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Abstract

Objective—Inflammatory bowel diseases (IBDs) feature multiple cellular stress responses, 

including endoplasmic reticulum (ER) unfolded protein responses (UPRs). UPRs represent 

autoregulatory pathways that adjust organelle capacity to cellular demand. A similar mechanism, 

mitochondrial UPR (mtUPR), has been described for mitochondria. ER UPR in intestinal 

epithelial cells (IECs) contributes to the development of intestinal inflammation, and since 

mitochondrial alterations and dysfunction are implicated in the pathogenesis of IBDs, the authors 

characterised mtUPR in the context of intestinal inflammation.

Methods—Truncated ornithine transcarbamylase was used to selectively induce mtUPR in a 

murine IEC line. Dextran sodium sulphate (DSS) was administered to PKR (double-stranded-

RNA-activated protein kinase) knockout mice to induce IEC stress in vivo and to test for their 

susceptibility to DSS-induced colitis. Expression levels of the mitochondrial chaperone 
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chaperonin 60 (CPN60) and PKR were quantified in IECs from patients with IBDs and from 

murine models of colitis using immunohistochemistry and Western blot analysis.

Results—Selective mtUPR induction by truncated ornithine transcarbamylase transfection 

triggered the phosphorylation of eukaryotic translation initiation factor (eIF) 2α and cJun through 

the recruitment of PKR. Using pharmacological inhibitors and small inhibitory RNA, the authors 

identified mtUPR-induced eIF2α phosphorylation and transcription factor activation (cJun/AP1) 

as being dependent on the activities of the mitochondrial protease ClpP and the cytoplasmic kinase 

PKR. Pkr−/− mice failed to induce CPN60 in IECs upon DSS treatment at early time points and 

subsequently showed an almost complete resistance to DSS-induced colitis. Under inflammatory 

conditions, primary IECs from patients with IBDs and two murine models of colitis exhibited a 

strong induction of the mtUPR marker protein CPN60 associated with enhanced expression of 

PKR.

Conclusion—PKR integrates mtUPR into the disease-relevant ER UPR via eIF2α 

phosphorylation and AP1 activation. Induction of mtUPR and PKR was observed in IECs from 

murine models and patients with IBDs. The authors’ results indicate that PKR might link 

mitochondrial stress to intestinal inflammation.

INTRODUCTION

Multiple cellular stress responses have been implicated in metabolically driven pathologies 

such as obesity, diabetes and cardiovascular disease, but also in immunologically mediated 

disorders such as allergies or inflammatory bowel diseases (IBDs). These chronic diseases, 

even though phenotypically different, share cellular stress signalling pathways, in particular 

endoplasmic reticulum (ER) unfolded protein responses (UPRs).1 Ulcerative colitis (UC) 

and Crohn's disease (CD), the two main idiopathic pathologies of IBDs, are chronic 

immunologically mediated disorders of the gastrointestinal tract. These multifactorial 

diseases are characterised by alterations in the innate and adaptive immune system, the 

microbiota and epithelial functions.2 Accumulating evidence indicates that intestinal 

epithelial cells (IECs) constituting an interface between the two major factors influencing 

intestinal inflammationd–the gut microbiota and the immune systemd–are crucial for 

maintaining intestinal homeostasis.3 Conversely, failure to control inflammatory processes 

at the IEC level may critically contribute to IBD pathogenesis, a hypothesis strengthened by 

recent findings suggesting ER stress in the epithelium as both a cause and a consequence of 

intestinal inflammation.4–6

ER UPR is triggered by accumulation of unfolded proteins within the ER, leading to the 

activation of proximal effectors (IRE1, ATF6 and PERK) that mediate ER stress signalling. 

The aim of ER UPR is to restore ER homeostasis by (1) enhancing the degradation of 

misfolded proteins by ER-associated degradation; (2) translating attenuation through 

phosphorylation of the α subunit of eukaryotic translation initiation factor (eIF) 2; and (3) 

expanding the protein folding capacity of the cell through upregulation of ER chaperones 

such as glucose-regulated protein 78 (GRP78). However, if ER stress is prolonged or 

excessive, ER UPR can ultimately lead to apoptosisd–for example through the proapoptotic 

transcription factor CHOP (CCAAT/enhancer-binding protein homologous protein).7 
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Among the initial triggers leading to the accumulation of unfolded proteins in the ER are 

bacterial infection, oxidative stress and changes in calcium homeostasis.

In addition, ER protein folding is dependent on calcium, metabolite and energy exchange 

between the ER and mitochondria.8 Consistently, mitochondria have been shown to 

modulate ER UPR.9–11 Mitochondrial dysfunction and alterations in energy metabolism, in 

general, have been implicated during the onset and the course of neoplasia, metabolic 

diseases and inflammation.91112 Interestingly, it has also been repeatedly suggested that 

chronic intestinal inflammation represents an energy deficiency disease involving 

mitochondria and featuring alterations in epithelial cell oxidative metabolism.1213 Recently, 

a mitochondrial UPR (mtUPR) similar to that of the ER has been described.14–16 The 

mitochondrial matrix contains its own set of molecular chaperones for folding newly 

synthesised or imported proteins.1517 Upon accumulation of unfolded protein within the 

mitochondrial matrix, the transcription of nuclear genes encoding mitochondrial stress 

proteins is upregulated. Most of the mtUPR-responsive genes are activated through CHOP 

and include mitochondrial proteases and chaperones such as chaperonin 60 (CPN60), which 

promotes the refolding and proper assembly of unfolded polypeptides generated under stress 

conditions in the mitochondria.1518 ER UPR and mtUPR seem to be two distinct signalling 

pathways, as genes encoding stress proteins of the ER or cytosol are not upregulated during 

mtUPR15 even though both pathways share the transcription factor CHOP.16 MtUPR has 

been shown to be crucial for tumour cell survival during cancer treatment.19 Hence, it is 

likely that mitochondrial stress and ER stress participate in the pathology of chronic diseases 

including IBDs, but the contribution of mtUPR and its possible inter-relation with ER stress 

are virtually unknown.

Here, we show that mtUPR is dependent on PKR (double-stranded-RNA-activated protein 

kinase), which integrates mtUPR into the pathology-relevant ER UPR signalling. Mice 

lacking functional PKR fail to induce CPN60 upon stress induction via short-term dextran 

sodium sulphate (DSS) treatment. Subsequently, Pkr−/− showed protection against DSS-

induced colitis. Moreover, we report that increased expression of CPN60 is associated with 

an augmented expression of PKR in two murine models of colitis and in patients with IBDs.

