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Background and aims: Erroneous thymic selection of developing T lymphocytes may be responsible for the
expansion of self reactive T cells or may contribute to the absence of regulatory T cells important in
controlling peripheral inflammatory processes. Colitis in bone marrow (BM) transplanted Tge26 mice is
induced by abnormally activated T cells developing in an aberrant thymic microenvironment. We
investigated the protective role of regulatory CD4"CD25" T cells in this model.

Methods: BM from (C57BL/6 xCBA/J) F1 mice was transplanted into specific pathogen free Tge26 mice
(BM=Tge26). Transplanted mice received no cells (control), sorted CD4"CD25", or CD4*CD25™ cells
from mesenteric lymph nodes (MLN) of normal mice. MLN cell subsets were analysed using membrane
markers. Cytokine secretion of MLN cells was measured using intracellular cytokine staining and cytokine
secretion in anti-CD3 stimulated cell cultures. Colitis was measured by histological scores.

Results: CD4'CD25" cells were reduced in the MLNs of BM=Tge26 mice. Transfer of regulatory
CD4*CD25" but not of CD4"CD25~ cells reduced the number of MLN CD4* T cells in BM=Tge26
recipients and increased the number of MLN CD8" cells, thereby normalising the CD4*/CD8" ratio.
CD4*CD25" but not CD4*CD25™ cell transfer into BM=Tge26 mice reduced the number of tumour
necrosis factor o CD4" cells and increased the secretion of transforming growth factor B by MLN cells.
Transfer of 3x10° CD4*CD25" cells after BM transplantation into Tge26 mice prevented colitis whereas
CD4*CD25~ cells had no protective effect.

Conclusions: These results suggest that defective selection or induction of regulatory T cells in the abnormal
thymus is responsible for the development of colitis in BM=-Tge26 mice. Transfer of CD4*CD25" cells can
control intestinal inflammation in BM=Tge26 mice by normalising the number and function of the MLN' T
cell pool.
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nate between harmful foreign antigens and innumerable

antigens from the complex resident bacterial flora. Under
normal circumstances, immunological tolerance toward the
commensal enteric bacterial flora prevents continuous
intestinal inflammation."' > There is compelling evidence from
both human and animal models that this controlled
homeostatic immune response is lost in genetically suscep-
tible hosts that develop chronic immune mediated colitis.’ *
We and others have shown that activation of T cells reacting
against the resident bacterial flora is a key pathogenic
mechanism in rodent models of chronic colitis and in
humans.”” The factors leading to the unrestrained activation
of T cells have been a focus of recent investigations.

The normal CD4" T cell population contains both T cell
subsets responsible for the induction of inflammation and
other T cells that confer suppression. The immunosuppressive
activity is contained predominantly within the CD4" T cell
population that constitutively expresses the interleukin (IL)-
2R a-chain (CD25).* Transfer of regulatory CD4"CD25" cells
in different experimental settings demonstrated their pivotal
role in the maintenance of self tolerance,” in regulating
peripheral T cell homeostasis,'” "' in transplantation toler-
ance,"” and in graft versus host protection after bone marrow
(BM) transplantation.” '* The thymus has been identified as
the place where regulatory T cells (Treg cells) develop” '* and
a normal thymic architecture is necessary for adequate
selection of Treg cells."”

The immune system of the distal intestine must discrimi-

By allowing selective transfer of T cell subsets, sponta-
neously mutated and transgenic mice lacking adult T
lymphocytes (SCID, Rag, and Tge26, respectively) can provide
insights into the pathogenic role of different T cell subsets in
the intestinal inflammatory process. A growing body of
evidence suggests that regulatory CD4"CD25" T cells play an
important role in the prevention and treatment of intestinal
inflammation in SCID mice. In this model, colitis develops
after transfer of naive CD4"CD45RB™ T cells and can be
prevented by co-transfer of the naturally activated
CD45RB™" subset.” " Because colitis in SCID mice can only
be induced by transfer of adult T lymphocytes but not by BM
transplantation,® *' interaction of thymus dependent T cell
development and Treg cells cannot be studied in the context
of colitis.

