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Abstract

Objectives—Increased levels of urokinase-type plasminogen activator (uPA) are associated with

shortened overall survival in ovarian cancer patients. Additionally, elevated levels of the serine

protease inhibitor (serpin), plasminogen activator inhibitor-1 (PAI-1), a uPA inhibitor, have also

been correlated with an unfavorable prognosis in ovarian cancer. Therefore, it is critical to

understand the signaling pathways that regulate PAI-1 and uPA expression in cancer cell

migration-invasion.

Methods—We studied the PI3K/Akt, Rho kinase/ROCK, p38 MAPK and MEK pathways and

their modulation of PAI-1 and uPA expression and wound-induced cell migration in SKOV-3

ovarian cancer cells. The PI3K/Akt pathway was further examined using pharmacological

inhibitors (LY294002 and wortmannin), Akt siRNA, constitutively active Akt adenovirus and

treatment with IGF-1/insulin in the SKOV-3 cells.

Results—The PI3K/Akt pathway negatively regulates PAI-1 expression and positively correlates

with migratory abilities and uPA expression in SKOV-3 cells. A reduction in active Akt results in

an increase in PAI-1 expression coupled with a decrease in uPA expression to ultimately result in

reduced cell migration and invasion. By contrast, an increase in Akt activity reduces PAI-1

expression and results in an increase in SKOV-3 wound-induced cell migration. Furthermore,

IGF-1 and insulin stimulated SKOV-3 migration by altering the balance between uPA and PAI-1

to favor uPA, and the enhanced migration was attenuated by treatment with LY294002 indicating

PI3K/Akt in this pathway.
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Conclusions—These results suggest an overall ovarian tumor-protective role for PAI-1, and that

the PI3K/Akt signaling pathway regulates the ratio of PAI-1:uPA to either increase or decrease

cell migration.
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Introduction

Ovarian cancer accounts for 4% of all cancers among women but it is the leading cause of

gynecological cancer deaths [1]. Advanced ovarian cancer is characterized by a high

frequency of metastasis to lymph nodes and invasive growth into multiple organs due to

peritoneal dissemination [2,3]. Invasive ovarian cancers demonstrate increased levels of the

serine protease, urokinase-type plasminogen activator (uPA), and its serine protease

inhibitor (serpin), plasminogen activator inhibitor-1 (PAI-1), compared with benign ovarian

cancer or normal ovary. These increased amounts of uPA and PAI-1 are typically correlated

with a more aggressive phenotype of ovarian cancer and are linked to a poor prognosis [4–

8]. Upon binding its cell surface urokinase receptor (uPAR), uPA activates plasminogen into

plasmin to facilitate extracellular matrix degradation and tumor cell invasion. In addition to

proteolytic activity and regulation, uPA, PAI-1 and uPAR are implicated in cell signaling

pathways controlling cell proliferation, migration and invasion.

The PI3K/Akt cell signaling pathway is implicated in cell migration and invasion [9–11].

The PI3K/Akt pathway regulates uPA expression; selective inhibition of the PI3K/Akt

pathway in numerous cell types decreases uPA expression and/ or activity with a subsequent

decrease in cell invasion [12–14]. Urokinase itself has been reported to stimulate PI3K

activity and activates the downstream effectors Akt [15,16] and Rac1 [17]. Inversely,

antisense uPA in glioblastoma cells causes a decrease both in wound migration and in

PI3K/Akt activity [18]. Conversely, looking at PAI-1 levels, both hypoxia-induced PAI-1

expression [19] and nerve growth factor-induced PAI-1 expression [20] can be inhibited by

PI3K inhibitors. A link between PAI-1 and phosphorylated Akt was recently demonstrated

in aortic endothelial cells from the PAI-1 knockout mouse, which showed increased

phosphorylated Akt levels compared to wild-type aortic endothelial cells [21]. Furthermore,

both insulin-like growth factor-1 (IGF-1) and insulin modulate expression of uPA and PAI-1

through PI3K/Akt in breast cancer cells and in adipocytes [22,23]. IGF-1 and insulin are

involved in cell survival, proliferation and cell migration; thus, their interaction with

PI3K/Akt and the changes in expression of uPA and PAI-1 are being studied in many

different disease settings.