MATERIALS AND METHODS

Ethics statement

Animal use protocols were approved by the institutional animal care and use committee of 

the University of North Carolina at Chapel Hill or approved by the Bavarian animal care and 

use committee (AZ 55.2-1-54-2531-164-09). Human studies were approved by the ethics 

committee of the University of Regensburg and by the institutional review board of Hospital 

Clinic i Provincial of Barcelona. Written consent was obtained from all patients included in 

the study. Samples from patients were collected in accordance with the Declaration of 

Helsinki.
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Animals

Adoptive CD4 T cell transfer: CD4 donor T cells were isolated from splenocytes of specific 

pathogen-free 129SvEv mice (Wt) and IL-10−/− (interleukin (IL)-10-deficient) 129SvEv 

mice, using the CD4 T cell isolation kit (Miltenyi Biotec) as described in supplementary 

methods. Lymphocyte-deficient 129SvEv Rag2−/− (recombination activating gene) and 

129SvEv Rag2−/− × IL-10−/− mice were reconstituted at 8 weeks of age by an intraperitoneal 

injection of 3.5 × 105 CD4 Tcells from either Wt or IL-10−/− mice. One week and 4 weeks 

later, mice were killed by cervical dislocation. Non-reconstituted Rag2−/− and Rag2−/− × 

IL-10−/− mice served as controls.

Bacterial mono association and dual association: Germ-free 129SvEvTAC (Wt) and germ-

free IL-10−/− 129SvEvTAC mice were mono-associated or dual-associated at 12–14 weeks 

of age with the colitogenic Enterococcus faecalis strain OG1RF and/or Escherichia coli 

NC101, as previously described.20 The mice were maintained in the National Gnotobiotic 

Rodent Resource Center at the University of North Carolina at Chapel Hill. Bacterial mono 

association or dual association and the absence of contamination by other bacterial species 

were confirmed as previously described.20 Mice were killed by cervical dislocation 16 

weeks later. Wt mice mono-associated or dual-associated with En faecalis and/or E coli 

served as controls.

Pkr−/− mice (129/terSv×BALB/C) harbouring a targeted disruption of the catalytic domain 

of PKR21 were a generous gift from JC Bell (Ottawa Hospital Research Institute, Ontario, 

Canada). At 12 weeks of age, male Pkr−/− and CTRL BALB/C mice received 1% DSS for 3 

days to induce stress in IECs or two cycles of 1% DSS in drinking water for 7 days, 

followed by 7 days of water, to induce chronic colitis.22 Mice were kept under conventional 

conditions, and Disease Activity Index (DAI) was scored daily (for the criteria for scoring, 

see supplemental table 1). Mice receiving water served as controls. For histological scoring, 

see supplementary methods.

Patients

Ileal and/or colonic tissue was obtained from patients with active CD (n=8) or UC (n=8) or 

from patients with colorectal carcinoma (n=7) who underwent surgical resection as 

previously described4 and as described in supplementary methods. Information on 

individual patients is presented in supplemental table 2.

Immunohistochemical labelling and quantification

Immunostaining was performed according to the protocol provided by Cell Signalling and as 

described in supplementary methods. Stained sections were viewed on a Leica confocal 

microscope using LAS AF V.2.3.0 (Leica Microsystems). Pictures were quantified using 

Volocity 5.4.1 Software (PerkinElmer). Epithelial cell regions were defined as regions of 

interest, and the mean intensity of the fluorescence signal per micrometer square was 

measured.
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Isolation of primary mouse IECs

Primary IECs were purified as previously described23 and as described in supplementary 

methods. For purity, see supplemental figure 1.

Cell culture

The small IEC line Mode-K (passages 10–25) was cultured as previously described.24 Pkr−/− 

murine embryonic fibroblasts (MEFs) were derived from mice harbouring a targeted 

disruption of the catalytic domain of PKR21 and genetic background controls. MEFs with a 

resulting disruption of the Pact gene25 and genetic background controls were a generous gift 

from GC Sen (Cleveland Clinic Foundation, Cleveland, Ohio, USA). MEFs were cultured as 

described in supplementary methods.

Cell culture transfection and stimulation

Mode-K cells or MEFs (50% confluent) were transfected using FuGENE (Roche) for 

ornithine transcarbamylase (OTCΔ) cDNA transfection and using Lipofectamine 

(Invitrogen) for small inhibitory RNA (siRNA) transfection according to the manufacturers’ 

instructions. The OTCΔ plasmid15 was provided by N Hoogenraad (La Trobe University, 

Melbourne, Australia). Synthetic Pkr (NM_011163)-specific and control siRNA were 

purchased from Qiagen (Hilden, Germany). cDNA (2 μg/ml) and siRNA (10 nmol/l) were 

used for transfection. Whenever indicated, cells were incubated with non-toxic 

concentrations of PKR inhibitor (1 μmol/l; Calbiochem), PD98059 (20 μmol/l; Calbiochem), 

TCS-JNK5a (20 μmol/l; Tocris) or Z-LY-CMK (1 μmol/l; Bachem). For additional 

information on inhibitors, see supplementary methods.

Mitochondrial isolation

Thirty-six hours after OTCΔ transfection, mitochondria were isolated from Mode-K cells by 

ultracentrifugation as described in supplementary methods.

Western blot analysis

Western blot analysis was performed as previously described24 and as described in 

supplementary methods.

Co-immunoprecipitation

Co-immunoprecipitation was performed according to the protocol provided by Cell 

Signalling and as described in supplementary methods.

Chromatin immunoprecipitation

Nuclear extraction and chromatin immunoprecipitation (ChIP) were performed using the 

ChIP-IT Express Enzymatic kit (Active Motif, Carlsbad, California, USA) according to the 

manufacturer's instructions and as described in supplementary methods. Primer sequences 

are given in supplementary methods. PCR products (10 μl) were subjected to electrophoresis 

on 1% agarose gels.
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RNA isolation, reverse transcription and real-time PCR

Total RNA was isolated using the RNeasy Mini Kit (Qiagen) according to the 

manufacturer's instructions. Reverse transcription was performed using 1 μg of total RNA. 

Real-time PCR was performed using the Light Cycler® 480 system (Roche Diagnostics, 

Mannheim, Germany) and the Universal Probe Library system. Primer sequences are given 

in supplementary methods. Relative induction of mRNA expression was calculated using the 

Light Cycler® 480 software and 18S expression for normalisation.

Statistical analysis

All statistical computations were performed using SigmaStat software (Systat). Differences 

between groups were considered significant if p<0.05.