The immunopathogenesis of experimental colitis in Tge26
mice is substantially different. Tge26 mice are transgenic for
the human CD3e gene. This results in very early arrest of T
cell development which prevents the induction of a normal
thymic microenvironment.”” BM transplantation from syn-
genic wild-type mice into Tge26 mice (BM=-Tge26 mice)
restores the T cell compartment. However, T cell development

Abbreviations: BM, bone marrow; BM=-Tge26, Tge26 mice
transplanted with wild-type bone marrow; FITC, fluorescein
isothiocyanate; IFN, interferon; IL, interleukin; MLN, mesenteric lymph
node; SPF, specific pathogen free; Th1, T helper 1; TNF, tumour necrosis
factor; Treg cells, regulatory T cells; TGF-B, transforming growth factor B
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and selection in the abnormally structured thymus are
profoundly compromised. Consequently, aggressive CD4" T
cells develop while peripheral CD8" cells are almost absent.?
CD4" cells are characterised by low CD45RB"&" expression
and by secretion of a T helper 1(Thl) cytokine profile
consisting of interferon y (IFN-y) and tumour necrosis factor
o (TNF-a).” These cells cause severe colitis.”>*

To date, the mechanisms underlying the development of
aggressive T cells in the abnormal thymus in Tge26 mice have
only been partially elucidated. Failure of the thymus to
negatively select aggressive T cells is one possibility.
Alternatively, a defect of positive selection of Treg cells in
the thymus may cause loss of control. The latter hypothesis is
more compatible with experiments in which transplantation
of a normal thymus into BM=Tge26 mice with a persistent
abnormal thymus prevented the development of colitis.”
However, direct evidence for a key role of absent Treg cells
in the pathogenesis of colitis in Tge26 mice is missing and
such cells need to be further characterised.

The purpose of the present study was to investigate
whether defective selection of CD4"CD25" Treg cells in the
compromised thymic environment of Tge26 mice is respon-
sible for the development of colitis after BM transplantation.
Specifically, we sought to determine whether the aberrant
activity of T cells derived from the thymus of BM=Tge26
mice can be corrected by regulatory CD4*CD25" cells and to
assess the mechanisms by which this correction is mediated.

MATERIALS AND METHODS

Mice

Normal (C57BL/6xCBA/J) F1 mice were purchased from
Taconic M&B (Bomholtvej, Denmark). Tge26 mice, generated
by overexpression (>30 copies) of the full length human
CD3e gene, were established by sibling breeding of animals
on the C57BL/6 xCBA/J background under specific pathogen
free (SPF) conditions at our local animal facility. All mice
were 8-16 weeks old.

BM purification and transplantation

BM cells were harvested from tibias and fibulas of (C57BL/6
x CBA/J) Fl mice. To avoid allorecognition of the Tge26
recipients, donor BM cells were depleted of mature T cells.
This was achieved by two rounds of complement mediated
lysis using anti-Thyl.2 monoclonal antibody (clone 30-H12;
BD PharMingen, San Diego, California, USA) on ice for
30 minutes followed by rabbit complement (Cedarlane) at
37°C for 45 minutes. Thereafter, less than 0.1% CD4" and
0.2% CD8" T cells were present in the BM inoculum, as
determined by flow cytometry. BM recipients were pretreated
with 150 mg/kg 5-fluorouracil (Gry-Pharma, Germany)
intraperitoneally 48 hours before engraftment with 5x10°
BM cells resuspended in sterile phosphate buffered saline
and injected intraperitoneally into SPF Tge26 recipients.