The PI3K pathway is important in ovarian carcinogenesis [24]. Akt has been shown to be

amplified or over-expressed in ovarian cancer, implying that it also has a role in ovarian

carcinogenesis [25–28]. PI3K is constitutively activated in the SKOV-3 ovarian cancer cell

line [27]. The PI3K/Akt pathway is an important signaling pathway to examine in the

context of ovarian cancer and in relation to both PAI-1 and uPA expression. Using the

SKOV-3 ovarian cancer cell line as a model for ovarian cancer in in vitro migration assays,
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we sought to better understand the relationship of the PI3K/Akt pathway to PAI-1 and uPA.

This study describes the effects of a selection of signaling pathway inhibitors on both basal

unstimulated SKOV-3 and on insulin- and IGF-1-treated SKOV-3 cell migration.

Materials and methods

Cell Culture

SKOV-3 cells were obtained from the University of North Carolina Tissue Culture Facility

in the Lineberger Comprehensive Cancer Center and maintained as monolayer culture in

minimal Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal

bovine serum (FBS) and 1% antibiotic/antimycotic in a humidified chamber with 5% CO2 at

37°C.

Wound-induced migration assay

Confluent SKOV-3 monolayers were scratched with a sterile yellow pipette tip, washed and

then treated with serum-free media containing the given concentrations of signal pathway

inhibitors (Y27632 and SB203580 were obtained from Calbiochem, San Diego, CA;

LY294002, wortmannin and PD98059 were from Biomol, Plymouth Meeting, PA) and/or

blocking antibodies (PAI-1 or uPA antibody, both from American Diagnostica, Stamford,

CT).Wound-induced migration assays with Akt siRNA or Akt adenovirus-treated SKOV-3

cells were performed in 1% FBS-containing media. Additional wound-induced migration

assays with IGF-1 and insulin were performed on serum-starved SKOV-3 monolayers, as

described previously [29]. Cells were pre-treated for 1 h with sterile DMSO (Sigma, St.

Louis, MO) or 50 µMLY294002 in serum-free media, scratched, washed and then treated

with 100 nM insulin (Invitrogen, Carlsbad, CA) or 50 ng/mL IGF-1 (R&D Systems,

Minneapolis, MN) in the absence or presence of 50 µM LY294002 in serum-free media for

24 h.

Migration of cells into the wound was monitored, beginning at 0 h (immediately following

wounding) using a Kodak MDS290 camera and software. Wound closure was quantified by

measuring the distance in pixels between wound edges (10 lines per wound) at each time

point, using the measuring tool in Adobe Photoshop® with a grid superimposed on the

image to guide the measurements. The wound width was normalized to 100% at 0 h for each

treatment condition and presented as a percent of wound remaining at the given time point.

Immunofluorescent staining

SKOV-3 cells were plated on glass-bottom dishes overnight, scratched with a sterile yellow

pipette tip and treated with indicated concentrations of cell signaling inhibitors (Y27632,

SB203580, LY294002, wortmannin and PD98059) for 6 h. Non-permeabilized cells were

fixed in 1% paraformaldehyde, then incubated with antibodies to PAI-1 (polyclonal,

#528216, Calbiochem) and uPA (monoclonal, #394, American Diagnostica). AlexaFluor-

conjugated secondary antibodies (Molecular Probes, Carlsbad, CA: PAI-1, AlexaFluor 647;

uPA, AlexaFluor 594) were used to visualize immunofluorescence staining with an

Olympus FV500 confocal laser-scanning microscope (Microscopy Services Laboratory,

Department of Pathology and Laboratory Medicine, Chapel Hill, NC).
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Cell-secreted indirect uPA assay

An indirect uPA activity assay was performed using a synthetic plasmin substrate measuring

plasminogen activation by uPA as described previously [30]. Briefly, unconcentrated

conditioned media from treated cells was added to buffer containing plasminogen and

plasmin substrate (S-2251, Chromogenix, West Chester, OH). Triplicate samples were

incubated for 60 min at 37°C and the reaction was monitored spectrophotometrically. The

data presented are the average of 2 separate experiments and represents the amount of uPA

activity remaining compared to the untreated SKOV-3 cells (normalized to 100%).

