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Abstract
We evaluated geographic variation of Type 1 and Type 2 diabetes mellitus (T1DM, T2DM) in four
regions of the United States.

Data on 807 incident T1DM cases diabetes and 313 T2DM cases occurring in 2002-03 in South
Carolina (SC) and Colorado (CO), 5 counties in Washington (WA), and an 8 county region around
Cincinnati, Ohio (OH) among youth aged 10 through 19 years were obtained from the SEARCH for
Diabetes in Youth Study. Geographic patterns were evaluated in a Bayesian framework.

Incidence rates differed between the study regions, even within race/ethnic groups. Significant small
area variation within study region was observed for T1DM and for T2DM. Evidence for joint spatial
correlation between T1DM and T2DM was present at the county level for SC (rSC= 0.31) and CO
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non-Hispanic whites (rCO= 0.40) and CO Hispanics (rCO= 0.72). At the tract level no evidence for
meaningful joint spatial correlation was observed (rSC= -0.02; rCO= -0.02; rOH= 0.03; rWA= 0.09).

Our study provides evidence for the presence of both regional and small-area, localized variation in
type 1 and type 2 incidence among youth aged 10-19 years in the United States.
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Introduction
Diabetes mellitus is one of the leading chronic diseases of childhood and youth and numerous
studies have documented an increase of diabetes worldwide (Onkamo et al., 1999). While in
the past pediatric diabetes has been thought of largely as auto-immune, insulin-dependent type
1, the recent emergence of pediatric type 2 diabetes (non-autoimmune and non-insulin-
dependent) (Pihoker et al., 1998; Pinhas-Hamiel et al., 1996; Scott et al., 1997) has raised the
question whether type 1 and type 2 diabetes are truly distinct entities and whether there may
be an overlay of etiologic risk factors (Wilkin, 2001). One such common factor may be obesity
which has been shown to be associated with younger age at onset of type 1 and is associated
with type 2 diabetes in youth. It is clear that both type 1 and type 2 diabetes are complex diseases
caused by gene-environment interactions. Hence evaluation of geographic patterning of disease
may reveal important environmental etiologic clues.

Based on data from the World Health Organization Multinational Project for Childhood
Diabetes (DiaMond) (Karvonen et al., 1993), we know that the geographic variation in type 1
diabetes incidence is one of the largest observed for any non-communicable disease (LaPorte
et al., 1995). Incidence rates follow a North-South gradient, being much higher in Scandinavian
countries. In addition, marked within-country variation in incidence has also been documented
(Dorman et al., 1995; Waldhor et al., 2000), increasing with northern latitude in China (Yang
et al., 1998), Sardinia (Casu et al., 2004b), and Germany (Rosenbauer et al., 1999).
Additionally, migration seem to reduce the age of onset (Cadario et al., 2004) and areas
characterized by low population mixing seem to have the highest rates of type 1 diabetes
(Parslow et al., 2001), suggesting the role of non-genetic, potentially environmental factors.
Geographic variation of type 1 diabetes has not been explored systematically in the United
States. It has been suggested that regional variation in type 1 diabetes may be explained to a
large extent by variation in the racial/ethnic composition of the populations (LaPorte et al.,
1995). Type 2 diabetes has not been explored in a geographic framework in the United States
or elsewhere.

The SEARCH for Diabetes in Youth Study was initiated in 2000 to estimate the population
prevalence and incidence of all types of diabetes in youth by age, sex, and race/ethnicity
(SEARCH Study Group, 2004) in four geographically defined populations and two health-plan
based populations using consistent methodology for case ascertainment and diabetes
classification. The SEARCH study presented the unique opportunity to study regional and
small-area geographic variation of pediatric diabetes risk based on data collected under a
standardized and comprehensive surveillance system that ascertained both type 1 and type 2
diabetes in youth, explicitly taking into account race/ethnic differences in populations. We
hypothesized that both the incidence of pediatric type 1 and type 2 diabetes would exhibit
spatial correlation. We also considered that there might be joint spatial correlation (cross-
correlation) between the two diseases in that areas with a high incidence of type 1 might also
exhibit a high incidence of type 2 diabetes.
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Research Design and Methods
Study design

