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Abstract

Objectives—Our goal was to evaluate the effect of rapamycin, an mTOR inhibitor, in type I and

II human endometrial cancer tumor explants.

Methods—Short-term tissue culture with fresh endometrial cancer tumor explants was

performed. Cell proliferation was assessed by MTS assay after treatment with rapamycin. Akt and

PTEN status were documented by Western blotting. The effect of rapamycin on phosphorylated-

S6 and 4E-BP-1 was also assessed by Western blotting. Real-time RT-PCR was used to quantify

hTERT mRNA expression. Telomere length was determined by terminal restriction fragment

Southern blotting.

Results—Thirteen fresh endometrial cancer tumor explants (nine Type I, four Type II) were

placed in short-term culture and treated with rapamycin. Nine of the endometrial cancer tumors

responded to rapamycin, with a median IC50 of 11.4 nM. Sensitivity to rapamycin was

independent of PTEN and Akt status. Tumors (13/13) had a reduction in phosphorylated-S6 and

10/13 had a reduction in phosphorylated 4E-BP-1. Rapamycin decreased hTERT mRNA

expression in all of the endometrial cancer tumors. Telomere length did not correspond with

responsiveness to this drug.

Conclusions—Rapamycin demonstrated activity in fresh endometrial tumor explants

independent of PTEN and Akt status. Some tumors demonstrated a reduction in phosphorylated-
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S6 and 4E-BP-1 without a significant change in cellular proliferation, suggesting that additional

pathways may modulate cellular proliferation. Thus, mTOR inhibitors may be a useful targeted

therapy for both type I and type II endometrial cancers, but the search remains for a predictive

biomarker of sensitivity to this therapy.
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Background

Endometrial carcinoma is the most common gynecologic malignancy in the United States,

accounting for more than 42,160 cases and 7780 deaths in 2009 [1]. Women with early stage

disease (FIGO stage I and II) and endometrioid histology (type I) have a relatively good

prognosis with surgery alone or surgery plus radiation. However, those patients with

advanced or recurrent disease are unlikely to be cured by surgery, conventional

chemotherapy, radiation or a combination of these modalities. In addition, 20% of women

with be diagnosed with a tumor of either serous or clear cell histology (type II) and even in

the setting of early stage disease (FIGO stage I), these women have a 5-year survival rate of

60% as compared with an 85–90% survival rate in those with stage I endometrioid

adenocarcinoma. Unlike type I endometrial cancers that are associated with obesity and

estrogen excess, there is no clear epidemiologic profile for type II cancers which behave

much more aggressively. As some estimate that the percent of women dying from

endometrial carcinoma has increased by 227% over the past decade, there is a great need to

develop novel targeted agents that can be used alone or in combination with current

treatment strategies.

A dualistic model for the development and progression of endometrial cancer exists that

divides these tumors into type I and type II based on biological, molecular and clinical

parameters [2]. Type I or those tumors of endometrioid histology comprise 80% of cases and

are thought to arise from persistent unopposed estrogen stimulation, which can be either

endogenous or exogenous. Women who develop these tumors are typically perimenopausal

and often have risk factors such as obesity, hyperlipidemia, nulliparity, diabetes mellitus and

insulin resistance, polycystic ovarian syndrome, hypertension and late-onset menopause.

These tumors are preceded by an identifiable premalignant state of hyperplasia and

ultimately, atypical hyperplasia, and are generally estrogen receptor (ER) and progesterone

receptor (PR) positive. Genetic alterations associated with these tumors include PTEN

deletions or mutations (36–83%), microsatellite instability (20–40%), mutations of K-ras

(15–30%) and gain of function mutations in β-catenin (25–40%) [3–5].