Antibodies

The following antibodies were used for cell purification:
antimouse CD45R (B220) Microbeads (clone RA3-6B2) and
antimouse CD8a (Ly-2) Microbeads (clone 53-6.7) (Miltenyi
Biotec, Bergisch Gladbach, Germany); PE conjugated anti-
mouse CD4 (clone GK1.5) and fluorescein isothiocyanate
(FITC) conjugated antimouse CD25 (IL-2 receptor o chain,
p55) (clone 7D4) were used for FACS sorting. FITC
conjugated antimouse CD4 (clone GK1.5) and PE conjugated
antimouse CD8a (Ly-2) (clone 53-6.7) were used for FACS
analysis after T cell depletion in BM and for T cell analysis in
sacrificed mice. FITC conjugated antimouse IL-10 (clone
JES5-16E3) and FITC conjugated antimouse TNF-o (clone
MP6-XT22) were used for intracellular cytokine staining.
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For cell stimulation, antimouse CD3 (CD3e chain, clone
145-2C11), and for IL-10 staining antimouse CD28 (clone
37.51), were used.

Purification of T cell subsets

For CD4°CD25" and CD4'CD25  cell transfer, cells were
isolated from mesenteric lymph nodes (MLN). Cells were
washed in RPMI 1640 (Gibco, Grand Island, New York, USA),
supplemented with 5% heat inactivated fetal bovine serum
(Greiner, Germany) and antibiotics/antimycotics (penicillin
G, streptomycin, and amphotericin B) (Sigma Chemical Co.,
St Louis, Missouri, USA), and resuspended in MACS buffer.
Cells were depleted of CD8" and B220" cells by negative
selection using antimouse coated Microbeads (Miltenyi
Biotec). The resulting CD4" enriched cells were stained with
PE conjugated anti-CD4 and FITC conjugated anti-CD25
monoclonal antibodies. Subsets of CD4" cells were generated
by two colour sorting on a BD FACS Vantage SE/DiVa Option.
All populations were >98% pure on reanalysis.

T cell transfer experiments
CD4"CD25" and CD4*'CD25 T cells were separately resus-
pended in phosphate buffered saline and injected intra-
peritoneally into BM=-Tge26 recipients. The injections were
done one week after BM transplantation. One group of mice
received CD4*CD25™ cells on the day of BM transplantation.
Mice were observed daily and weighed at least twice a
week. Mice showing clinical signs of severe disease were
sacrificed (4-5 weeks after BM transplantation). Healthy
recipients were sacrificed six weeks after BM transplantation.

Histological examination

Colons were fixed in buffered 5% formalin. Thick paraffin
embedded sections (2 pm) were stained with haematoxylin
and eosin. Inflammation was scored in a blinded fashion on a
scale from 0 to 4, representing no change to severe changes,
as previously described.*

Flow cytometry

Isolated unseparated MLN cells were stained with FITC
labelled antimouse CD4 and PE labelled antimouse CDS.
Intracellular staining for TNF-o and IL-10 was performed
using MLN cells five hours after stimulation with immobil-
ised anti-CD3 for TNF-o and in addition anti-CD28 for IL-10.
Brefeldin A (Sigma) was added two hours after culture
initiation. Cells were first stained with antimouse CD4 PE.
Before staining, cells were fixed with 2% paraformaldehyde
(Riedel-de Haen, Seelze, Germany) and permeabilised using
0.2% saponin (Sigma). T cells were analysed on a FACscan
flow cytometer (Becton Dickinson, Heidelberg, Germany)
using CellQuest software. Isotype matched control antibody
staining served as the zero value.

Cytokine assays

Transforming growth factor B (TGF-B), IL-10, IFN-y, and
TNF-o were measured in MLN cell culture supernatants
prepared as previously described®> and analysed using
standard ELISA techniques (R&D Systems, Germany).”
Concentrations of cytokines were established in duplicated
culture supernatants by comparison with standard curves.
Limits of detection are 7 pg/ml of TGF-f, 4.0 pg/ml of IL-10,
2 pg/ml of IFN-vy, and 5.1 pg/ml of TNF-a.