Details of the SEARCH study design have been published (SEARCH Study Group, 2004). In
brief, SEARCH is a six-center observational study (four geographically-based sites and two
health plan membership-based sites) that began conducting population-based ascertainment of
non-gestational cases of diagnosed diabetes in youth less than 20 years of age in 2001 for
prevalent cases and 2002 for incident cases. SEARCH continues to ascertain incident cases
through the present. The SEARCH surveillance component aims to enumerate and identify all
eligible cases of diabetes based on networks of pediatric and adult endocrinologists, existing
pediatric diabetes databases, hospitals, the databases of health plans, and other health care
providers. Case reports are validated through physician reports, medical record reviews, or in
a few instances, self-report of a physician's diagnosis of diabetes (SEARCH Study Group,
2004). Case reports are registered anonymously with the Coordinating Center at Wake Forest
University in North Carolina using Health Insurance Portability and Accountability Act
(HIPAA) compliant procedures. Identifying information is retained at each field center. Each
center's institutional review board approved the study protocol which complies with the privacy
rules of the HIPAA.

We included data on all incident cases occurring among youth aged 10-19 years in 2002 and
2003 in the four geographically defined regions comprising 1) the state of South Carolina, 2)
the state of Colorado, 3) five counties around Seattle, Washington, including King, Kitsap,
Pierce, Snohomish, and Thurston counties, and 4) eight counties around Cincinnati, Ohio
including Butler, Clermont, Hamilton, Warren counties in Ohio, Boone, Campbell, and Kenton
counties in Kentucky, and Dearborn, Indiana, which we will refer to as the Ohio region. The
10-19 year age group was chosen because type 2 diabetes is extremely rare in children under
the age of 10 (Dabelea et al., 2007). Throughout this paper we refer to the four geographic
areas as regions.

Demographic and clinical characteristics of cases
Basic demographic and clinical information was available for virtually all cases and generally
available from a variety of data sources such as administrative data, medical record or self-
report. A hierarchical approach was used to classify case characteristics (Liese et al., 2008).

Demographic information was utilized as follows. Age was categorized into two groups (10-14
years and 15-19 years) to align with published incidence rates (Dabelea et al., 2007). Race/
ethnicity was classified into six groups (Hispanic, Non-Hispanic white, African American,
Asian/Pacific Islander, and American Indian/Native American, Multiple and other) following
the Census 2000 approach (Census Bureau (US), 2000). About 2% of our cases were non-
Hispanic and multi-racial and needed to be removed after initial descriptive analyses. Diabetes
type, as assigned by the health care provider, was categorized as type 1 (combining 1, 1a, and
1b), type 2, and other type (including hybrid type, maturity onset of diabetes in youth, type
designated as “other”, type unknown by the reporting source, and missing).

Geocoding and geo-spatial allocation
Details of the geocoding process and success rates have been described (Hibbert et al., 2009).
Geocoding was conducted in a standardized manner by a single staff person (J.H.) traveling to
each field center and using ArcGIS 9.3 software (ESRI, 2008), the TIGER 2000 Road Network
File complemented with Zip Code Tabulation Areas (ZCTA) data (U.S.Census Bureau,
2000). In South Carolina, this was supplemented with TIGER 2006 vintage Road Network
Files, because recent land development has led to realigned street features that were not
captured by the TIGER 2000 files. In brief, the vast majorities of cases were geocoded to the

Liese et al. Page 3

Health Place. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



street address level (overall 71%, SC 64%, CO 83%, WA 52%, OH 86%) and could thereby
be allocated to a census tract. There remained 253 cases (23%) that were geocodable to a zip
code level only, which were allocated by a random assignment based imputation method
(Henry and Boscoe, 2008; Hibbert et al., 2009) rather than the traditional zip code centroid
method (Cayo and Talbot, 2003) because the latter would create spurious clusters of cases in
those tracts containing the zip code centroid. The remaining cases (6%) with information on
county only could not be either geocoded or allocated to the census tract. Each case was
assigned to a census tract within the boundaries of the known zip code based on a random
assignment distribution process that was weighted by the proportions of the population age
0-19 residing in each of the tracts (or tract segments) that fell within the zip code boundaries.
Details of this method have been described in (Henry and Boscoe, 2008) and evaluated
specifically in our study areas in (Hibbert et al., 2009). In each census tract the total number
of cases was determined by summing the cases of each diabetes type within that tract for both
years, which constitutes the tract-specific observed cases for analyses outlined below.