In contrast, type II or those tumors of atypical histologies such as serous and clear cell

carcinomas have no association with excess endogenous or exogenous estrogen and have no

recognized risk factors. These tumors generally occur in postmenopausal women in the

setting of an atrophic endometrium. Type II tumors behave much more aggressively and

show a propensity for deep invasion, lymphovascular permeation and distant spread. ER and

PR are generally negative or weakly positive. A precursor lesion is not as well defined but

an in situ form of this type of carcinoma has been described and is referred to as endometrial
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intraepithelial carcinoma (EIC) [6]. The molecular genetic profile for these tumors is

different than type I tumors and is associated with aneuploidy, p53 mutations (80–90%), p16

inactivation (40%), overexpression of HER-2/neu (40–80%) and E-cadherin alterations (80–

90%) [3–5].

As our knowledge has evolved of the underlying molecular mechanisms involved in

endometrial cancer development and progression, many potential targeted therapeutic agents

are being actively investigated [7]. Loss of PTEN expression is one of the most prevalent

molecular abnormalities associated with endometrial cancers and occurs in an estimated 36–

83% of type I endometrial cancers. Unlike most other tumor types, loss of PTEN expression

is observed in premalignant lesions of the endometrium, suggesting that PTEN loss may be a

potential initiator of endometrial cancer development [8]. Wild-type PTEN downregulates

the PI3K/Akt/mTOR signaling pathway, which transduces extracellular growth regulatory

signals to intracellular mediators of growth and cell survival [9]. Loss of PTEN results in

constitutive activation of Akt and subsequently leads to promotion of cellular proliferation

and resistance to apoptosis. Therefore, mTOR is a promising target for endometrial cancer

therapy, and clinical trials of mTOR inhibitors are currently underway for this disease.

mTOR inhibitors such as rapamycin exert their anti-proliferative effects through inhibition

of the serine/threonine kinase, mammalian target of rapamycin (mTOR), by forming a

complex with one of the immunophilin family of FK506 binding proteins, FKBP12 [10,11].

The inhibition of mTOR prevents phosphorylation and activation of S6K1 and 4E-binding

protein 1 (4E-BP-1), which ultimately results in the inhibition of translation of critical

mRNAs involved in cell cycle progression [10,11]. We have previously demonstrated that

rapamycin profoundly inhibits cell proliferation through G1 cell cycle arrest in established

endometrial cancer cell lines [12]. Our goal was to expand on our previous work and assess

the effect of rapamycin in human primary cultures of both type I and type II endometrial

cancer tumors.

Material and methods

Drug and reagents

Rapamycin was purchased from Sigma (St. Louis, MO) and dissolved in DMSO. The anti-

wild-type PTEN antibody, anti-phosphorylated-ser473-Akt antibody, anti-phosphorylated-

ser235/236-S6 antibody, anti-total-S6 antibody, anti-phosphorylated-ser65-4E-BP-1

antibody and anti-total-4E-BP-1 antibody were purchased from Cell Signaling (Danvers,

MA). The anti-estrogen receptor antibody, the anti-progesterone receptor antibody and the

anti-β-actin antibody were from Santa Cruz Biotechnology (Santa Cruz, CA). Enhanced

Chemiluminescence Western blotting detection reagents (ECL) were from Amersham

(Arlington Heights, IL).

Sources of tissue

Thirteen tumor specimens were sampled from patients undergoing surgery for endometrial

carcinoma at the University of North Carolina at Chapel Hill. The protocol was reviewed

and exemption granted by the Institutional Review Board at the University of North
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Carolina at Chapel Hill. The international Federation of Gynecology and Obstetrics (FIGO)

stage and histological grade of the tumors are shown in Table 1.

Culture of primary endometrial tumor cells

In brief, the freshly obtained tissues were washed three times in sterile, cold Hank’s

Buffered Salt Solution (HBSS) to remove blood and secretions, and then gently minced by

scissors in M199 medium containing 10% fetal calf serum (FCS) and 0.3 g/l glutamine.