Western blot

Cell lysates were harvested and protein was separated on a 10% polyacrylamide gel,

transferred and blotted for active Akt (phospho-Ser 473, Cell Signaling Technology,

Danvers, MA), total Akt (Cell Signaling Technology), total ERK2 (Santa Cruz, Santa Cruz,

CA) or tubulin (Sigma). Conditioned media from the cells were concentrated using

centrifugal filtering devices (Millipore, Billerica, MA) with a molecular weight cutoff of 30

kDa and treated the same as the lysates but run on either 10% or 12% gels, and blotted for

PAI-1 (Molecular Innovations) and uPA (American Diagnostica). Total protein

concentration was determined using a dye-binding assay (Biorad, Hercules, CA) with bovine

serum albumin (BSA) as the standard. Densitometry of the Western blots was performed

with ImageJ software from NIH and normalized to either Akt, ERK2, tubulin, total protein

or no treatment, as indicated.

Cell migration and invasion assays

Migration experiments were conducted using BD BioCoat™ culture inserts (BD Bioscience,

Bedford, MA), while invasion experiments utilized BD BioCoat™Matrigel™Invasion

Chambers (BD Bioscience), both with an 8-µm diameter pore size membrane in a 24-well

companion plate, as described previously [30]. Briefly, membranes were re-hydrated with

0.1% BSA and 1% antibiotic/antimycotic in serum-free medium prior to the experiment.

The chemoattractant (complete medium containing 10% FBS) was added to the lower well

of the plate. Cells were seeded onto the culture insert in serum-free medium with the given

concentrations of the various cell signaling inhibitors and incubated for either 6 or 24 h, as

specified, at 37°C. After the incubation period, the media were removed from the insert,

cells on the upper surface of the membrane were removed with a cotton-tipped applicator

and cells that migrated or invaded to the lower surface of the membranes were fixed with

100% methanol. Inserts were washed with PBS, stained with Hoechst (1:20,000 in 1× PBS,

Molecular Probes), and the membranes were excised from the insert, inverted and mounted

on glass microscope slides. The total number of nuclei were counted in four fields at 40×

magnification using UV fluorescence microscopy. The data presented are normalized to

untreated SKOV-3 cells.

siRNA transfection

SKOV-3 cells were transiently transfected using SignalSilence™Akt siRNA (Cell Signaling

Technology) and the GeneEraser™ siRNA transfection reagent (Stratagene, LaJolla, CA),

following manufacturer's guidelines. Briefly, a mixture of Opti-MEM (Gibco, Carlsbad, CA)
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and GeneEraser was incubated 15 min at room temperature. Then Akt siRNA (final

concentration of 125 or 250 nM) was added and incubated for 15 min at room temperature.

This mixture was added to SKOV-3 cells at approximately 80% confluency for 8 h, and all

siRNA experiments were performed under these same conditions. Fresh media were then

added to prevent cell toxicity by the transfection reagent. Protein expression and the wound-

induced migration assay were performed 48 h post-transfection.

Akt adenovirus

The constitutively active (myristolyated) Akt adenovirus (Myr Akt) was a generous gift

from Dr. Kenneth Walsh (Boston University Medical Center, Boston, MA). SKOV-3 cells

were infected with a CMV control adenovirus or Myr Akt adenovirus at an MOI 50 for 24 h.

Protein expression and wound-induced migration were measured 24 h post-infection.

Statistical analysis

Statistical analyses were performed using Instat (GraphPad Software, Inc, San Diego, CA).

Assuming normal distribution, a one-way analysis of variance test (ANOVA) (p<0.05) was

used followed by a Dunnett multiple comparison test. If the p value was less than 0.05 after

the post-test, it was concluded that the differences observed were not due to a type I error

and with a 95% confidence interval, the difference between the means was true. In Fig. 8, a

Student's t-test was done comparing individual treatments to SKOV-3 cells treated with

vehicle (DMSO). Assuming normal distribution, p<0.05 was concluded to be significant and

have a 95% confidence interval; that is, the differences between the means were true.