Analysis sample
A total of 1,197 cases of diabetes developed in the two-year period among youth aged 10-19
years across the four regions, of whom 77 cases with diabetes other than type 1 or 2 (1 hybrid,
1 MODY, 2 other type, 22 secondary type, 37 unknown, 14 missing) were ineligible for the
purposes of our study. Of the remaining 1,120, we excluded 23 cases who were multi-racial
or of specified other race for the purpose of estimating race-specific incidence rates by region
(n=1,097). Finally, 6 cases on whom only the state of residence was known were removed for
county level analyses and modeling (n=1,091) and 65 cases with county information only were
excluded for tract level analyses, leaving n=1,026, i.e. 92% of the eligible incident 2002 and
2003 cases.

Statistical analyses
Population estimates for each of the 3,138 Census tracts in our study region were obtained
from Census 2000 Summary File1 (Census Bureau (US), 2000) which were age, sex, and race-
group-specific. Regional annual incidence rates were computed by summing the number of
incident cases of diabetes occurring in 2002 and in 2003 in a given region, dividing this
numerator by two, and dividing the numerator by the 2000 Census-based denominator
estimates. We present crude incidence rates by five-year age groups and by age and race.
Ninety-five percent confidence intervals (CIs) were calculated on the basis of inverting the
score test for a binomial proportion (Agresti A. and Coull, 1998).

In order to facilitate comparison of diabetes risks across space independent of age, gender and
race-differences between populations, the following analyses adjusted for these demographic
factors by including an expected number of cases into the analyses. The annual expected
number of type 1 and type 2 diabetes cases was calculated by multiplying the population
estimates with the corresponding published pooled (age group,- sex,- and race-specific) annual
incidence rates for type 1 and type 2 diabetes from the SEARCH for Diabetes in Youth Study
(Dabelea et al., 2007) and then doubled to reflect to the two year period used in this study. The
total expected count for each geographic unit (i.e. county or census tract) was then calculated
by summing the stratum specific expected counts within each unit. The standardized incidence
ratio (SIR) was calculated by dividing the total observed cases by the total expected cases for
each geographic unit. In addition, race group specific SIR's were calculated. The county or
tract-specific SIRs were empirically correlated using Pearson's correlation coefficients to
address the question of joint spatial correlation of type 1 and type 2. SIRs are known to be very
crude estimators of risk and are highly variable over space for rare diseases such as diabetes.
Therefore, our statistical analyses were largely carried out in a Bayesian framework to better
address the inherent sparseness of our data.
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For both type 1 and type 2 diabetes, Poisson regression models were used to a) generate spatially
smoothed risk surfaces that were subsequently mapped by region, b) to evaluate spatial
autocorrelation (disease clustering) within each region and c) to evaluate disease-specific cross-
correlation between both diseases within regions. Each analytical step is described in more
detail below. Based on extensive evaluations of a total of six Poisson models described in
(Song 2008, in review), we selected the Sparse Poisson Convolution (SPC) model (which is
an adaptation of the classical conditional autoregressive (CAR) model (Besag and Kooperberg,
1995; Besag et al., 1991) for sparse data) for aims a) - c) and the Sparse Poisson MCAR
(SPMCAR) model (Gelfand and Vounatsou, 2003) for aim c). A detailed description of the
SPC and SPMCAR models is given in Appendix 1. In brief, the SPC model is a CAR model
augmented by an added term which is a function of an indicator variable denoting zero count
or non-zero count in any Census tract. Hence a factored intercept is included in the SPC model.
The SPMCAR is the extension of the SPC model to multivariate outcomes, i.e. a factored
intercept is added to each disease model.

The model performance was assessed by the Deviance Information Criterion (DIC), which
measures overall goodness of fit, and Mean Squared Prediction Error (MSPE), which evaluates
predictive capability. Each model was fit to the observed number of cases in each geographic
unit (county, tract), with the log of the expected number of cases in the respective unit (derived
as outlined above) included as an offset. The offset in effect adjusts for demographic differences
between geographic units. The risk estimates generated from these models are based on the
comparison of observed to expected cases in a given geographic unit, and are conventionally
referred to as relative risks. If the relative risk is greater than 1, the disease is more likely to
occur than expected, and if the relative risk is less than 1, the disease is less likely to occur than
expected.