These tumor cells were then incubated for 2–4 h at 37 °C in M199 supplemented with 0.1%

collagenase IA, 100 U/ml penicillin and streptomycin with occasional shaking. After two

centrifugations with PBS wash, the tumor cells were suspended in M199 medium and then

diluted to 1×105 cells/ml. Aliquots (100 μl) of tumor cell suspension were plated into 96

well tissue culture plates resulting in approximately 1×104 cells per well. The cells were

incubated at 37 °C for 24 h in a 5% CO2 incubator, and then were treated with various

concentrations of rapamycin or DMSO. Cell proliferation was assayed by the CellTiter 96

AQ non-Radioactive cell proliferation assay (MTS) from Promega (Madison, WI). After 24,

48 and 72 h, 20 μl of freshly prepared MTS/PMS solution was added to each well, and the

mixture was incubated for 2 h at 37 °C. Optical density was read directly at 490 nm using

ELISA plate reader. All samples were assayed at least in quadruplicate with an appropriate

blank. The tumor inhibition rate (IR %) was calculated for each assay by the formula:

where T=OD 490 of the treated cells and C=OD 490 of the control cells. The tumor was

judged to be sensitive when the IR was ≥50% and insensitive when the IR was <50% at any

of the time points of 24, 48 or 72 h.

Western blotting analysis

Tumor cells at a density of 3×105 cells/well in 6-well plates were cultured for 24 h and then

treated with 20 nM of rapamycin or vehicle (DMSO). Cell lysates were prepared in RIPA

buffer (1% NP-40, 50 mmol/l Tris, 150 mmol/l NaCl). Equal amount proteins were

separated by gel electrophoresis and transferred onto a nitrocellulose membrane. The

membrane was blocked with 5% nonfat milk and then incubated with 1:1000 dilution of

primary antibody overnight at 4 °C. Subsequently, the membrane was washed and incubated

with a secondary peroxidase-conjugated antibody for 1 h after washing. Antibody binding

was detected by using an enhanced chemiluminescence detection system. Western

immunoblotting films were digitized, and band net intensities were quantified suing a

Millipore Digital Bioimaging System (Bedford, MA). After developing, the membrane was

stripped and re-probed using β-actin to confirm equal loading. Western blot films were

digitized, and band net intensities were quantified by a densitometer using the Genegynome

Image System (Sygene, MD). A target protein/β-actin ratio was calculated for each protein.

An endometrial tumor was considered positive for a particular protein if the target protein/β-

actin ratio was ≥0.020.
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Telomere length

Telomere length was assessed by using the TeloTAGGG Telomere Length Assay kit (Roche

Applied Science, Indianapolis, IN), according to the manufacturer’s protocol. DNA was

extracted from the human endometrial cancer tumor specimens using the standard method of

phenol–chloroform. 2 μg of DNA was digested by mixing HinfI (20 U) and RsaI (20 U) and

incubated at 37 °C for 2 h. Resulting DNA fragments were then separated on a 0.8% agarose

gel by electrophoresis in 1× TAE running buffer. Separated DNA was subsequently

transferred to a positively charged nylon membrane and blotted with digoxigenin-labeled

(CCCTAA)3 DNA probe for 3 h at 62 °C. The membrane was exposed to a phosphorimager

screen and detected on the PhosphorImager Storm 860 (Molecular Dynamics, Sunnyvale,

CA) and then on an X-ray film. Median telomere length was calculated using the Image J

freeware (National Institutes of Health, Bethesda, MD).

Real-time PCR for hTERT

Total RNA was isolated using an RNA mini kit, and further DNase treatment was performed

using the RNase-Free DNase Set (QIAGEN, Chatsworth, CA) following the manufacturer’s

instructions. The reverse transcription and PCR reactions were conducted using the TaqMan

Gold one-step PCR kit in the ABI 7700 Sequence Detection System (Applied Biosystems,

Foster City, CA). Reverse transcription was carried out at 48 °C for 30 min. The PCR

condition consisted of a 10 min step at 95 °C and 40 cycles at 95 °C for 15 s and 65 °C for 1

min in a final volume of 30 μl containing 50–100 ng total RNA, 3 μl 10× TaqMan buffer A,