Results

Effect of a selection of pharmacological inhibitors on PAI-1 and uPA expression and
wound-induced migration of SKOV-3 ovarian cancer cells

We used pharmacological inhibitors of Rho-kinase/ROCK, p38 MAPK, MEK and PI3K to

better understand the signaling pathway(s) involved in regulating both PAI-1 and uPA

expression and cell migration, using a wound-induced migration assay in the highly invasive

SKOV-3 ovarian cancer cell line. The Rho kinase/ROCK inhibitor (Y27632) did not alter

SKOV- 3 wound-induced migration (Fig. 1A and B). However, the p38 MAPK inhibitor

(SB203580) and the MEK inhibitor (PD98059) reduced SKOV-3 wound-induced migration

by approximately 50% (Fig. 1A and B). The PI3K inhibitor (LY294002) reduced SKOV-3

migration by approximately 90% (Fig. 1A and B).

By immunofluorescence staining, there was an apparent increase in PAI-1 in SKOV-3 cells

treated with LY294002 and PD98059, but there was no change noted in cell surface PAI-1

expression in SKOV-3 cells treated either with Y27632 or with SB203580 (Fig. 2A). Unlike

that seen for PAI-1, a decrease in uPA expression was found in SKOV-3 cells treated with

all of the pharmacological inhibitors (Fig. 2A).

A functional uPA activity assay was then used with conditioned media of SKOV-3 cells.

This assay confirmed that all four pharmacological inhibitors altered the balance between

uPA and PAI-1, reflected by the changes in functional uPA measured. Listed is the relative
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order of potency of the inhibitors on reducing uPA activity (at the highest dose tested):

Y27632<PD98059~SB203580<LY294002 (Fig. 2B).

Collectively, these results reveal that the various signaling pathways reduce wound-induced

migration of SKOV-3 cells to varying extents, which is manifested by different changes

with regards to both PAI-1 and uPA expression.

Inhibition of PI3K increases PAI-1 expression and decreases uPA expression in SKOV-3
cells

The PI3K pathway was examined in more detail due to the contrasting change in PAI-1 and

uPA levels in SKOV-3 cells. Western blot analysis of LY294002-treated SKOV-3 cells

shows a decrease in phosphorylated Akt, from 40% to 80% with increasing doses, as a

measure of PI3K activity (Fig. 3). We found a substantial increase in PAI-1 secreted (2- to

>6-fold) by SKOV-3 cells in the conditioned media upon LY294002 treatment (Fig. 3). As

previously shown by others [12–14], we also found an accompanying decrease in the

amount of uPA secreted (55–70%) when SKOV-3 cells were treated with LY294002 (Fig.

3). These results imply that changes in both PAI-1 and uPA expression are a direct result of

PI3K inhibition since both LY294002 and wortmannin (data not included) had similar

effects.

PI3K inhibitors decrease both SKOV-3 wound-induced migration and transwell invasion
and migration

The dose response of both LY294002 and wortmannin on wound-induced SKOV-3 cell

migration was performed. At 12 h, untreated SKOV-3 cells migrated into the denuded area

to essentially close the wound (Fig. 4A). Increasing doses of LY294002 (5–50 µM)

significantly reduced SKOV-3 wound-induced migration from 20% to 80%, and

wortmannin (0.25– 1 µM) similarly affected SKOV-3 migration (Fig. 4A).

As expected, treatment with a PAI-1 blocking antibody increased the migration of

LY294002-treated SKOV-3 cells compared to SKOV-3 cells treated only with LY294002 or

with LY294002 and a non-specific IgG control antibody (Fig. 4B). Likewise, the uPA-

blocking antibody decreased SKOV-3 cell migration even further following treatment with

LY294002 (Fig. 4B). These results suggest that some of the LY294002-induced migration

changes are mediated by alteration in the levels, and thus the balance, of PAI-1 and uPA in

SKOV-3 cells.

It is possible that the signal pathways required in cell migration over a solid surface, as in a

wound-induced migration assay, may differ from those required in transwell assays.

Addition of LY294002 (Fig. 5A and B) or wortmannin (Fig. 5C and D) to the SKOV-3 cells

during transwell invasion and migration assays resulted in a dose-dependent decrease in

both invasion and migration after 6 h, with a maximum reduction of 80%. The experiments

were carried out for 6 h, to ensure that any changes measured were not the result of loss in

cell viability induced by the compounds. This would also allow for direct comparison with

uPA and PAI-1 expression after 6 h of treatment (Fig. 2A). These results suggest that the

effect of PI3K inhibitors was similar to the wound-induced migration assay with SKOV-3
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cells; thus, inhibition of PI3K/Akt reduces cell invasion and migration by altering the

existing levels of PAI-1 and uPA to change the PAI-1:uPA ratio.