We used the SPC model to evaluate the presence of spatial autocorrelation, i.e. the presence
of a significant spatial patterning of disease risk over space. The SPC model includes both
spatially correlated and uncorrelated random effects to explain the possible spatially correlated
variations and heterogeneous patterns in the residuals. By comparing the model fit (based on
DIC) between the general models (including spatial autocorrelation) with one containing only
the uncorrelated random effects we tested for the presence of spatial autocorrelation. A
difference of DIC greater or equal to 2 is commonly considered evidence of a significant
improvement in fit, hence would be considered evidence for spatial auto-correlation if that
model decreased the DIC by such an amount (Lawson, 2008, ch 5; Spiegelhalter et al., 2002).
Models were fit by region and for each disease separately, first for the total population and
then stratified by race.

To evaluate the joint spatial correlation (i.e. cross-correlation) between type 1 and type 2
diabetes, we calculated an empirical correlation between the RR estimates obtained for SPC
models for type 1 and type 2 using the Pearson correlation coefficient. In addition, the
SPMCAR model was used to provide a modeled estimate of the joint spatial correlation of type
1 and type 2 diabetes. (Gelfand and Vounatsou, 2003) The main advantage of this model is
that it estimates the correlations between spatially correlated random effects of multivariate
outcomes. All models were fit using WinBUGS (version 1.4.3). A detailed description of the
statistical properties of the SPC and SPMCAR models is presented in Appendix 1 for the more
technically inclined reader.

Results
Table 1 includes geographic and demographic characteristics of the four study regions.
Colorado had the largest geographic expanse and the largest number of counties and census
tracts. Colorado and South Carolina were similar in terms of total population. The Ohio and
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Washington region covered a markedly smaller land area and populations. There was
substantial variation in terms of race/ethnic composition of the population under surveillance
and in terms of the number of incident cases between the regions. Given the very small number
of cases in some of the minority population groups, all subsequent tables were limited to non-
Hispanic whites in all regions, African Americans in South Carolina, and Hispanics in
Colorado.

Table 1 also illustrates the distribution of cases across geographic units of analysis. More than
70% of counties in South Carolina contained one or more case of type 1 or type 2, while in
Colorado the respective proportions were 49% and 21%. Because of the small number of
counties covered in the Ohio and Washington study region, spatial analyses could not be
conducted in a Bayesian framework in those regions and corresponding data are not shown,
As expected, data were markedly sparser at smaller geographic units such as census tracts.
Across regions, only 20% of tracts contained one or more cases of type 1 and 8% contained at
least one case of type 2.

Both type 1 and type 2 incidence rates varied between study regions (Table 2). The highest
crude incidence rate of type 1 among the 10-14 year old non-Hispanic whites was observed in
Ohio and Colorado, followed by Washington and then South Carolina. Incidence rates between
the latter two and former two regions differed significantly by a factor of 1.5. In the 15-19 year
non-Hispanic white group, Washington youth had the highest rates, Ohio and Colorado had
very similar rates. South Carolina youth had the lowest rates of Type 1, by a factor of 2 or
more, differing significantly from the rates in the other three regions. With respect to incidence
of type 2 diabetes non-Hispanic white youth, the Ohio region had the highest type 2 diabetes
incidence rates in both age groups and Colorado had the lowest rates. In fact, Colorado type 2
rates were significantly lower than all other regions for both age groups.

Table 3 presents the standardized incidence ratios (SIR) by study region and race/ethnicity
which are simply the ratio of the total number of observed cases over the expected cases. The
observed and expected cases shown here form the basis of all further statistical analyses
including the model based estimation. Given that the SEARCH incidence rates obtained from
all six SEARCH centers were used in the calculation of the expected, the SIR shown here
indicate to what extent a given region's incidence was lower than, higher than, or similar to the
overall SEARCH rate. Differences between regions in terms of age, sex or race composition
of the population have been taken into account via the standardization process.