5.5 mM MgCl2, 300 μM dATP, dCTP and dGTP, 600 μM dUTP, 100 nM probe, 200 nM

forward and reverse primer, 15 units RNase inhibitor, 7.5 units MuLV reverse transcriptase

and 1 unit AmpliTaq Gold DNA Polymerase. A housekeeping gene known as acidic

ribosomal phosphoprotein PO (RPLPO) was used as an active and endogenous reference to

correct for differences in the amount of total RNA added to each reaction and to compensate

for different levels of inhibition during reverse transcription of RNA into cDNA during

PCR. Primers and fluorogenic probes for hTERT and RPLPO have been described

previously [13]. The standard curve for quantification of hTERT was generated by using

serial dilutions of a known amount of hTERT cRNA synthesized by in vitro transcription of

a cloned fragment. The level of the hTERT expression of each sample was calculated as a

ratio that the amount of hTERT transcript was divided by the amount of the endogenous

housekeeping gene RPLPO.

Statistical analysis

Results for experiments were normalized to the mean of the control and analyzed using the

Student’s t-test. Differences were considered significant if the p value was less than 0.05

(p<0.05) with a confidence interval of 95%. STATA software (StataCorp, College Station,

TX) was used to perform the statistical analyses.
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Results

Characterization of the Type I and Type II endometrial cancer tumor explants

Thirteen endometrial cancer explants were harvested at the time of hysterectomy. Nine

samples were type I endometrioid adenocarcinomas and four samples were type II serous or

clear cell adenocarcinomas (Tables 1 and 2). ER, PR, wild-type PTEN and phosphorylated-

Akt status was determined for each sample by Western immunoblotting (Fig. 1). All of the

type I and type II tumors expressed PR (target protein/β-actin ratio range of 0.976–0.081),

and 6/9 of the type I and 3/4 of the type II tumors expressed ER (target protein/β-actin ratio

range of 0.00–0.893). Five of the nine (55%) type I tumors expressed wild-type PTEN while

the other four type I tumors (44%) were PTEN negative (target protein/β-actin ratio range of

0.00–0.728). Of the grade 1 endometrioid lesions, two of the three (67%) were PTEN

negative as compared to 3/6 (50%) of the grade 2 or grade 3 lesions. Two of the four type II

tumors (50%) were PTEN negative. Lastly, 8/9 of the type I tumors (89%) and 4/4 (100%)

of the type II tumors expressed phosphorylated-Akt (target protein/β-actin ratio range of

0.00–0.794).

Anti-proliferative effect of rapamycin

We examined the effect of rapamycin in the type I and type II endometrial cancer tumor

explants at 24, 48 and 72 h (Table 1). The IC50 at 48 h is reported in Table 1. Of these

tumors, 9/13 responded to rapamycin, with a median IC50 of 11.4 nM (range 0.01–50 nM).

For the type I tumors, 7/9 (78%) responded to rapamycin (median IC50 of 12.5 nM), and for

the type II tumors, 2/4 (50%) responded to treatment (median IC50 of 7.5 nM). Sensitivity to

rapamycin was independent of PTEN and phosphorylated-Akt status. Rapamycin inhibited

cell growth in 5/7 of the PTEN positive (71%) and 4/6 of the PTEN negative (67%)

endometrial cancers. Only one endometrial tumor was phosphorylated-Akt negative, and

this tumor did not respond to rapamycin. Of the phosphorylated-Akt positive tumors, 9/12

(75%) had a response to treatment with rapamycin.

Effect of rapamycin on the mTOR pathway

To investigate the mechanisms underlying the anti-proliferative effect of rapamycin, we

characterized the effect of this combination treatment on relevant cell signaling targets.

