for Prediction of Receipt of Early Child-
hood Therapy

Out-of-Bag Error

Number of trees 250 750 1,000
Random forest % % %
Number of randomly chosen variables per split
2 15.4 15.4 15.4
4 15.4 15.4 15.7
7 15.9 16.1 16.1

Bagging 17.0 16.6 15.7

*The out-of-bag data are put down each bootstrap classification tree, and the results are aggregated
to determine the out-of-bag error rate over the forest of trees.
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treatment and a lower weight compared to the other estimation methods. The
weights for children who did not receive physical or occupational therapy
were similar for all four methods (Table 2).

Covariate Balance

In the unweighted sample, the MSD across strong confounding covariates
was 0.54. The length of the infant’s hospital stay after birth (Standardized
Difference: 0.73) and the age at which the child crawled and the child’s ges-
tational age (Standardized Difference: 0.74 and 0.65 respectively) were most
unbalanced between the treatment groups. After applying the weights esti-
mated by the RF and bagging tree-based methods, the distribution of base-
line covariates differed only negligibly by treatment status. The MSD across
covariates was 0.07 using the random forest method and 0.03 using the bag-
ging algorithm. After implementing the random forest algorithm, length of
hospital stay and gestational age remained slightly unbalanced (standardized
difference: 0.14 and 0.15, respectively). The mean length of hospital stay
and gestational age after applying the bagging method was quite similar
(standardized difference: 0.03 and 0.07, respectively) by therapy status
(Table 3).

The MSD for the covariates weighted with the logistic model was 0.11.
The standardized difference for birth weight, length of hospital stay, and age
at crawling and walking with assistance was greater than the suggested 0.10 cri-
terion for these covariates. When the propensity score was estimated by the
single classification tree covariates differed by approximately 0.18 standard
deviations (Table 3).

Multivariable Regression

In the weighted multivariable logistic regression models, receipt of interven-
tional physical or occupational therapy services between 9 months and age
2 years was moderately associated with improvement in preschool coordi-
nation skills in this VLBW population. However, overall this association did
not reach statistical significance. The effect was consistent across both the
tree-based methods as well as the logistic method used to estimate the pro-
pensity score; however, the magnitude of the effect as well as the precision
of the estimate varied by method. The random forest algorithm produced
the most precise estimate in the weighted model for hopping and single leg
stance. The bagging algorithm produced slightly more precise estimates for
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the walking backward task (Table 4). When we used logistic regression to
estimate the propensity score, with either main effects or quadratic terms,
overall the confidence intervals for the effect estimates were the least
precise.

The magnitude of the estimate for skipping ability was largest (OR:
3.06, 95 percent CI: 1.04, 8.98) using the bagging technique and smallest
(OR: 2.01, 95 percent CI: 0.65, 6.23) using logistic regression with main
effects to estimate the propensity score. The bagging estimate continued to
generate the effect estimates of the greatest magnitude for the additional motor
outcomes modeled in these data. The magnitude of the effect estimates pro-
duced with the logistic regression main effects model and the model that
included quadratic terms were similar. In general, logistic regression estima-
tion of the propensity score produced the most conservative effect estimates
for the majority of preschool motor items. The single classification tree algo-
rithm did not balance the covariates well between treatment groups, and
therefore the results of the weighted models using this method are not pre-
sented (Table 4).

DISCUSSION

In this article, we illustrate the use of various tree-based methods to estimate
the predicted probability of receiving interventional physical and occupa-
tional therapy services in a sample of VLBW children. Furthermore, we con-
sidered how propensity scores estimated from bagging and RFC balanced
covariates between treatment groups and compared these methods with the
performance of propensity scores estimated from a single classification tree as
well as traditional logistic regression.

In our sample, bagging and RFC achieved the best overall balance of
covariates across treatment groups. Among all methods used to estimate the
propensity score, the mean standardized difference of all covariates was small-
est for these two methods. The propensity scores estimated from the logistic
model showed a marginal imbalance in covariates, where the single classifica-
tion tree method had the worst performance.