Figure 1 shows the spatially smoothed relative risks of type 1 diabetes estimated from the SPC
model at the tract level for each of the four study regions. In all regions some areas with type
1 relative risks of 2.0 or higher were observed. Our test for spatial autocorrelation was
significant within both Colorado and South Carolina focusing on the total populations as the
difference in DIC was markedly higher than the generally used criteria of ≥ 2 (DIC difference
in Colorado =5.8, South Carolina =8.4). The visual inspection of the Colorado and South
Carolina maps suggests that the spatial auto-correlation was due to localized clustering of high
risk tracts in the North-East of Colorado and in eastern South Carolina. Our conclusions were
confirmed in race-stratified analyses as significant spatial autocorrelation was observed for
South Carolina type 1 in whites (DIC difference=5.3), African Americans (DIC
difference=3.0), Colorado type 1 whites (DIC difference=4.4), Hispanics (DIC
difference=3.1). In Ohio, no evidence for spatial autocorrelation of type 1 diabetes was found
for the aggregated total population (difference in DIC=0.54) but it emerged for the White
population (DIC difference=6.5) but not for African Americans (DIC difference= 1.5). In
Washington, we observed no evidence for spatial autocorrelation of type 1 diabetes (DIC
difference =0.3 for total population, 0.4 for whites).
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Figure 2 shows the spatially smoothed relative risks of type 2 diabetes. The sparseness of type
2 data is striking in the maps, especially in the Colorado, the Washington and the Ohio study
regions. Our analyses suggested presence of spatial autocorrelation within type 2 diabetes in
Washington (difference in DIC in total population =3.2, in whites =4.2) and in the Colorado
total population (difference in DIC=2.7) and Hispanics (DIC difference=2.5) but not in whites
(DIC difference 0.3). In Ohio no spatial auto-correlation was observed for type 2 for the total
population (DIC difference =1.0) or for whites (DIC difference=1.4) but was present for the
African American population DIC difference=2.8). In South Carolina, spatial autocorrelation
was observed for type 2 in whites (DIC difference=3.8) and African Americans (DIC
difference=3.4) but not for the aggregated total population (difference in DIC=1.3) which
suggests that spatial clustering effects occur in different locations, possibly due to residential
segregation.

Our evaluation of cross-correlation between type 1 and type 2 diabetes is summarized in Table
4. Because of the sparseness of our data, we present results at the level of the county and
subsequently at the level of the Census tract. Because of the small number of counties included
in the Ohio and Washington region, analyses were limited to South Carolina and Colorado at
the county level. In a first step, the county-specific SIR for type 1 and type 2 diabetes were
correlated empirically. The resulting Pearson's correlation coefficients varied from very small
and non-significant for the total population (rSC= 0.05, p=0.76; rCO= 0.04, p=0.75) to
moderately large and statistically significant for race-specific analyses (non-Hispanic whites
rSC= 0.34, p=0.02; Hispanics rCO= 0.33, p=0.01). In the next step, the spatially smoothed
relative risk estimates from the separate SPC models for each disease were correlated
empirically. Point estimates of correlations for all groups and regions were moderate to strong,
with a strong cross-correlation of type 1 and type 2 diabetes observed in the Colorado Hispanic
group (rCO= 0.76, p=<0.0001). In a final step, we estimated the cross-correlation using the
MCAR model which contains an explicit cross-correlation parameter. Consistent with the
correlations of the SPC models, point estimates were moderate to strong for most groups,
reaching statistical significance for South Carolina non-Hispanic whites (rSC= 0.31, CI 0.09,
0.50) and Colorado non-Hispanic whites (rCO= 0.40, CI 0.31,0.47) and Hispanics (rCO= 0.72,
CI 0.66,0.86).

Analyses were repeated at the tract level, now including all four study regions. The resulting
Pearson's correlation coefficients were very small and non-significant (rSC= -0.04, p=0.30;
rCO= -0.04, p=0.23; rOH= -0.01, p=0.91; rWA= 0.01, p=0.90) which was similarly true for the
race-specific analyses. Very similar results in terms of magnitude and level of significance
were obtained by correlating the smoothed relative risk estimates obtained from separate SPC
models at the tract level for each disease. One exception was Washington where the correlation
became significant. However, the magnitude was still very small. In a final step, we estimated
spatial correlation parameters using the MCAR model and consistent with all previous tract-
level findings, correlation estimates were very close to zero (rSC= -0.02, 95%CI -0.03, 0.00001;
rCO= -0.02, 95%CI -0.03,-0.005; rOH= 0.03, 95%CI 0.003,0.05; rWA= 0.09, 95%CI 0.06,0.12).