Previous studies suggest that p70S6K is a downstream target of the mTOR pathway [14].

p70S6K kinase directly phosphorylates the 40S ribosomal protein S6, which results in

enhanced synthesis of proteins that contain a polypyrimidine tract in the 5′-untranslated

region [14]. Therefore, we studied the effect of rapamycin on the phosphorylation of the S6

ribosomal protein among the type I and type II endometrial cancer tumor explants. After 24,

48 and 72 h of treatment, rapamycin dramatically decreased the phosphorylation of S6 in all

the endometrial cancer tumor explants by 3.4–13.2 fold (p=0.0001) (Fig. 2A). Little effect

was seen on the expression of total-S6.

mTOR kinase regulates protein synthesis by phosphorylating the translation repressor 4E-

BP-1 on multiple serine/threonine sites [15]. The phosphorylation status of 4E-BP-1

regulates binding to eukaryotic initiation factor 4E (eIF4E). Hyperphosphorylation of 4E-

BP-1 disrupts its binding to eIF4E, activating cap-dependent protein synthesis [16]. After
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24, 48 and 72 h of treatment, rapamycin decreased phosphorylation of 4E-BP-1 (Fig. 2B) in

11/13 of the endometrial cancer tumor explants by 2.8–6.6 fold (p=0.0012). Rapamycin had

little effect on the expression of total-4E-BP-1. Thus, these results suggest that rapamycin’s

effect on either phosphorylated-S6 or phosphorylated- 4E-BP-1 did not correlate with

response to treatment.

Effect of rapamycin on telomere length and hTERT mRNA expression

The hTERT gene encodes the catalytic subunit of telomerase. hTERT expression is the rate-

limiting determinant of the enzymatic activity of human telomerase and is thought to be a

sensitive marker of telomerase function. Real-time RT-PCR was used to quantify hTERT

mRNA expression in the endometrial cancer tumor explant. Treatment with rapamycin (20

nM) decreased hTERT mRNA expression in all of the type I and type II endometrial cancer

tumor explants (Fig. 3). Among these tumors, hTERT mRNA expression was decreased by a

mean of 27% (p=0.0001) (Fig. 3).

Telomere length in the endometrial cancer tumor explants was compared by terminal

restriction fragment southern blot analysis (Fig. 4). The mean telomere length was 7.2 kb for

the type I tumors (range 4.9–10.5 kb) and 8.5 kb for the type II tumors (range 3.8–11.2 kb).

In addition, the mean telomere length was 7.5 for the rapamycin sensitive tumors (3.8–10.8

kb) and 7.8 kb for the rapamycin resistant tumors (4.9–11.2 kb). Thus, the effect of

rapamycin on hTERT mRNA expression or baseline tumor telomere length did not predict

responsiveness to rapamycin in these samples.

Discussion

We have demonstrated activity of rapamycin in both type I and type II endometrial cancer

tumor explants (Tables 1 and 2). Rapamycin universally decreased phosphorylation of S6

and reduced hTERT mRNA expression in all of these tumors, but only inhibited cell

proliferation in 69% of the tumors examined. We found no correlation between PTEN status

or phosphorylated Akt status and response to treatment with rapamycin. Similarly, effects of

rapamycin on phosphorylated S6, phosphorylated 4E-BP-1, hTERT mRNA expression or

baseline telomere length were not predictive of sensitivity to rapamycin. To our knowledge,

this is the first study to evaluate rapamycin in type I and II endometrial cancer tissue

explants and assess potential biomarkers of response for this disease.

Hyperactivation of the PI3K/Akt/mTOR pathway is a feature of many types of cancer,

including endometrial cancer. This can occur by a variety of mechanisms, including PTEN

inactivation which has been found in up to 83% of type I endometrial cancers and 55% of

precancerous lesions [8,17]. Alterations in PTEN occur most frequently by mutations that

lead to loss of function. PTEN and PI3K act as opposing forces to regulate Akt

phosphorylation. PI3K mutations have also been documented in approximately 36% of type

I endometrial cancers and commonly occur in tumors that have PTEN mutations [18]. Loss

of PTEN function in PTEN-null cancer cells has been proposed as an indicator of sensitivity

to rapamycin and its analogues [19–23]. In contrast, others, including our previous work in

endometrial, ovarian and cervical cancer cell lines, have found that loss of PTEN function

was insufficient to predict response to mTOR inhibitors both in vitro and in vivo [12,24–26].
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This present study further supports the lack of correlation between PTEN loss and response

to rapamycin. Among the endometrial cancer tumors examined, a similar percentage of

PTEN positive (71%) and PTEN negative (67%) tumors were sensitive to the growth

inhibitory effects of rapamycin.