Modulation of Akt alters SKOV-3 wound migration, PAI-1 expression and uPA expression

We used siRNA to specifically down-regulate Akt and then re-assessed wound-induced

migration and levels of Akt, PAI-1 and uPA expression in the SKOV-3 cells. Transient

transfection of SKOV-3 cells with Akt siRNA reduces total Akt expression by 30% when

compared to SKOV-3 cells transfected with GeneEraser™ transfection reagent alone. As a

result, there was a dose-dependent up-regulation of PAI-1 (>200%) and a downregulation of

uPA expression (60–75%) (Fig. 6A). Despite the incomplete siRNA silencing of Akt

expression, the change in uPA and PAI-1 levels was similar to that in SKOV-3 cells

following LY294002 treatment (compare to 25 µM LY294002 in Fig. 3). Furthermore,

transient transfection of the SKOV-3 cells with Akt siRNA has a dose-dependent reduction

(50–70%) in wound closure compared to SKOV-3 cells in the presence of the transfection

reagent alone (Fig. 6B). Again, the reduction in migration by Akt siRNA is similar to that

seen when SKOV-3 cells are treated with LY294002 (compare to 10 µM LY294002 in Fig.

4). These results further support an association between PI3K/Akt and PAI-1 and uPA

expression to influence cell migration in SKOV-3 cells.

We then utilized a constitutively active Akt construct (Myr Akt) to further define the

relationship of active Akt, PAI-1 and uPA expression and wound-induced migration in

SKOV-3 cells. Greater than two-fold increased levels of Akt in SKOV-3 cells infected with

the Myr Akt adenovirus correlated with a greater than 50% decrease in PAI-1 expression

(Fig. 7A). The change in uPA expression is minor compared with our results when Akt was

down-regulated by siRNA; however, the balance between inhibitor and protease is still

shifted, and in this case, in favor of uPA. In addition to changes in protein expression, Myr

Akt significantly increased wound-induced migration of SKOV-3 cells, from 30% to 4%

wound remaining (Fig. 7B). These results help to further establish the link between the

plasminogen activator system as components in the PI3K/Akt signaling pathway regulating

cell migration and invasion.

IGF-1 and insulin modulate SKOV-3 wound migration and uPA/PAI-1 expression

Given the established link between IGF-1 and insulin with the PI3K/Akt pathway in many

cell systems [23,31], we next examined the influence of these growth factors on uPA and

PAI-1 levels and their ability to modulate SKOV-3 cell migration. Urokinase expression in

SKOV-3 cells was increased by insulin and IGF-1 with a concomitant decrease in PAI-1

(Fig. 8A). Under serum-free conditions, the addition of LY294002 alone revealed a similar

pattern of increased PAI-1 levels described earlier (Fig. 8A). The addition of IGF-1 with

LY294002, but not the combination of insulin with LY294002, also showed the trend to

increase PAI-1 expression (Fig. 8A). The effects of IGF-1 and insulin on the activity of

PI3K, with or without LY294002, were confirmed by Western blot analysis of

phosphorylated Akt (data not shown). Insulin and IGF-1 significantly increased the wound-

induced migration of SKOV-3 cells (from 70% to 20% and 40% wound remaining,

respectively), while LY294002 eliminated this enhanced cell migration (Fig. 8B). These

results imply that insulin and IGF-1 alter the balance between uPA and PAI-1 in favor of
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uPA, thus enhancing cell migration. LY294002 attenuates this promigratory activity, which

further supports an association between PI3K/Akt and PAI-1:uPA levels as an influence on

SKOV-3 cell migration.

Discussion

There is a need to develop new approaches in chemoprevention, early detection and

innovative treatments for ovarian cancer, the leading cause of gynecological cancer deaths.

Defining the genetic aberrations and their underlying molecular changes can help in the

development of new detection methods and treatments for ovarian cancers. Increased

expression of PAI-1 and uPA in ovarian cancers suggests that they are markers linked to a

poor prognosis [4–8]. Therefore, it is imperative to understand the regulation of PAI-1 and

uPA expression through signal pathways involved in migration and invasion of cancer cells

that contribute to the progression and mortality of ovarian cancer.