RESULTS

Truncated OTCΔ induces mtUPR in murine IECs

To study mtUPR in IECs, we transfected the murine IEC line Mode-K with a truncated 

variant of the mitochondrial matrix protein OTCΔ. The deletion prevents the imported 

protein from folding properly in the mitochondrial matrix and produces mtUPR.15 To show 

expression and mitochondrial translocation of OTCΔ and induction of mtUPR by OTCΔ in 

Mode-K cells, we performed Western blot analysis with whole-cell and mitochondrial 

lysates using antibodies recognising both the truncated and the Wt variant of OTCΔ and 

CPN60, respectively (figure 1A). The presence of OTCΔ in mitochondria and the associated 

induction of mitochondrial CPN60 demonstrated induction of mtUPR in the transfected 

cells. Increased expression of CPN60 in whole-cell lysates was only detectable at late time 

points (>56 h) (data not shown).

mtUPR induces PKR via AP1

To confirm the exclusive induction of mtUPR, we determined the mRNA and protein 

expression of the ER chaperone GRP78 following transfection with OTCΔ. Consistent with 

published results, OTCΔ transfection did not affect GRP78 expression but induced the 

phosphorylation of cJun, a component of the transcription factors AP1 and CHOP (figure 

1B).716 CHOP binding to the Cpn60 promoter is required for CPN60 induction under 

mtUPR1416 and was confirmed in Mode-K cells (figure 1F). Remarkably, mtUPR led to 

phosphorylation of eIF2α (figure 1B). It is established that this event efficiently inhibits 

translation under ER stress,7 but this process has not yet been described as a consequence of 

mtUPR. Under ER UPR, the ER membrane-associated PERK is largely responsible for 

eIF2α phosphorylation7; however, phosphorylation and, thereby, activation of PERK were 

not detected following OTCΔ stimulation (figure 1C).

To identify the kinase responsible for eIF2α phosphorylation upon mtUPR, we screened for 

the recruitment of known mammalian eIF2α kinases. In response to mtUPR, we found PKR 

to be selectively induced. This was demonstrated at the levels of mRNA expression and total 

protein (figure 1C). To verify that the phosphorylation of eIF2α was directly mediated by 

PKR, we used coimmunoprecipitation analysis (figure 1D). In addition to eIF2α 
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phosphorylation, PKR is also known to activate signalling cascades, regulating stress-

activated protein kinases such as JNK.2627

Applying the Genomatix Gene2Promotor software, we screened for putative transcription 

factor binding sites in the Pkr promoter and found a predicted AP1 binding site. Considering 

the fact that we found the AP1 component cJun to be phosphorylated under mtUPR (figure 

1B) and that mtUPR employs AP1 to activate CHOP transcription,14 we performed ChIP 

analysis to determine AP1 binding to the Pkr promoter. Indeed, phosphorylated cJun and 

thus AP1 binding to the Pkr promoter were detected after mtUPR induction (figure 1E).

mtUPR signalling is dependent on PKR

Investigating the dependency of mtUPR signalling on PKR, we used specific siRNA to 

knock down PKR in Mode-K cells. SiRNA knockdown of PKR prior to OTCΔ transfection 

completely abrogated eIF2α phosphorylation (figure 2A). Furthermore, by applying a 

specific inhibitor of PKR, we were able to demonstrate that mtUPR-mediated induction of 

PKR itself was dependent on PKR activity (figure 2B). Autoregulation of PKR expression 

upon its activation has been described before,27 and previous reports indicated that 

mitochondrial-to-nuclear signalling uses a JNK pathway, including the mitogen-activated 

protein kinase kinase MEK and JNK2,16 to activate AP1 under mtUPR. Applying specific 

inhibitors for MEK and JNK2/3 mimicked the effect of PKR knockdown on Mode-K cells, 

validating the AP1 dependency of PKR induction under mtUPR (supplemental figure 2A,B). 

In Caenorhabditis elegans, it has been shown that mtUPR signalling requires peptides 

generated by the mitochondrial protease ClpP.2829 In line with these data, the ClpP inhibitor 

Z-LY-CMK was able to diminish mtUPR signalling also in mammalian (murine) IECs 

(figure 2C).

To further confirm the importance of PKR for mtUPR signalling, we transfected PKR-

deficient MEFs with OTCΔ and showed that eIF2α phosphorylation was only detectable in 

Pkr+/+ MEFs (supplemental figure 3A). In the absence of infection, PKR can be activated by 

the protein activator PACT.27 Yet, OTCΔ-induced mtUPR was not impaired in Pact−/− 

MEFs (supplemental figure 3B).

Pkr−/− mice fail to induce CPN60 in response to DSS-induced stress and show reduced 
sensitivity to DSS-induced colitis

To evaluate the disease relevance of PKR-mediated mitochondrial stress mechanisms, we 

subjected Pkr−/− mice that have a deletion in the catalytic subunit of the Pkr gene21 to a 

short-term DSS feeding protocol to induce stress in IECs. These mice do not have an 

obvious phenotype, showing no impairment in tumour suppression, anti-viral response, 

apoptosis induced by tumour necrosis factor or eIF2α phosphorylation.21 After 

administration of 1% DSS in drinking water for 3 days, IECs were isolated from the colon. 

During treatment, control and Pkr−/− mice did not show any sign of disease in terms of the 

DAI. However, PKR expression and CPN60 expression were induced in control mice 

receiving DSS, whereas CPN60 expression was not enhanced in DSS-fed Pkr−/− mice 

(figure 3A,B). After two cycles of 1% DSS for 7 days, control mice showed severe weight 

loss compared to Pkr−/− mice, consistent with an exaggerated colitic response and IEC loss 
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(table 1, supplemental figure 4). The persistent induction of PKR and CPN60 in IECs from 

CTRL mice and the absence of CPN60 induction in IECs from Pkr−/− mice were confirmed 

by immunohistochemistry (IHC) and fluorescence intensity measurements at this time point 

(supplemental figure 5) These results suggest a PKR-independent regulation of CPN60 

under normal conditions; however, under inflammatory conditions, PKR-mediated 

mitochondrial stress signalling seems to be essential for CPN60 induction and appears to 

accelerate disease progression.

CPN60 and PKR are induced in primary IECs under inflammatory conditions

Further investigating the in vivo relevance of PKR-mediated signalling, we determined the 

protein expression of the mtUPR hallmark protein CPN60 and PKR in primary IECs. 

Rag2−/− mice, as well as Rag2−/− mice backcrossed to IL-10−/− mice, were reconstituted 

with CD4 T cells from either Wt or IL-10−/− donor mice. The CD4 T cell population 

consists of colitogenic CD25− T cells and regulatory CD25+ T cells that mediate their 

protective function primarily by IL-10.30 Histological analysis confirmed the presence of 

inflammatory changes in both recipient mouse strains, which gradually develop mild to 

severe colitis over 4 weeks (figure 4A). Supporting previous results,31 we induced CPN60 in 

IECs under inflammatory conditions but preceding histological changes and, accordingly, 

PKR induction accompanied histological changes (figure 4A). IHC and fluorescence 

intensity measurements in colonic tissue sections further verified the induction of CPN60 

and PKR in the intestinal epithelium after T cell transfer (figure 4B,C).

In addition, a bacteria-driven model of colitis–germ-free IL-10−/− mice mono-associated or 

dual-associated with non-pathogenic En faecalis and/or E coli strainsd–was investigated in 

terms of mtUPR marker proteins. We have previously shown that the different bacterial 

strains induce distinct disease phenotypes at different time courses and only in the genetic 

susceptible host, IL-10−/− mice.20 Also in this model, the induction of CPN60 and PKR 

reflecting inflammatory changes in the intestinal epithelium could be recovered (figure 4D). 