The basal level of phosphorylated Akt in cancer cells has also been implicated as another

potential biomarker of responsiveness to mTOR inhibitors, such as rapamycin [23,27].

However, we did not find this to be true among the type I and II endometrial cancer tumor

explants that were evaluated. The vast majority (92%) of the endometrial cancer tumors

expressed basal levels of phosphorylated Akt. Of the endometrial tumors that did not

respond to rapamycin, 2/4 were strongly positive (target/β-actin ratio of 0.460 and 0.794),

1/4 was weakly positive (target/β-actin ratio of 0.077) and 1/4 was negative for

phosphorylated-Akt. It could be argued that a change in phosphorylation after treatment with

rapamycin may be a better predictor of response to therapy. However, in a recent study that

examined the rapamycin analogue, everolimus, Akt phosphorylation induced by everolimus

did not correlate with sensitivity to this treatment in a large panel of different cancer cell

lines [27].

Cell cycle progression necessitates a steady increase in the rate of protein synthesis,

resulting in the coordinated activation of cyclins, cyclin-dependent kinases (CDK) and CDK

inhibitors. Rapamycin is known to block cell cycle progression through G1 by inhibition of

two crucial downstream targets, S6 and 4E-BP-1, which are both mediators of protein

translation. In the search for biomarkers to predict sensitivity to mTOR inhibitors,

phosphorylated S6 and 4E-BP-1 have also been investigated with controversial results.

Rapamycin and its analogues have been shown to inhibit S6 phosphorylation in tumors, skin

and peripheral blood lymphocytes in animal models, and this effect was correlated with the

anti-tumor benefit of rapamycin in these models [28,29]. In addition, it has been proposed

that inhibition of S6 kinase activity in peripheral blood lymphocytes may serve as a

surrogate biomarker for planning optimal dosing regimens of mTOR inhibitors, and this is

being explored in recent clinical trials of the rapamycin analogues, everolimus and

temsirolimus (CCI-779) [29,30]. Inhibition of phosphorylation of 4E-BP-1 by temsirolimus

has also been correlated with the degree of tumor growth inhibition in prostate, glioma and

ovarian carcinoma xenograft animal models [31]. We found that rapamycin decreased

phosphorylation of S6 in all of the endometrial cancer tumor explants examined and

decreased phosphorylation of 4E-BP-1 in most of these tumors (85% or 11/13 tumors).

These results are most consistent with what has been shown in studies of breast, prostate and

multiple myeloma cells, where S6 and 4E-BP-1 phosphorylation was inhibited in both

rapamycin-sensitive and rapamycin-resistant cancer cell lines [20,22,23]. Thus, inhibition of

phosphorylation of S6 and 4E-BP-1 may indicate that adequate target inhibition has been

achieved, but may not serve as useful biomarkers of sensitivity to mTOR inhibitor therapy.

These findings suggest that additional pathways other than the mTOR pathway may

modulate cellular proliferation or alternatively, that S6 and 4E-BP-1 may not be the only

critical downstream effectors of mTOR signaling. In further support of this hypothesis, in a

phase I trial of everolimus in 55 patients with advanced solid tumors, treatment resulted in

almost complete inhibition of phosphorylation of S6 and 4E-BP-1 in tumor and skin samples

but this did not predict sensitivity to therapy [30,32].
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Telomeres are structures that cap the ends of chromosomes. As cells get older, telomeres

progressively shorten and ultimately reach a crisis point that leads an older potentially

defective cell towards cell death. Telomerase is an enzyme that adds DNA sequence repeats