Statistical analysis

Parametric data were analysed by the Student ¢ test and non-
parametric data by the Mann-Whitney test. A p value of
<0.05 was considered significant.
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Flow cytometric analysis of expression of CD4*CD25" in mesenteric lymph node (MLN) cells of Tge26 mice transplanted with wild-type bone

marrow (BM:>T9I§26) (B) and of syngenic wild-type mice (A). Dot plots showing representative proportions of CD4"CD25" MLN cells in Tge26 mice
4-6 weeks affer bone marrow (BM) transplantation and in syngenic wild-type (WT) mice.

RESULTS

Regulatory CD4*CD25" cells are reduced in BM
transplanted Tge26 mice

We first investigated whether regulatory CD4"CD25" cells
were reduced in BM=-Tge26 mice. Therefore, MLN cells of
BM=Tge26 mice were analysed by flow cytometry in
comparison with wild-type mice 4-6 weeks after BM
transplantation. The percentage of MLN cells that expressed
both CD4 and CD25 was lower in Tge26 mice with colitis than
in healthy wild-type mice (colitic 1.5 (1.1)%; wild-type 2.6
(1.0)%; p<0,05) (fig 1).

CD4"CD25" transfer partially normalises the
proportion of MLN CD4* and CD8" cells

Analysis of the effect of Treg cells on the proportion of MLN
cells revealed that the regulatory CD25" cell fraction reduced
the percentage of CD4" cells in the MLN of reconstituted mice
in comparison with transplanted mice, with no additional cell
transfer (table 1). In contrast, CD4"CD25 cell transfer
slightly increased the fraction of CD4" cells (table 1).

The result of 1.7 (0.8)% for CD8" cells found in
transplanted mice confirms previous results (table 1).”*
Interestingly, the percentage of CD8 cells in MLN increased
significantly in response to CD4"CD25" cell transfer (table 1).
In contrast, CD4"CD25  cells did not change the CD8"
population (table 1) which remained as low as in the
BM=-Tge26 mice. Thus CD4"CD25" cell transfer normalised

the ratio of CD4" cells to CD8" cells while transfer of
CD47CD25 " cells substantially increased the CD4/CD8 MLN
cell ratio (table 1). Taken together, these data suggest that
regulatory CD4"CD25" cells reduce the pathogenic CD4* T
cells in BM=-Tge26 mice and correct imbalances of peripheral
T cell differentiation.

CD25" regulatory cells reduce TNF-a producing cells

dose dependently

In the BM=-Tge26 mouse model, CD4" cells operate via a Thl
cytokine profile with a predominance of TNF-a and IFN-y
production.” *” Therefore, we studied the effect of
CD4"CD25" cells on MLN Thl T cells in transplanted mice.
Transfer of 3x10°> MLN Treg cells significantly reduced TNF-o
producing CD4" MLN cells measured by FACS to as low as in
wild-type mice (fig 2A). In contrast, transfer of lower
numbers of CD4*CD25 cells (1.5x10° cells) or CD47CD25~
cells (3.0x10° cells) was unable to reduce TNF-o producing
CD4" T cells (fig 2A). After stimulation of MLN cells with
anti-CD3, MLN cells from CD4"CD25" T cell reconstituted
BM=-Tge26 recipients tended to produce lower amounts of
TNF-o and secreted significantly lower amounts of IFN-y
than MLN cells from BM transplanted CD4'CD25  cell
reconstituted mice (fig 2B, C). These results indicate that
Treg cells control intestinal inflammatory responses by
reducing Th1CD4" T cells. The regulatory effect of Treg cells
was dose dependent.