Taken together, these results strongly suggest that the induction of PKR was not due to viral 

infections, as the animals were maintained under a specific pathogen-free environment or 

under germ-free conditions, ensuring mono association and dual association, respectively.

Most importantly, the induction of CPN60 associated with elevated PKR protein levels was 

also observed in IECs from human patients with IBDs, as determined by Western blot 

analysis (figure 5A) and IHC (figure 5B,C) in different patients. Double staining of CPN60 

with PKR or E-cadherin, respectively, confirmed the presence of the mtUPR hallmark 

protein CPN60 and of the mtUPR signalling-associated PKR in IECs under inflammatory 

conditions (figure 5D,E). This was true for the IECs of patients with UC (WB: n=4, IHC: 

n=4) and also for the IECs of patients with CD (WB: n=3, IHC: n=5; controls: WB: n=2, 

IHC: n=5). Fluorescence intensity measurements of individual patients and information on 

disease status and medication can be found in supplemental table 6 and supplemental table 

2, respectively.
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DISCUSSION

Although ER stress has been identified to participate during the onset and the course of 

neoplasia, metabolic diseases and inflammation,32–34 and although functional alterations in 

mitochondria and energy metabolism, in general, have been implicated in these 

diseases,91112 little is known regarding the cooperation of ER and mitochondria in the 

development of these pathologies. Mitochondria and ER interact physically and 

functionally35; consistently, ER stress impacts mitochondrial gene expression3637 and, vice 

versa, mitochondria have been shown to modulate ER UPR.9–11

Interestingly, we found that the highly selective mtUPR pathway employs PKR to recruit 

signalling molecules associated with ER-UPR, namely eIF2α and cJun (AP1) (figure 6). It 

has been reported that PKR participates in thapsigargin-induced ER stress and apoptosis.38 

Moreover, PKR-mediated eIF2α phosphorylation has been shown to be responsible, at least 

in part, for the translational inhibition of cytoprotective inducible heat shock proteins in 

colonic IECs under inflammatory conditions.31 Significantly, Nakamura et al39 suggested 

that PKR-coordinated signalling may represent a central mechanism for the integration of 

innate immunity into metabolic pathways that are critical in metabolic diseases. These 

diseases comprise obesity, insulin resistance and type II diabetes, and are characterised by 

low-grade local inflammation. PKR can be activated by various triggers, including TLRs, 

growth receptor signalling, cytokines and palmitic acid.2739 In turn, PKR is able to modulate 

signalling induced by tumour necrosis factor26 and IkB kinase2627 activity, and can induce 

insulin receptor substrate phosphorylation at serine 307, thereby blocking insulin action.39 

These broad functions of PKR are reflected by the observation that Pkr−/− mice, in response 

to a high-fat diet, exhibit significantly reduced levels of several inflammatory cytokines.39

Regarding the diverse properties of PKR, one cannot exclude the possibility that the 

induction of PKR seen in the animal models of colitis and in human patients is not (or not 

solely) due to mitochondrial signalling. However, our finding that PKR is selectively 

induced during mtUPR and acts in concert with ERUPR-derived signals implicates that PKR 

is a central player in mitochondriale–nuclear communication.

Alongside, it cannot be ruled that the reduced sensitivity to DSS-induced colitis seen in our 

experimental setup is due to other functions of PKR, yet the early induction of PKR and 

CPN60 in control mice while the CPN60 level remained unaltered in Pkr−/− mice provides 

strong evidence for a role of PKR in stress-induced CPN60 expression. We focused on 

mtUPR in IECs; however, this pathway is also most likely important to other cell types 

involved in inflammatory processes. Future experiments need to address the contribution of 

haematopoietic versus nonhematopoietic cells to the protective effect seen in Pkr−/− mice. 

Our results suggest that (1) PKR is only relevant to CPN60 induction under stress conditions 

and (2) the lack of an additional stress signal amplifying ER UPR signalling might be a 

crucial factor for favouring adaptive over apoptotic responses in the epithelium, thereby 

preventing tissue damage.

We found evidence that in mammalian cells, like in C elegans, the efflux of peptides 

resulting from the activity of proteases induced by unfolded proteins in the mitochondrial 
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matrix may provide the initial signal for mtUPR.29 In C elegans, ClpP degrades unfolded 

proteins to peptides that are subsequently transported into the cytosol by HAF-1 to activate 

the transcription factor ZC376.7, leading to the transcription of mitochondrial chaperone 

genes.28 Several possibilities have been suggested as to how ClpP-generated peptides might 

activate downstream signalling.2840 A peptide-specific receptor and the rate of peptide 

efflux have been implicated. Alternatively, ClpP-mediated proteolysis might release a non-

peptide ligand that is subsequently transported by HAF-1.28 Of note, the related mammalian 

ABC transporter ABCB10 has been implicated in heme transport across the mitochondrial 

inner membrane.41 Alongside, it has been supposed that a mechanism analogous to ER 

UPR, where sensing of stress appears via binding of GRP78 to unfolded proteins,7 may exist 

in mitochondria through the association of CPN60 with mutant proteins.17 In this context, it 

is noteworthy that OTCΔ has already been shown to coimmunoprecipitate with CPN60 and 

ClpP.15

It has been suggested that Ca2+ release from the ER activates PKR via Ca2+/calmodulin-

dependent protein kinase II and that PACT is involved in this activation.42 Nevertheless, we 

neither found evidence for a contribution of Ca2+, Ca2+/calmodulin-dependent protein 

kinase II or PACT to our experimental setup. Further investigations are needed to specify 

the cytosolic signal leading to PKR activation under mtUPR.

Accumulating data have placed mitochondria at the center of diverse cellular functions and 

suggest mitochondria as integrators of various signalling pathways. Mitochondria participate 

in cellular calcium homeostasis and constitute a major source of cellular reactive oxygen 

species (ROS),17 thereby affecting processes such as autophagy and inflammatory 

signalling.43 Moreover, recent work has confirmed the role of mitochondria in immune 

responses by linking mitochondrial ROS production and autophagy to the activation of 

NLRP3 inflammasome,44 a multiprotein complex involved in proteolytic maturation and 

release of IL-1β and IL-18.45 Polymorphisms in NLRP3 have been associated with CD in a 

candidate gene study,46 and a single-nucleotide polymorphism within the IL-18 receptor 

accessory protein gene (IL18RAP) has been identified as a risk factor for both CD and UC.47 

Consistently, expression of IL-1β and IL-18 is enhanced in IBDs, particularly in the 

epithelium.4849

In addition, polymorphisms in the genes encoding IRGM and UCP2 (proteins that directly 

impact mitochondrial function) have been identified as disease susceptibility factors in CD 