(TTAGGG) to the 3′ end of the DNA telomere region, thereby preventing the shortening of

the caps at the ends of chromosomes. In most normal somatic cell types, telomerase activity

is usually undetectable; however, the endometrium is a unique exception [33]. Telomerase

activity rises and falls throughout the menstrual cycle, with high levels found during the

proliferative phase and low levels during the secretory phase. It is hypothesized that these

fluctuations in telomerase activity may be linked to the ability of the normal endometrium to

repeatedly proliferate from the onset of menarche to menopause. Activation of telomerase

enables cells to divide indefinitely and has been implicated as a key element in cellular

immortality and oncogenesis for many cancers [33], including endometrial cancers [34,35].

Expression of telomerase has been documented in over 90% of endometrial cancers [34,35].

Telomerase is comprised of an RNA template (hTR) and the catalytic protein hTERT which

has reverse transcriptase activity. hTERT is considered to be the rate-limiting factor in the

formation of functional telomerase.

Based on our previous work, the mTOR signaling pathway may also play a role in the

regulation of telomerase activity. We have previously shown that rapamycin potently

suppressed telomerase activity by decreasing hTERT mRNA levels in endometrial, ovarian

and cervical cancer cell lines [12,24]. Although controversial, it has been suggested that

hTERT transcription is cell cycle dependent and that non-cycling cells do not express

hTERT [36,37]. Thus, one could argue that the effect of rapamycin on decreasing hTERT

expression may occur simply as an indirect consequence of cell cycle arrest rather than a

direct effect on hTERT transcription. However, we found that rapamycin globally decreased

hTERT expression in gynecologic cancer cell lines, even in cell lines that were resistant to

rapamycin’s anti-proliferative effects and failed to undergo G1 arrest [24]. This is further

supported by our findings in the type I and II endometrial cancer tissue explants. Rapamycin

decreased hTERT expression in all of these tumors, independent of the responsiveness of

these tumors to rapamycin’s growth inhibitory effects. Thus, rapamycin may regulate

hTERT mRNA expression through an alternative pathway downstream from mTOR that is

distinct from its ability to induce cell cycle arrest.

Telomere length has also been implicated as a prognostic indicator in a number of solid

tumors, including breast, colon, lung, prostate and hepatocellular carcinomas [38]. In

general, alterations in telomere length are associated with worse clinical outcomes, but the

type of alteration, i.e. short versus long telomeres, appears to be dependent on the tumor

type [38]. Given the potential relationship between mTOR signaling and telomerase activity,

we measured telomere length to see if this would correspond to response to treatment.

Although effects on hTERT expression failed to predict sensitivity to rapamycin among the

endometrial cancer tissue explants, our hope was that differences in telomere length may be

more helpful. However, the mean telomere length was the same between rapamycin

sensitive and resistant tumors; and thus, was not a biomarker of response to this drug.

Biomarkers to predict sensitivity to mTOR inhibitors have remained elusive both in pre-

clinical studies and in clinical trials for endometrial cancer as well as other tumor types. As
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demonstrated in our work, PTEN and phosphorylated Akt status failed to predict sensitivity

to treatment with rapamycin among type I and type II endometrial cancer tumor explants. A

number of other potential biomarkers were explored, including phosphorylated S6,

phosphorylated 4E-BP-1, hTERT and telomere length, but none were found to be effective

in discriminating which tumors would best respond to the anti-proliferative effects of

rapamycin treatment. Our numbers are small, and this limitation could have impacted the

emergence of one of these factors as a legitimate biomarker. However, these findings are

consistent with those from recent clinical trials of mTOR inhibitors in endometrial cancer.