Discussion
Worldwide, numerous studies have described geographic variation in type 1 diabetes incidence
(Feltbower et al., 2005; Rytkonen et al., 2001; Samuelsson et al., 2007; Waldhor et al., 2003;
Cardwell et al., 2007; Karvonen et al., 1993; Karvonen et al., 2000A), however less is known
about geographic variation in the United States. Just within the Western European countries,
there is a more than sevenfold difference in incidence, which is all the more noteworthy as the
geographic expanse of Western Europe falls easily within North America. Similar to other
countries, our study shows marked variation in incidence of type 1 diabetes as the region
specific incidence rates of type 1 were quite different. However, unlike some of the
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international studies conducted in Austria, China, or Germany, we did not observe a clear
North-South gradient, based on comparison of regional incidence rates (Waldhor et al.,
2000; Yang et al., 1998; Rosenbauer et al., 1999).

With respect to geographic variation in diabetes incidence in the United States, it has been
suggested - though not systematically explored - that regional variation in type 1 diabetes may
be explained to a large extent by variation in the racial/ethnic composition of the populations
(LaPorte et al., 1995). Comparison of incidence rates from existing U.S. diabetes registries
indicated some differences in ethnic-specific rates across the differing registry locations
(Libman et al., 1998; Lipman et al., 2006; Lipton et al., 2002), but interpretation was
constrained by differing ascertainment systems, differing case definitions of type 1 diabetes,
age groups, time periods and - with few exceptions - fairly restricted geographical regions
studied (Dorman et al., 1995). We were able to overcome these methodological issues by using
data from a uniform-population-based surveillance system, the SEARCH study (SEARCH
Study Group, 2004).

Our race/ethnic stratified incidence estimates suggest that there are indeed marked regional
differences in diabetes incidence that are unrelated to the ethnic composition of the underlying
populations. For instance, while South Carolina's type 1 incidence rates were significantly
lower than those of the other sites, Colorado's type 2 incidence rates were lower than all others.
These findings may be of importance to public health agencies estimating the local burden of
disease or conducting localized type 1 or type 2 cluster investigations.

Type 1 and type 2 diabetes have been viewed for a long time as having very distinct etiologies
(Dorman et al., 1995). Type 1 diabetes is thought to result from beta cell loss, being
characterized as an autoimmune disorder with acute onset, measurable autoantibodies, insulin
dependency and affecting predominantly young people. Type 2 diabetes is thought to result
from a combination of insulin resistance and insufficient insulin response, being characterized
by a slow onset, not typically requiring insulin therapy, and affecting predominantly adults.
The emergence of type 2 diabetes in youth has prompted the development of a new theory of
diabetes development, the accelerator hypothesis, which suggests that type 1 and type 2
diabetes share a common etiology (Wilkin 2001; Wilkin 2008). This hypothesis is heavily
debated, with evidence emerging on both sides (Dabelea et al. 2006; Knerr et al. 2005). A
comprehensive review and criticism of the accelerator hypothesis was recently published
(Fourlanos et al., 2008; Gale 2007).

By utilizing methods employed in spatial epidemiology, our study aimed to add to this
discussion with data obtained at an aggregate, population level. Working from the hypothesis
that areas with a high incidence of type 1 diabetes might also exhibit a high incidence of type
2 diabetes among youth, we examined the cross-correlation, or joint spatial correlation between
these diseases at two geographic units, the county and the Census tract. At the level of the
larger geographic unit, our study suggests a moderate cross-correlation between type 1 and
type 2 diabetes in non-Hispanic whites in South Carolina and in Colorado, and a strong
correlation in Hispanics in Colorado. However, at the level of the Census tract, our study
findings are largely negative. This was true for all four distinct regions studied, including in
subpopulations defined by race/ethnicity. Thus at the level of shared geographic patterning,
our study does not provide support for a common etiology shared between type 1 and type 2
diabetes.

The discrepancy between our county and tract level analyses may be due to aggregation bias.
It has been shown that the choice of the spatial unit has the potential to influence the results
(Morris and Munasinghe, 1993), known as the modifiable spatial area unit problem. The spatial
aggregation of data tends to increase spatial correlation between units of observation. Once
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data are aggregated, they often show different characteristics from individual level data, and
the lack of control for individual level confounders is a source of bias. This view would suggest
that the census tract level analyses present the less biased results. On the other hand, it is
conceivable that the lack of a joint spatial correlation between type 1 and type 2 diabetes at the
tract level is largely due to the immense sparseness of our data. Even though the Bayesian
models are inherently poised to deal with data sparseness, the extreme number of tracts without
cases might have overpowered any effects. In the future, we may be able to evaluate this aspect
of our study by utilizing more than two years of incidence data.