The PI3K pathway is involved in many cellular processes, including proliferation, survival,

apoptosis, migration, invasion and cytoskeletal rearrangements. The results presented in this

paper dissect the importance of this pathway, using pharmacological inhibitors, targeted

deletion or deliberate over-expression of active Akt in SKOV-3 ovarian cancer cell

migration and invasion with respect to regulation of PAI-1 and uPA expression. The balance

between PAI-1 and uPA expression is delicate, but extremely important in regulating cell

behavior. A shift in the balance towards PAI-1, whether due to an increase in PAI-1, a

decrease in uPA or a combination of both, tends to prevent in vitro migration and invasion

of cancer cells, as we and others have shown previously [30,32–35]. Likewise, down-

regulation of PAI-1, up-regulation of uPA or both would shift the balance in favor of uPA

and presumably increase in vitro migration and invasion. This concept helps to explain our

results using a survey of pharmacological inhibitors to signaling pathways known to affect

cell migration. No matter the change in PAI-1 expression, the inhibitors of Rho kinase/

ROCK, p38 MAPK, MEK and PI3K all decrease uPA expression in SKOV-3 ovarian cancer

cells, effectively shifting the PAI-1:uPA balance in favor of PAI-1. Only the p38 MAPK,

MEK and PI3K inhibitors decrease wound-induced SKOV-3 cell migration. The lack of

effect of the Rho kinase/ROCK inhibitor may be due to only a small decrease in uPA

expression. Collectively, our results support the finding that various signaling pathways

positively and negatively alter both PAI-1 and uPA expression to profoundly regulate

SKOV-3 cell wound-induced migration.

Through our experiments, a new link emerges between PAI-1 expression and levels of

phosphorylated Akt, which alters both cell migration and cell invasion. SKOV-3 cells

treated with LY294002 showed a dose-dependent decrease in phosphorylated Akt, a dose-

dependent increase in PAI-1 and a dosedependent decrease in uPA. Inhibition of PI3K

activity also resulted in a dose-dependent decrease in cell migration and invasion in a

transwell assay, and a dose-dependent decrease in migration measured in a wound-induced

migration assay. Likewise, specific down-regulation of Akt by siRNA resulted in an

increase in PAI-1 expression, a decrease in uPA expression and a decrease in wound-

induced migration. By contrast, expression of constitutively active Akt caused the opposite

effects on SKOV-3 cells: an increase in phosphorylated Akt levels correlated with a
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decrease in PAI-1 expression and an increase in wound-induced migration. The changes in

SKOV-3 cell migration that accompanied the increase (constitutively active Akt adenovirus)

or decrease (LY294002 and wortmannin treatment, Akt siRNA) in active Akt levels were

similar to previously published studies [11–15,36–41]. It will be important to further these

observations using different ovarian cancer cell lines, especially those that are not dependent

on PI3K/Akt for migration and invasion. However, in further support of our results, a recent

study showed a correlation between decreased phosphorylated Akt levels and decreased

invasion in SKOV-3 cells [42]. Likewise, the regulation of uPA expression and activity by

the PI3K/Akt pathway that we showed confirmed previously published results [12–

15,39,40]. Finally, Venugopal et al. [23] showed in an in vivo study that plasma PAI-1 was

up-regulated in Akt-deficient mice (protein kinase B or PKBα−/−), which would attenuate

the PI3K/Akt signaling pathway.

Potential initiators of the PI3K/Akt pathway that could alter the plasminogen activator

system are insulin and IGF-1. Elevated levels of IGF-1 have been associated with an

increased risk in development of ovarian cancer [43,44]. The relationship of insulin is of

importance since obesity and metabolic syndrome have been linked to various cancers [45].