These findings are supported by the study of Lee and colleagues who
studied machine learning methods when estimating the propensity score in
simulated data. In a small sample, when compared to standard logistic regres-
sion and a single classification tree, random forest and bagging returned the
lowest mean absolute standardized differences. The standardized differences
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between individual covariates were also less dispersed with these two
methods. The resulting bias in these simulated models was highest when the
propensity score was estimated from a single classification tree and lowest
when the propensity score was estimated using either bagging (10.3 percent)
or RFC (7.7 percent) (Lee, Lessler, and Stuart 2010).

In our data, it appeared that propensity score estimation using logistic
regression did a reasonable job of balancing the covariates between our
treatment groups. However, it is not known how well this model performed in
reducing the amount of bias because the true treatment effect is not known.
While the effect estimates assessing preschool coordination were similar
between the two models when we estimated the propensity score by RFC and
main effects logistic regression, the effect estimates for the child’s ability to bal-
ance differed by approximately 19 percent. However, when we included a
quadratic term in our propensity score model, the effect estimates differed by
only 12 percent.

In simulation studies, a main effects logistic regression model performed
adequately in reducing bias when the relation between independent variables
and the logit of the outcome is linear and additive (Lee, Lessler, and Stuart
2010). However, researchers reported a mean absolute bias of 30 percent in
the presence of nonlinearity and nonadditivity (Lee, Lessler, and Stuart 2010).
For comparison, we used a main effects logistic regression model that appears
to be commonly used by researchers as well as a logistic regression model
where we included quadratic terms. In our data, the relation between several
confounders and the logit of receiving treatment was curvilinear. Due to our
small sample size, we were limited in our ability to test for interactions. For the
balancing task, our effect estimate weighted with the propensity score esti-
mated from the logistic regression model with quadratic terms more closely
approximated our effect estimates weighted with propensity scores from
RFC. Therefore, the difference in the estimated effects between the main
effects logistic regression model and RFCmay be due to lack of consideration
of the relation between confounders and the logit of receiving treatment. By
modeling the functional form of the variable, and considering interactions, the
logistic regression model may be more effective. However, the nonparametric
random forest algorithm is inherently flexible for incorporating interactions as
well as nonlinear functional forms which may be more feasible in some cir-
cumstances.

In our analysis, ensemble tree-based methods, including random forest
and bagging, appear to outperform traditional logistic regression methods
with main effects. In our analysis, both tree-based methods performed well in

Tree-Based Methods and Propensity Scores 1813



balancing the covariates between treatment groups; however, the bagging
method resulted in effect estimates of greater magnitude. It is possible that the
additional level of randomness implemented by the random forest classifier
allowed less important variables to be expressed in predicting therapy expo-
sure, thereby attenuating the magnitude of the effects.

Propensity scores are a useful tool to control for confounding in
children’s health research. Yet the method is subject to several limitations.
Propensity scores only control for measured confounders in the data. There-
fore, residual confounding in the estimated effect estimate may still be present
due to unmeasured confounders. Moreover, without a careful modeling tech-
nique, one may mispecify the propensity score model and the estimated treat-
ment effect may be biased.

In this study, estimation of the propensity score using ensemble tree-
based methods produced the smallest standardized differences across covari-
ates. The resulting effect estimates varied slightly depending on the method
used to estimate the propensity score. Although we are unsure of the true
effect estimate, studies show that the effect estimates derived from RFC and
bagging are the least biased and logistic regression may adequately reduce
bias in the presence of additivity and linearity (Lee, Lessler, and Stuart
2010).

Estimation of the propensity score using tree-based ensemble methods
may be a useful method to evaluate the effect of interventions on childhood
motor skills while controlling for confounding. These methods appear to be
robust, creating better covariate balance for control of confounding and a
potential for further bias reduction compared to main effects logistic regres-
sion.

In our study, using ensemble tree-based methods to adjust for con-
founding, we found that early intervention physical and occupational
therapy services were moderately beneficial for select preschool motor skills.
To date, few studies have examined the impact of these services on pre-
school motor ability among VLBW children. However, interventions that
promote motor skills among children of normal birth weight do appear to
benefit object control and locomotion in early childhood (Riethmuller,
Jones, and Okely 2009). Our findings, although not statistically significant,
support the delivery of early-intervention physical and occupational therapy
services to VLBW children who are at risk for poor motor coordination.
However, future work is needed both to confirm our conclusions about effi-
cacy as well as to examine the influence on efficacy of frequency and dura-
tion of therapy.
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