(and, in the case of UCP2, also in UC).50 IRGM, by affecting mitochondrial fission, has 

been shown to induce autophagy of intracellular mycobacteria and also to influence 

mitochondrial membrane polarisation.51 Furthermore, several pathogens specifically target 

mitochondria to disrupt their function,52 and proinflammatory cytokine-evoked ROS 

generation is associated with a drop in mitochondrial membrane potential.53 Contrarily, 

inducing mitochondrial stress in IECs with the oxidative phosphorylation uncoupler 

dinitrophenol caused decreased transepithelial electrical resistance and increased 

translocation of E coli.54 Enterocytes of patients with IBDs have been reported to display 

swollen mitochondria with irregular cristae indicative of impaired function, confirming the 

relevance of these data.55 In accordance, reduced ATP levels have been found in the colon 

of some patients with CD.56 It has been suggested that chronic intestinal inflammation might 
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represent an energy deficiency disease involving mitochondria and featuring alterations in 

epithelial cell oxidative metabolism.1213 In particular, β oxidation is implicated in CD 

pathogenesis, and a polymorphism in SLC22A557 encoding the carnitine transporter OCTN2 

has been described as a risk factor in IBDs. Carnitine is essential to the energy metabolism 

of IECs by transporting long-chain fatty acids into mitochondria for β oxidation.58 

Consequently, genetic ablation of OCTN2 results in experimental colitis.59 Sustaining 

energy supply might therefore be particularly important in IECs metabolically challenged by 

alterations in the microbiota and/or in the context of energy-consuming inflammatory 

processes.60

Multifactorial diseases such as IBDs require both genetic susceptibility and environmental 

triggers in their etiologies. Furthermore, recent data highlight how a specific microbe can 

determine the phenotype of a host carrying the autophagy-related ATG16L1 risk allele for 

inflammatory disease.61 These complex interactions underscore the necessity to identify 

cellular check points at which different signals converge and which may thus be promising 

targets for therapeutical interventions.

MtUPR and ER UPR might represent those check points that integrate disease-relevant 

functions such as energy supply, ROS generation and cytokine production. Studies with 

chemical chaperones, phenyl butyric acid and tauro-ursodeoxycholic acid confirmed that ER 

can be chemically targeted to enhance its functional capacity.62 In murine models of obesity 

and diabetes, administration of these chaperones increased insulin sensitivity, reduced fatty 

liver disease and suppressed inflammatory signalling.63 The use of mitochondria-specific 

anti-oxidants such as acetyl-L-carnitine and R-alphalipoic acid could complement such 

strategies by additionally targeting mitochondrial stress. Whether it is possible to adapt those 

strategies for IBD treatment is currently unknown, but they provide promising evidence for 

new therapeutic approaches.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank Professor Dr Martin Klingenspor and Dr Tobias Fromme for instructions and help with mitochondrial 
isolation; Dr Roger Vogelmann, Dr Sylvia Steininger and Viktoria Doll for help with confocal microscopy; Nadine 
Waldschmitt for help with MEF culture; and Professor Dr Gerhard Rogler for providing IEC samples from patients 
with IBDs.

Funding This work was supported by Die Deutsche Forschungsgemeinschaft grants GRK 1482 and HA 3148/2-1, 
the German Academic Exchange Service, NIH DK RO1 DK 53347, P40 RR018603 and the Crohn's and Colitis 
Foundation of America.

REFERENCES

1. Renz H, von Mutius E, Brandtzaeg P, et al. Geneeenvironment interactions in chronic inflammatory 
disease. Nat Immunol. 2011; 12:273–7. [PubMed: 21423219] 

2. Sartor RB. Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nat Clin 
Pract Gastroenterol Hepatol. 2006; 3:390–407. [PubMed: 16819502] 

Rath et al. Page 11

Gut. Author manuscript; available in PMC 2015 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Clavel T, Haller D. Bacteria- and host-derived mechanisms to control intestinal epithelial cell 
homeostasis: implications for chronic inflammation. Inflamm Bowel Dis. 2007; 13:1153–64. 
[PubMed: 17476679] 

4. Shkoda A, Ruiz PA, Daniel H, et al. Interleukin-10 blocked endoplasmic reticulum stress in 
intestinal epithelial cells: impact on chronic inflammation. Gastroenterology. 2007; 132:190–207. 
[PubMed: 17241871] 

5. Kaser A, Lee AH, Franke A, et al. XBP1 links ER stress to intestinal inflammation and confers 
genetic risk for human inflammatory bowel disease. Cell. 2008; 134:743–56. [PubMed: 18775308] 

6. Heazlewood CK, Cook MC, Eri R, et al. Aberrant mucin assembly in mice causes endoplasmic 
reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 2008; 
5:e54. [PubMed: 18318598] 

7. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005; 
74:739–89. [PubMed: 15952902] 

8. Simmen T, Lynes EM, Gesson K, et al. Oxidative protein folding in the endoplasmic reticulum: 
tight links to the mitochondria-associated membrane (MAM). Biochim Biophys Acta. 2010; 
1798:1465–73. [PubMed: 20430008] 

9. Haga N, Saito S, Tsukumo Y, et al. Mitochondria regulate the unfolded protein response leading to 
cancer cell survival under glucose deprivation conditions. Cancer Sci. 2010; 101:1125–32. 
[PubMed: 20210797] 

10. Arduino DM, Esteves AR, Domingues AF, et al. ER-mediated stress induces mitochondrial-
dependent caspases activation in NT2 neuron-like cells. BMB Rep. 2009; 42:719–24. [PubMed: 
19944012] 

11. Lim JH, Lee HJ, Ho Jung M, et al. Coupling mitochondrial dysfunction to endoplasmic reticulum 
stress response: a molecular mechanism leading to hepatic insulin resistance. Cell Signal. 2009; 
21:169–77. [PubMed: 18950706] 

12. Fukushima K, Fiocchi C. Paradoxical decrease of mitochondrial DNA deletions in epithelial cells 
of active ulcerative colitis patients. Am J Physiol Gastrointest Liver Physiol. 2004; 286:G804–13. 
[PubMed: 15068964] 

13. Beltran B, Nos P, Dasi F, et al. Mitochondrial dysfunction, persistent oxidative damage, and 
catalase inhibition in immune cells of naive and treated Crohn's disease. Inflamm Bowel Dis. 
2010; 16:76–86. [PubMed: 19637347] 

14. Aldridge JE, Horibe T, Hoogenraad NJ. Discovery of genes activated by the mitochondrial 
unfolded protein response (mtUPR) and cognate promoter elements. PLoS One. 2007; 2:e874. 
[PubMed: 17849004] 

15. Zhao Q, Wang J, Levichkin IV, et al. A mitochondrial specific stress response in mammalian cells. 
EMBO J. 2002; 21:4411–19. [PubMed: 12198143] 

16. Horibe T, Hoogenraad NJ. The chop gene contains an element for the positive regulation of the 
mitochondrial unfolded protein response. PLoS One. 2007; 2:e835. [PubMed: 17848986] 

17. Ryan MT, Hoogenraad NJ. Mitochondrial–nuclear communications. Annu Rev Biochem. 2007; 
76:701–22. [PubMed: 17227225] 

18. Koll H, Guiard B, Rassow J, et al. Antifolding activity of hsp60 couples protein import into the 
mitochondrial matrix with export to the intermembrane space. Cell. 1992; 68:1163–75. [PubMed: 
1347713] 