Three mTOR inhibitors have been or are currently being investigated in women with

endometrial cancer: temsirolimus (CCI-779, Wyeth), everolimus (RAD001, Novartis) and

ridaforolimus (formerly deforolimus, AP23573, Merck). According to the results from the

completed phase II trials to date, mTOR inhibitors do exhibit activity in women with

advanced or recurrent endometrial cancer [7], with response rates of 26–28%. Based on the

biologic correlates derived from some of these trials, response to mTOR inhibitors has not

correlated with PTEN status or Akt and mTOR expression patterns [7]. Although loss of

PTEN is more commonly associated with type I tumors, there is no indication that mTOR

inhibitors are not equally efficacious in type II tumors and other molecular characteristics

may ultimately be the more critical factor in predicting sensitivity or alternatively, resistance

to treatment. It is possible that alternative approaches such as microarray gene expression

profiling may lead to identification of biomarkers predicting sensitivity to mTOR inhibition.

Thus, the search continues for meaningful biomarkers or combinations of biomarkers to help

identify endometrial cancer patients who are most likely to benefit from mTOR inhibitor

therapy, and this should continue to be a priority goal in subsequent clinical trials and

translational studies.
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Fig. 1.
Expression of the progesterone receptor (PR), estrogen receptor (ER), PTEN,

phosphorylated-AKT (P-Akt) and β-actin in 13 human endometrial cancer tumor explants by

Western blotting.
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Fig. 2.
Rapamycin inhibited phosphorylation of S6 in all of the human endometrial cancer tumor

explants as determined by Western blotting [A]. In addition, rapamycin decreased

phosphorylation of 4E-BP-1 in most of these tumor explants (77% or 10/13) [B]. Primary

tumor cells were cultured for 24 h and then treated with 20 nM rapamycin (Ra) or control

(C) for 24, 48 or 72 h. Little effect was seen on total S6 or total 4E-BP-1. This is a

representative Western blot of 4 of the 13 endometrial cancer tumor explants examined.
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Fig. 3.
Rapamycin inhibits hTERT mRNA expression in human endometrial cancer tumor explants.

Primary tumor cells were cultured for 48 h and then treated with 20 nM rapamycin or

control for 48 h. hTERT mRNA levels were determined by real-time RT-PCR.
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Fig. 4.
Comparison of telomere length in human endometrial cancer tumor explants by terminal

restriction fragment Southern blot analysis. Telomere length did not predict responsiveness

to rapamycin among these samples.

Bae-Jump et al. Page 16

Gynecol Oncol. Author manuscript; available in PMC 2014 July 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Bae-Jump et al. Page 17

Table 1

Characterization of endometrial cancer explants treated with rapamycin.

Patient Histology Grade FIGO
stage

IC50
(nM)

Wildtype-PTEN Phospho-Akt

1 endometrioid 2 IB a + −

2 endometrioid 3 IB 50 − +

3 serous 3 IA 0.01 − +

4 endometrioid 3 IB 1 + +

5 endometrioid 3 IB 10 + +

6 clear 3 IB a + +

7 endometrioid 1 IB 1 + +

8 serous 3 IB a − +

9 endometrioid 3 IB a − +

10 clear 3 IVB 15 + +

11 endometrioid 1 IB 0.01 − +

12 endometrioid 2 IA 25 + +

13 endometrioid 1 IA 0.5 − +

a
Did not respond to treatment with rapamycin.
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Table 2

Rapamycin in type I and type II endometrial cancers.

Type Type I (n = 9) Type II (n = 4)

Mean IC50 12.5 nM (7/9) samples
responded

7.5 nM (2/4 samples
responded)

ER status 6/9 positive 3/4 positive

PR status 9/9 positive 4/4 positive

Wildtype-PTEN status 5/9 positive 2/4 positive

Phospho-Akt status 8/9 positive 4/4 positive

Phospho-S6 Decreased by
rapamycin in 9/9

Decreased by
rapamycin in 4/4

Phospho-4E-BP-1 Decreased by
rapamycin in 7/9

Decreased by
rapamycin in 4/4

hTERT mRNA expression Decreased by
rapamycin in 9/9

Decreased by
rapamycin in 4/4

Mean telomere length 7.2 kb 8.5 kb
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