Our study furthermore explores small area geographic variation within each diabetes type. Our
results suggest the presence of spatial autocorrelation of type 1 diabetes in Colorado, Ohio,
and South Carolina with localized clustering of high risk tracts. It has been suggested that
environmental factors such as infections or viruses may contribute to this localized clustering
phenomenon of type 1, which has been shown in previous, albeit conflicting findings to be
associated inversely with population density, urbanization, crowding and deprivation
(Cardwell et al., 2006; Cardwell et al., 2007; Rytkonen et al., 2003; Patterson et al., 1996;
Staines et al., 1997). Our study also presents evidence for the presence of spatial auto-
correlation within type 2 diabetes in Colorado, Ohio, South Carolina and the Washington
region. It is likely that the processes responsible for small area clustering of pediatric type 2
diabetes are very different than those for type 1 diabetes and related to low socioeconomic
status, high body mass index, unhealthful dietary intake and physical inactivity. Thus, the
literature on environmental correlates of diabetes seems to be consistent with the perspective
that while small area variation and clustering of both types of diabetes are to expected, there
would be little reason to believe that they would lead to a joint spatial pattern, i.e. cross-
correlation between both diabetes types.

There are a number of limitations to our study. First, our study utilized only 2 years of incidence
data, whereas other studies of geographic variation have typically utilized at least a decade's
worth of incidence data if not more (Feltbower et al., 2005). The sparseness was also a function
of the spatial unit chosen, particularly for the census tract. Second, we used an imputation
technique to allocate persons to a tract within a known zip code. To evaluate the impact of this
approach we repeated our analyses without allocation and removing these individuals with no
impact on the data. A further limitation of our data is that we had to rely on contact addresses,
which in some instances are not identical to the actual residence. Possibly even more important
is the fact that the contact address may or may not have been the address at the relevant temporal
exposure period, prior to diagnosis when exposure to potential risk factors common to type 1
and type 2 diabetes could have occurred.

A key strength of our study is that we were able to evaluate geographic variation in four distinct
geographic regions including various race/ethnic groups. Our study used Bayesian methods
that address several of the inherent challenges in studying geographic variation of rare diseases.
Bayesian methods tap into the recognition that neighboring areas can be used in the estimation
of each specific area's rates (Lawson 2008). The resulting area-specific rate estimates are thus
smoothed or shrunken, with the amount of shrinkage being larger if the confidence in an area's
observed rate is lower, which is generally the case for less densely populated areas. A number
of studies of type 1 diabetes have utilized these techniques to address a variety of question
including questions of spatial variation, space-time variation, and ecologic analyses correlating
population characteristics with diabetes incidence (Cardwell et al., 2007; Casu et al. 2004a;
Casu et al., 2004b; duPrel et al. 2007; Feltbower et al., 2005; Moltchanov et al., 2005; Rytkonen
et al. 2001; Rytkonen et al. 2003; Thomas et al., 2008). A key strengths of a Bayesian modeling
approach lies in the ability to model flexibly the disease distribution. In addition, it allows the
use of special spatial random effect terms that are not available in other approaches. The main
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limitation of the approach is that it assumes a parametric form for the distribution of disease.
However distributional assumptions can easily be tested via sensitivity analysis.

Our study utilized Bayesian methods in evaluating the joint spatial correlation (cross-
correlation) of type 1 and type 2 diabetes in youth, initially modeling each disease separately
and then jointly in a multivariate SPMCAR model. They key advantage of the MCAR model
is that information from multiple diseases is used to improve the estimation of incidence of
each individual disease. However the amount of information that is “borrowed” across diseases
depends on the amount of correlation. In addition to our own work, only very few other
examples of estimated joint spatial correlation exist in the epidemiologic literature (Assuncao
and Castro, 2004; Feltbower et al., 2005; Thompson et al., 2007). A study of acute
lymphoblastic leukemia and type 1 diabetes found some suggestion of spatial correlation
(r=0.33, 95% credible interval -0.20, 0.74) in Yorkshire (Feltbower et al., 2005). A further
study evaluated a variety of childhood cancer histotypes finding moderate to high correlations
(r >= 0.7) between most histotypes except when correlations with osteosarcoma were
considered where correlations were markedly lower (r=0.35-0.43) (Thompson et al., 2007).