19. Siegelin MD, Dohi T, Raskett CM, et al. Exploiting the mitochondrial unfolded protein response 
for cancer therapy in mice and human cells. J Clin Invest. 2011; 121:1349–60. [PubMed: 
21364280] 

20. Kim SC, Tonkonogy SL, Karrasch T, et al. Dual-association of gnotobiotic IL-10 −/− mice with 2 
nonpathogenic commensal bacteria induces aggressive pancolitis. Inflamm Bowel Dis. 2007; 
13:1457–66. [PubMed: 17763473] 

21. Abraham N, Stojdl DF, Duncan PI, et al. Characterization of transgenic mice with targeted 
disruption of the catalytic domain of the double-stranded RNA-dependent protein kinase, PKR. J 
Biol Chem. 1999; 274:5953–62. [PubMed: 10026221] 

Rath et al. Page 12

Gut. Author manuscript; available in PMC 2015 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. Okayasu I, Hatakeyama S, Yamada M, et al. A novel method in the induction of reliable 
experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990; 98:694–702. 
[PubMed: 1688816] 

23. Ruiz PA, Shkoda A, Kim SC, et al. IL-10 gene-deficient mice lack TGF-beta/Smad signaling and 
fail to inhibit proinflammatory gene expression in intestinal epithelial cells after the colonization 
with colitogenic Enterococcus faecalis. J Immunol. 2005; 174:2990–9. [PubMed: 15728512] 

24. Hoermannsperger G, Clavel T, Hoffmann M, et al. Post-translational inhibition of IP-10 secretion 
in IEC by probiotic bacteria: impact on chronic inflammation. PLoS One. 2009; 4:e4365. 
[PubMed: 19197385] 

25. Rowe TM, Rizzi M, Hirose K, et al. A role of the double-stranded RNA-binding protein PACT in 
mouse ear development and hearing. Proc Natl Acad Sci U S A. 2006; 103:5823–8. [PubMed: 
16571658] 

26. Takada Y, Ichikawa H, Pataer A, et al. Genetic deletion of PKR abrogates TNF-induced activation 
of IkappaBalpha kinase, JNK, Akt and cell proliferation but potentiates p44/p42 MAPK and p38 
MAPK activation. Oncogene. 2007; 26:1201–12. [PubMed: 16924232] 

27. Garcia MA, Gil J, Ventoso I, et al. Impact of protein kinase PKR in cell biology: from antiviral to 
antiproliferative action. Microbiol Mol Biol Rev. 2006; 70:1032–60. [PubMed: 17158706] 

28. Haynes CM, Yang Y, Blais SP, et al. The matrix peptide exporter HAF-1 signals a mitochondrial 
UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell. 2010; 37:529–40. 
[PubMed: 20188671] 

29. Haynes CM, Petrova K, Benedetti C, et al. ClpP mediates activation of a mitochondrial unfolded 
protein response in C. elegans. Dev Cell. 2007; 13:467–80. [PubMed: 17925224] 

30. Asseman C, Read S, Powrie F. Colitogenic Th1 cells are present in the antigen-experienced T cell 
pool in normal mice: control by CD4+ regulatory T cells and IL-10. J Immunol. 2003; 171:971–8. 
[PubMed: 12847269] 

31. Hu S, Ciancio MJ, Lahav M, et al. Translational inhibition of colonic epithelial heat shock proteins 
by IFN-gamma and TNF-alpha in intestinal inflammation. Gastroenterology. 2007; 133:1893–904. 
[PubMed: 18054561] 

32. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 
2008; 454:455–62. [PubMed: 18650916] 

33. Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and 
type 2 diabetes. Science. 2004; 306:457–61. [PubMed: 15486293] 

34. Rath E, Haller D. Inflammation and cellular stress: a mechanistic link between immune-mediated 
and metabolically driven pathologies. Eur J Nutr. 2011; 50:219–33. [PubMed: 21547407] 

35. Pizzo P, Pozzan T. Mitochondriaeendoplasmic reticulum choreography: structure and signaling 
dynamics. Trends Cell Biol. 2007; 17:511–17. [PubMed: 17851078] 

36. Hori O, Ichinoda F, Tamatani T, et al. Transmission of cell stress from endoplasmic reticulum to 
mitochondria: enhanced expression of Lon protease. J Cell Biol. 2002; 157:1151–60. [PubMed: 
12082077] 

37. Bouman L, Schlierf A, Lutz AK, et al. Parkin is transcriptionally regulated by ATF4: evidence for 
an interconnection between mitochondrial stress and ER stress. Cell Death Differ. 2011; 18:769–
82. [PubMed: 21113145] 

38. Lee ES, Yoon CH, Kim YS, et al. The double-strand RNA-dependent protein kinase PKR plays a 
significant role in a sustained ER stress-induced apoptosis. FEBS Lett. 2007; 581:4325–32. 
[PubMed: 17716668] 

39. Nakamura T, Furuhashi M, Li P, et al. Double-stranded RNA-dependent protein kinase links 
pathogen sensing with stress and metabolic homeostasis. Cell. 2010; 140:338–48. [PubMed: 
20144759] 

40. Haynes CM, Ron D. The mitochondrial UPR–protecting organelle protein homeostasis. J Cell Sci. 
2010; 123:3849–55. [PubMed: 21048161] 

41. Shirihai OS, Gregory T, Yu C, et al. ABC-me: a novel mitochondrial transporter induced by 
GATA-1 during erythroid differentiation. EMBO J. 2000; 19:2492–502. [PubMed: 10835348] 

42. Gardner OS, Shiau CW, Chen CS, et al. Peroxisome proliferator-activated receptor gamma-
independent activation of p38 MAPK by thiazolidinediones involves calcium/calmodulin-

Rath et al. Page 13

Gut. Author manuscript; available in PMC 2015 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dependent protein kinase II and protein kinase R: correlation with endoplasmic reticulum stress. J 
Biol Chem. 2005; 280:10109–18. [PubMed: 15649892] 

43. Sorbara MT, Girardin SE. Mitochondrial ROS fuel the inflammasome. Cell Res. 2011; 21:558–60. 
[PubMed: 21283134] 

44. Zhou R, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 inflammasome activation. 
Nature. 2011; 469:221–5. [PubMed: 21124315] 

45. Schroder K, Tschopp J. The inflammasomes. Cell. 2010; 140:821–32. [PubMed: 20303873] 

46. Villani AC, Lemire M, Fortin G, et al. Common variants in the NLRP3 region contribute to 
Crohn’s disease susceptibility. Nat Genet. 2009; 41:71–6. [PubMed: 19098911] 

47. Zhernakova A, Festen EM, Franke L, et al. Genetic analysis of innate immunity in Crohn's disease 
and ulcerative colitis identifies two susceptibility loci harboring CARD9 and IL18RAP. Am J 
Hum Genet. 2008; 82:1202–10. [PubMed: 18439550] 