Recently, it was shown that insulin-induced PAI-1 levels in 3T3L1 adipocytes were

increased by treatment with the PI3K inhibitor LY294002 [23]. Using IGF-1 and insulin,

which are both known to increase uPA levels, in a wound-induced migration assay, we

found that these growth factors increased SKOV-3 cell migration and this increase was

attenuated upon treatment with LY294002. Our results are supported by work showing that

IGF-1 affects invasion and proliferation in ovarian and cervical cancer cells through

activation of Akt and ERK1/2 [29], resulting in an increase in uPA activity in ovarian cancer

[46]. Overall, the novel finding here is that PI3K/Akt activity alters cell migration due to

changes in both PAI-1 and uPA expression in SKOV-3 cells, indicating that the PI3K/Akt

signaling pathway negatively regulates PAI-1 expression while it up-regulates uPA

expression, and this action is further modulated by IGF-1 and insulin.

The “traditional” function of PAI-1 is to inhibit uPA and thus prevent plasmin generation

and matrix degradation. However, the “non-traditional” functions for PAI-1, including cell

adhesion, proliferation, angiogenesis, apoptosis and cell signaling, are likely contributing to

the detrimental role played by PAI-1 and why this inhibitor is associated with a grim

prognosis in many cancers (reviewed in [47,48] and references cited therein). Based on the

experimental end-points that we measured, the decrease in SKOV-3 migration and invasion

implies a more favorable scenario to prevent further metastasis. However, since it is well

established that increased levels of PAI-1 are associated with a poor prognosis in ovarian

cancer [4–8], this apparent contradiction seen here might be better understood by evoking a

combination of both traditional and the nontraditional functions of PAI-1. Increased levels

of PAI-1, in conjunction with inhibition of the PI3K pathway, would guard the primary

tumor mass from host fibrinolytic proteases, effectively decrease localized cell migration–

invasion by inhibition of tumor plasminogen activator capability, promote

neovascularization and help to maintain an anti-apoptotic environment in order to allow for

genetic changes toward a metastatic phenotype. As the tumor begins to over-express PI3K/

Akt, the PAI-1:uPA balance changes to now favor uPA and influence tumor invasion and
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metastasis. Thus, our results expand the relationship between PAI-1 and uPA that is

regulated by PI3K/Akt in the highly invasive SKOV-3 ovarian cancer cell line.
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Fig. 1.
Rho kinase/ROCK, p38 MAPK, MEK and PI3K inhibitors differentially alter wound-

induced SKOV-3 cell migration. (A) A wound-induced migration assay was performed on

SKOV-3 cells in the absence and presence of DMSO vehicle control, 10 µM Y27632, 10 µM

SB203580, 25 µM PD98059 or 25 µM LY294002. Photomicrographs of the treated cells are

shown for the initial wounding (0 h) and at 6, 12 and 24 h post-wounding. (B) The distance

the cells migrated into the wounded area was quantified as described in Materials and

methods and presented as the percent wound remaining at the given times. **p<0.01,

compared with untreated SKOV-3 cells at the given time point, 0 h (black bar), 6 h (dark

grey bar), 12 h (light grey bar) and 24 h (white bar).
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Fig. 2.
Rho kinase/ROCK, p38 MAPK, MEK and PI3K inhibitors differentially alter the expression

of PAI-1 compared to uPA in SKOV-3 cells. (A) SKOV-3 cells were wounded and treated

with 10 µM Y27632, 20 µM SB203580, 25 µM PD98059 or 25 µM LY294002 for 6 h, then

the cell surface expression of PAI-1 and uPA was detected with immunofluorescence

staining of non-permeabilized cells. (B) SKOV-3 cells were treated with the given

concentrations of the same panel of cell signaling inhibitors for 24 h before uPA activity in

the conditioned media was measured. uPA activity was normalized to the untreated SKOV-3

cells (results are given as mean values of triplicate assays done in two separate experiments).
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Fig. 3.
Inhibition of PI3K increases PAI-1 expression and decreases uPA expression in SKOV-3

cells. SKOV-3 cells were treated for 24 h in serum-free media with two doses of the PI3K

inhibitor, LY294002. (A) Lysates were harvested and equal protein was separated on a 10%

polyacrylamide gel, transferred and blotted for active Akt (phospho-Ser473) and total Akt.