In summary, our study provides evidence for regional variation in type 1 and type 2 incidence
among youth aged 10-19 years in 2002-2003 that cannot be attributed to race/ethnic differences
in the underlying populations. We furthermore identified small-area, localized spatial
autocorrelation within type 1 and type 2 diabetes. Both the regional data and the small area
results may be important for public health agencies and future surveillance efforts for diabetes.
In addition, we investigated the joint spatial patterning between type 1 and type 2 diabetes.
Our results suggest that at the level of the Census tract which we consider the most unbiased
level of analysis, there is currently no evidence for joint spatial patterning.
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Appendix 1. Technical description of Bayesian spatial models
The Sparse Poisson Convolution (SPC) model is a mixture of two Poisson distributions of zero
and non-zero observed counts and includes factored intercepts for modeling these counts.

where, yi is the observed count in the ith census tract; j is the binary factor indicating zero and
non-zero observed counts (j=1 if yi=0 and j=2 if yi>0); α(j) is the factored intercept for modeling
zero and non-zero counts; ui is the correlated random effect; and vi is the uncorrelated random
effect. The expected counts were used as an offset, which is an effect observed in each area
but which is regarded as a constant in the analysis. Our SPC model included spatially correlated
and uncorrelated random effects to explain the possible spatially correlated variations and
heterogeneous patterns in the residuals. The spatially correlated random effects, which model
the extra variation that is correlated over space, are modeled by the conditional autoregressive
(CAR) model (Besag and Kooperberg 1995; Besag, York, and Molliq 1991) which estimates
the random effect of the ith geographic unit (here: Census tract) (ui) conditional on the sum of
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the weighted adjacent geographic units (i.e. Census tracts) values. Spatial correlation is the
CAR model is controlled by neighboring units with common boundaries (adjacencies). Each
of the random effects is assumed to have an underlying Gaussian prior distribution controlled
by a variance parameter, one for uncorrelated and one for correlated effects. These variance
parameters can also have non-informative (half-Cauchy) prior distributions.

We furthermore extended the analysis to a model with multivariate outcomes, the Sparse
Poisson MCAR model (SPMCAR) (Gelfand and Vounatsou, 2003). In this case, the intercept
is applied to multiple disease models. The main advantage of this model is that it estimates the
correlations between spatially correlated random effects of multivariate outcomes. Instead of
considering individual diseases, here we consider the two diseases (type 1 and type 2) as
components of a vector of outcomes and apply a multivariate model. The SPMCAR model is
presented below:

where, multivariate outcome Yi follows a Poisson distribution with the mean μi; μi is a vector
of the means of the Poisson distribution of the ‘m’ multivariate health outcomes (μi =(μi1,…,
μim)); α(j) is a vector of factored intercepts (= α1(j),…, αm(j)) where j denotes the class of the
observed count (zero or positive); Ui is a vector of correlated random effects (Ui = (u1,…,
um)); and Vi is a vector of uncorrelated random effects (Vi = (v1,…, vm)). Since the RR of type
1 and type 2 are estimated within the model at the same time, we can estimate the correlation
of RR of type 1 and type 2 within the model, which is the parameter of interest in this study.

All models were fit using WinBUGS (version 1.4.3) which can be used to provide posterior
samples of parameter values from Bayesian models. Samples were generated based on the
Gibbs sampling, and we ran 3 different chains of parameter values to check the sensitivity to
the initial values. Convergence was assessed using the Brooks-Gelman-Rubin diagnostics
(Brooks and Gelman, 1998) as well as visual inspection of trace plots. 10,000 samples were
generated from which the first 8,000 samples were discarded, the remaining 2,000 samples
were used to summarize the posterior estimates. For prior distributions, the normal prior
distribution (N(0,1000)) was assigned to α, and uniform prior distributions are assigned to σu
and σv (σu, σv ∼Unif (0,10),).
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Figure 1.
Spatially smoothed relative risks of Type 1 diabetes mellitus 2002-2003 in 10-19 year olds in
four geographic regions computed from Bayesian SPC model (Clockwise from upper left:
Colorado, Ohio, Washington, South Carolina)
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Figure 2.
Spatially smoothed relative risks of Type 2 diabetes mellitus 2002-2003 in 10-19 year olds in
four geographic regions computed from Bayesian SPC model Type 2 SPC (Clockwise from
upper left: Colorado, Ohio, Washington, South Carolina)
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