48. Pizarro TT, Michie MH, Bentz M, et al. IL-18, a novel immunoregulatory cytokine, is up-regulated 
in Crohn's disease: expression and localization in intestinal mucosal cells. J Immunol. 1999; 
162:6829–35. [PubMed: 10352304] 

49. Casini-Raggi V, Kam L, Chong YJ, et al. Mucosal imbalance of IL-1 and IL-1 receptor antagonist 
in inflammatory bowel disease. A novel mechanism of chronic intestinal inflammation. J 
Immunol. 1995; 154:2434–40. [PubMed: 7868909] 

50. Yu X, Wieczorek S, Franke A, et al. Association of UCP2-866 G/A polymorphism with chronic 
inflammatory diseases. Genes Immun. 2009; 10:601–5. [PubMed: 19387457] 

51. Singh SB, Ornatowski W, Vergne I, et al. Human IRGM regulates autophagy and cell-autonomous 
immunity functions through mitochondria. Nat Cell Biol. 2010; 12:1154–65. [PubMed: 21102437] 

52. He D, Sougioultzis S, Hagen S, et al. Clostridium difficile toxin A triggers human colonocyte IL-8 
release via mitochondrial oxygen radical generation. Gastroenterology. 2002; 122:1048–57. 
[PubMed: 11910356] 

53. Kamizato M, Nishida K, Masuda K, et al. Interleukin 10 inhibits interferon gamma-and tumor 
necrosis factor alpha-stimulated activation of NADPH oxidase 1 in human colonic epithelial cells 
and the mouse colon. J Gastroenterol. 2009; 44:1172–84. [PubMed: 19714290] 

54. Lewis K, Lutgendorff F, Phan V, et al. Enhanced translocation of bacteria across metabolically 
stressed epithelia is reduced by butyrate. Inflamm Bowel Dis. 2010; 16:1138–48. [PubMed: 
20024905] 

55. Soderholm JD, Olaison G, Peterson KH, et al. Augmented increase in tight junction permeability 
by luminal stimuli in the non-inflamed ileum of Crohn's disease. Gut. 2002; 50:307–13. [PubMed: 
11839706] 

56. Schurmann G, Bruwer M, Klotz A, et al. Transepithelial transport processes at the intestinal 
mucosa in inflammatory bowel disease. Int J Colorectal Dis. 1999; 14:41–6. [PubMed: 10207729] 

57. Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature. 2009; 
458:1131–5. [PubMed: 19339967] 

58. Rinaldo P, Matern D, Bennett MJ. Fatty acid oxidation disorders. Annu Rev Physiol. 2002; 
64:477–502. [PubMed: 11826276] 

59. Shekhawat PS, Srinivas SR, Matern D, et al. Spontaneous development of intestinal and colonic 
atrophy and inflammation in the carnitine-deficient jvs (OCTN2 (−/−)) mice. Mol Genet Metab. 
2007; 92:315–24. [PubMed: 17884651] 

60. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010; 
28:573–621. [PubMed: 20192811] 

61. Cadwell K, Patel KK, Maloney NS, et al. Virus-plus-susceptibility gene interaction determines 
Crohn's disease gene Atg16L1 phenotypes in intestine. Cell. 2010; 141:1135–45. [PubMed: 
20602997] 

62. Berger E, Haller D. Structure–function analysis of the tertiary bile acid TUDCA for the resolution 
of endoplasmic reticulum stress in intestinal epithelial cells. Biochem Biophys Res Commun. 
2011; 409:610–15. [PubMed: 21605547] 

63. Ozcan U, Yilmaz E, Ozcan L, et al. Chemical chaperones reduce ER stress and restore glucose 
homeostasis in a mouse model of type 2 diabetes. Science. 2006; 313:1137–40. [PubMed: 
16931765] 

Rath et al. Page 14

Gut. Author manuscript; available in PMC 2015 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Significance of this study

What is already known about this subject?

▶ Endoplasmic reticulum (ER) unfolded protein responses (UPRs) in intestinal 

epithelial cells (IECs) contribute to the development of intestinal inflammation.

▶ Mitochondrial dysfunction and alterations in energy metabolism, in general, are 

implicated during the onset and the course of inflammatory bowel diseases (IBDs).

▶ ER and mitochondria are functionally linked, but mitochondrial UPR (mtUPR) has 

not yet been investigated in the context of intestinal inflammation.

What are the new findings?

▶ The cytoplasmic kinase PKR (double-stranded-RNA-activated protein kinase) 

mediates mtUPR in IECs.

▶ PKR integrates mtUPR into the disease-relevant ER UPR signalling cascade via 

phosphorylation of eukaryotic translation initiation factor 2α and activation of the 

transcription factor AP1.

▶ Pkr−/− mice fail to upregulate the mtUPR surrogate marker chaperonin 60 in IECs 

in response to short-term dextran sodium sulphate administration and later on are 

almost protected from colitis induced by dextran sodium sulphate.

▶ Chaperonin 60 and PKR are induced in IECs from two murine models of colitis 

and patients with IBDs under inflammatory conditions.

How might it impact on clinical practice in the foreseeable future?

▶ These data imply a role for mtUPR in the pathogenesis of IBDs. Signaling of 

mtUPR, particularly PKR, could be a potential target for disease intervention.
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Figure 1. 
Mitochondrial UPR (mtUPR) induces PKR via AP1. Ornithine transcarbamylase (OTCΔ) 

induces mtUPR in Mode-K cells. Mode-K cells were transfected with OTCΔ cDNA for 36 

h. (A) OTCΔ expression and translocation to the mitochondria and CPN60 recruitment to 

the mitochondria analysed in mitochondrial and whole-cell protein lysates by Western blot 

analysis. Cytochrome c oxidase (COX) IV serves as mitochondrial loading control. Bar 

charts: relative (B) Grp78 gene or (C) Pkr gene expression 36 h after OTCΔ transfection. 