Conditioned media from the cells were concentrated and treated the same as the lysates,

except blotted for PAI-1 and uPA, loaded by total protein. (B) The bands detected

byWestern blot were quantitated by densitometry as described in Materials and methods as
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SKOV-3 cells untreated (black bar), DMSO-treated control SKOV-3 cells (dark grey bar),

25 µM LY294002 (light grey bar) and 50 µM LY294002 (white bar).
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Fig. 4.
Inhibition of PI3K, PAI-1 and uPA alter SKOV-3 wound-induced migration. (A) Wound-

induced migration in the presence of increasing doses of LY294002 or wortmannin was

measured for 12 h. *p<0.05, **p<0.01 compared with untreated SKOV-3 cells. (B) Wound-

induced migration in the presence of 25 µM LY294002 and uPA- and PAI-1-blocking

antibodies (each at 20 µg/ml) for 12 h. The graphs represent the average of 2–4 separate

experiments performed in triplicate. *p<0.05, **p<0.01 compared with SKOV-3 cells

treated with 25 µM LY294002.
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Fig. 5.
Inhibition of PI3K decreases SKOV-3 invasion and migration. SKOV-3 transwell invasion

and migration were measured in the presence of increasing doses of LY294002 (A and B) or

wortmannin (C and D) for 6 h. Cell migration and invasion assays were performed as

described in Materials and methods. Graphs presented are the average of 2 experiments

performed in duplicate.
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Fig. 6.
Modulation of Akt in SKOV-3 cells affects PAI-1 and uPA expression and cell migration.

SKOV-3 cells were transiently transfected with Akt siRNA. Total Akt, ERK2, PAI-1 and

uPA protein expression were monitored in cells transfected with GeneEraser transfection

reagent alone or with Akt siRNA (125 nM or 250 nM). (A) Total Akt, total ERK, PAI-1 and

uPA expression were monitored and densitometry was used to quantify the change in protein

expression detected by Western blot, normalized to ERK2 as a total protein loading control,

and presented as the percent expression compared to GeneEraser transfection control
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SKOV-3 cells. SKOV-3 cells with GeneEraser transfection reagent alone (black bar);

SKOV-3 cells with GeneEraser plus 125 nM Akt siRNA (grey bar); SKOV-3 cells with

GeneEraser plus 250 nM Akt siRNA (white bar). (B) The ability of Akt siRNA-transfected

SKOV-3 cells to migrate was monitored in a wound-induced migration assay in 1% FBS

conditions, and the results are presented as the percent wound remaining at 12 h.

***p<0.001 compared with SKOV-3 cells with GeneEraser alone, or between Akt siRNA

concentrations.
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Fig. 7.
Over-expression of Akt in SKOV-3 cells affects PAI-1 expression and cell migration.

SKOV-3 cells were infected with control CMV or Myr Akt adenovirus at MOI 50. (A)

Active Akt (pAkt), PAI-1 and uPA expression were monitored, and densitometry used to

quantify the change in protein expression detected by Western blot, normalized to tubulin as

a protein loading control; the results are presented as the percent expression compared to

control CMV adenovirus-treated SKOV-3 cells. Results are presented as the percent

expression of Myr Akt-infected SKOV-3 cells (white bar) compared to CMV control

Whitley et al. Page 21

Gynecol Oncol. Author manuscript; available in PMC 2014 June 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



adenovirus-infected SKOV-3 cells (black bar). (B) The effect of Myr Akt expression on

SKOV-3 cell migration was measured in a wound-induced migration assay in 1% FBS

conditions, and the results are presented as the percent wound remaining at 12 h. **p<0.01

compared with SKOV-3 cells with control CMV alone.
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Fig. 8.
IFG-1 and insulin enhance cell migration and alter the balance between uPA and PAI-1 in

SKOV-3 cells. SKOV-3 cells were treated with LY294002 and insulin (100 nM) or IGF-1

(50 ng/ml) as described in Materials and methods. (A) PAI-1 and uPA expression (secreted

in the conditioned media) were monitored, and densitometry used to quantify the change in

protein expression detected by Western blot (uPA, black bar; PAI-1, white bar); data were

presented as the percent expression compared to control-treated SKOV-3 cells. *p<0.05 or

**p<0.01 for uPA or PAI-1 compared with untreated SKOV-3 cells for each respective
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protein. (B) The effect of insulin and IGF-1 in combination with LY294002 was measured

in a wound-induced migration assay under serum-free conditions, and results are presented

as the percent wound remaining at 12 h. *p<0.05, **p<0.01 or ***p<0.001 compared with

untreated SKOV-3 cells.
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