Data are shown as mean±SD (**p<0.01, t test). (B) Phosphorylation of eukaryotic 

translation initiation factor (eIF) 2α and cJun 30 h after OTCΔ transfection, and of glucose-

regulated protein 78 (GRP78) and CHOP expression 36 h after OTCΔ transfection, as 

determined by Western blot analysis. (C) PERK phosphorylation 30 h after OTCΔ 
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transfection and PKR expression 36 h after OTCΔ transfection, as determined by Western 

blot analysis. (D) Cell lysates were prepared 30 h after OTCΔ transfection, followed by 

immunoprecipitation with anti-eIF2α or anti-PKR antibody and Western blot analysis for 

PKR or eIF2α. (E) AP1 recruitment to the Pkr promoter and (F) CHOP recruitment to the 

Cpn60 promoter following OTCΔ transfection analysed by chromatin immunoprecipitation 

(ChIP) using anti-P-cJun or anti-CHOP antibodies and subsequent PCR analysis.
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Figure 2. 
Mitochondrial unfolded protein response (mtUPR) signalling is dependent on PKR and ClpP 

in Mode-K cells. (A) Mode-K cells were transfected with small inhibitory RNA (siRNA) 

specific for Pkr or control siRNA (10 nmol/l) for 12 h, (B) or pretreated with PKR inhibitor 

(1 μmol/l) (C) or the ClpP inhibitor Z-LY-CMK (1 μmol/l) for 10 h. Subsequently, cells 

were transfected with ornithine transcarbamylase (OTCΔ) cDNA for 30 h or 36 h to 

determine protein phosphorylation (eukaryotic translation initiation factor (eIF) 2 and cJun) 

and expression (PKR and CHOP), respectively.
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Figure 3. 
Pkr−/− mice fail to induce chaperonin 60 (CPN60) in intestinal epithelial cells (IECs) in 

response to stress induced by dextran sodium sulphate (DSS). Pkr−/− and CTRL mice 

received 1% DSS for 3 days, and colonic IECs were isolated (n 5). (A) IECs were analysed 

for expression of CPN60 and PKR by Western blot analysis. (B) Cpn60 and Pkr gene 

expression in IECs analysed by quantitative RT PCR. Bars represent fold induction±SD 

compared to Pkr−/− or CTRL mice receiving water. (a, b) Different from CTRL mice 

receiving water (two-way ANOVA followed by Tukey test; p=0.005 and p=0.019, 

respectively).
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Figure 4. 
Chaperonin 60 (CPN60) and PKR are induced in primary intestinal epithelial cells (IECs) in 

experimental colitis. Rag2−/− and Rag2−/− ×IL-10−/− recipients were adoptively transferred 

with CD4 T cells from Wt or IL-10−/− mice (n=5). Mice were killed 1 week and 4 weeks 

later. (A) Bar charts: mean histopathologic score±SD: (b) different from (a), (f) different 

from (e), (h) different from (g) and (i) (ANOVA on Ranks followed by Holm–Sidak test, 

p<0.01); (d) different from (c) (ANOVA on Ranks followed by Dunn's test, p<0.05). 

Isolated large IECs for expression of CPN60 and PKR were determined by Western blot 

analysis. (B) Immunohistochemical staining of CPN60 and PKR in colonic tissue sections 4 

weeks after T cell transfer (CPN60; PKR (green), DAPI (blue), 1800×). (C) Bar charts show 

the mean intensity/μm2±SD of the fluorescence signal of each group (n=5 per group; five 

IEC regions per mouse): (b) different from (a) and (c), (e) different from (d) and (f) (one-

way ANOVA followed by Holme–Sidak test, p<0.001). Immunohistochemical double 
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staining of CPN60 with PKR or E-cadherin, respectively, in colonic tissue sections of 

Rag2−/− (D) and Rag2−/− ×IL-10 −/− (E) recipients reconstituted with CD4 T cells from 

IL-10−/− mice for 4 weeks (PKR, E-cadherin (red), CPN60 (green), DAPI (blue), 1800×). 

(F) Germ-free Wt and IL-10−/− mice were mono-associated or dual-associated with En 

faecalis and/or E coli. Mice were killed 6 weeks later. Bar charts: mean histopathologic 

score±SD: (b) different from (c) and (d), (d) different from (a) and (c) (ANOVA on Ranks 

followed by Holme–Sidak test, p<0.01). Isolated large IECs for expression of CPN60 and 

PKR were determined by Western blot analysis.
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Figure 5. 
Chaperonin 60 (CPN60) and PKR are induced in primary intestinal epithelial cells (IECs) 

from patients with inflammatory bowel diseases. (A) Primary IECs were isolated from the 

surgical specimens of patients with colorectal cancer (CC; non-inflammatory control), active 

Crohn's disease (CD) and ulcerative colitis (UC). UC patient 6: IECs of non-inflamed (N) 

and inflamed (I) tissue regions. Expression of CPN60 and PKR was determined by Western 

blot analysis. Patients 1–5 and 7–9 were analysed on the same Western blot. (B) 

Immunohistochemical staining of CPN60 and PKR in the surgical specimens of patients 

with colorectal cancer (control), active CD or UC (not the same patients as in (A)). (C) Bar 

charts show the mean intensity/μm2±SD of the fluorescence signal of each group (n=5 for 

CTRL and CD, n=3 for UC; 10 IEC regions per patient). *Different from CTRL (ANOVA 

on Ranks followed by Dunn's test, p<0.05). The fluorescence intensity measurements of 

individual patients can be found in supplemental table 2. (D) Immunohistochemical double 

staining of CPN60 with PKR or E-cadherin, respectively, in the surgical specimens of 

patients with CD and UC (PKR and E-cadherin (red), CPN60 (green), DAPI (blue), 1800×).
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Figure 6. 
Schematic illustration of the integration of mitochondrial unfolded protein response 

(mtUPR) and endoplasmic reticulum unfolded protein response (ER UPR). PKR is activated 

by ClpP-dependent mtUPR signalling and in turn induces its own transcription via MEK, 

JNK2 and AP1. Enhanced PKR signalling then amplifies eukaryotic translation initiation 

factor (eIF) 2α and cJun phosphorylation, resulting in transcriptional activation of stress-

related genes. Signaling of ER UPR and mtUPR converges at the levels of eIF2α 

phosphorylation and AP1 activation. As a consequence of ER UPR and mtUPR, nuclear-

encoded compartment-specific chaperones such as glucose-regulated protein 78 (GRP78) 

and chaperonin 60 (CPN60) are induced.
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Table 1

Pkr–/– mice show reduced sensitivity to DSS-induced colitis

Group Treatment Weight loss Stool consistency Rectal bleeding DAI Colon length (cm) Histological score (0–12)

CTRL Water 0±0 0±0 0±0 0±0 8.83±0.58 0.00±0.00

DSS
2.8±1.47

*
3.6±0.80

*† 2.6±1.36
3.0±1.19

*†
6.04±0.30

‡§
6.20±2.02

§¶

Pkr–/– Water 0±0 0±0 0±0 0±0 9.00±0.73 0.88±0.25

DSS 0.2±0.40
0±0

† 0±0
0.07±0.13

†
7.42±0.56

‡§
2.30±3.25

¶

Pkr–/– and CTRL mice received cycles of 1% DSS for 7 days, followed by 7 days of water. The criteria for scoring the DAI are given in 
supplemental table 1.

DSS, dextran sodium sulphate; DAI, Disease Activity Index; CTRL, control.

*
Statistically different from the water control group (ANOVA on Ranks followed by Dunn's test, p<0.05).

†
Statistically different from the treatment control group (ANOVA on Ranks followed by Dunn's test, p<0.05).

‡
Statistically different from the treatment control group (two-way ANOVA followed by Tukey test, p<0.001).

§
Statistically different from the water control group (two-way ANOVA followed by Tukey test, p<0.001).

¶
Statistically different from the treatment control group (two-way ANOVA followed by Tukey test, p=0.010).
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