Table 1

Analysis of mesenteric lymph node (MLN) cells derived from wild-type (WT)
mice, from Tge26 mice after bone marrow (BM) transplant alone, or after bone marrow
transplant plus CD4'CD25" or CD4'CD25~ cell transfer

No of MLN No of CD4* No of CD8" Ratio CD4/CD8 cells
Mouse group  cells x10° cells x10° (% gated) cells x10° (% gated) (%gated)
WT 16.4 (8.27)*t 5.6 (1.9)% (39.9 (7.9))8 2.7 (1.6)t (17.5(1.6))F 2.07 (2.28)
BM 34.0 (22.0) 4.1 (1.4)1 (16.4 (4.4)F 0.4 (0.3) (1.7 (0.8))8 10.25 (9.65)
BM+CD25* 29.0 (14.4) 2.8(1.8)(10.8 (5.4))8 0.8 (0.5)8 (3.9 (2.5))8 3.5(2.77)
BM+CD25~ 23.0 (15.6) 4.4 (2.2) (20.0 (5.8)) 0.2 (0.3) (1.0 (0.92)) 22.0 (20.0)

BL/6xCBA/J)F1 mice (n=20).

$p<0.005 versus BM+CD4"CD25" Tge26 mice.
§p<0.005 versus BM+CD4*CD25 Tge26 mice.

*Mean (SEM) number of MLN cells, number (percentages) of MLN CD4" and CD8" T cells obtained from Tge26
mice transplanted with BM alone (n=12) or with CD4"CD25" cells (n=8) or CD4'CD25~ cells (n=12), from C57

1p<0.01 versus BM-Tge26mice, versus BM+CD4"CD25" Tge26 mice, and versus BM+CD4"CD25 ™ Tge26 mice.

p<0.05 versus BM+CD4"CD25" Tge26 mice and versus BM+CD4"CD25~ Tge26 mice.
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Figure 2 Intracytoplasmic staining of tumour necrosis factor o (TNF-o)
(A) and production of TNF-o (B) and inferferon y (IFN-y) (C) measured
by ELISA. (A) Summation of intracytoplasmic staining of TNF-o. is shown
on gated CD4" mesenteric lymph node (MLN) cells from wild-type (WT)
mice and from Tge26 mice transplanted with wild-type bone marrow
(BM=Tge26) that received 3x10° CD4*CD25* cells, 1.5x10°
CD4*CD25" cells, 3x10° CD4*CD25~ cells, or no T cells, analysed by
flow cytometry five hours after stimulation with immobilised anti-CD3
antibody. Mean (SEM) percentage of cytokine positive cells are shown.
*p<0.05 versus BM=Tge26 mice that received 1.5x10° CD4*CD25*
cells, versus BM=Tge26 mice that received 3x10° CD4"CD25 cells,
and versus BM=Tge26 mice. (B) TNF-o. and (C) IFN-y in supernatants of
MLIN cell cultures three days after stimulation with anti-CD3 antibody.
Values represent means (SEM) in supernatants of MLN cell cultures from
BM=Tge26 mice that received 3x10° CD4"CD25" cells or 3x10°
CD4"CD25™ cells.

CD4"CD25" cells prevent colitis in BM transplanted
Tge26 mice

To investigate the regulatory activity of CD4"CD25" cells in
the prevention of colitis in Tge26 mice, we analysed the colon
of BM transplanted mice (control) in comparison with three
groups of mice which in addition to BM received 3x10°
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Figure 3 Weight loss. Body weight of Tge26 mice transplanted with
wild-type bone marrow (BM=Tge26) that received 3x10° CD4*CD25*
cells, 3x10° CD4*CD25~ cells, or no cells (control group) was
measured twice per week and was divided by starting body weight (on
the day of bone marrow transplantation) to calculate the percentage of
body weight at each time point. Body weights were plotted as mean
(SEM).

CD4"CD25" cells, 1.5x10° CD4*CD25% cells, or 3x10’
CD4*CD25 " cells one week after transplantation. This time
point was chosen to eliminate the chance that Treg cells given
at the same time as BM transplant prevented engraftment of
BM in the recipient. Transfer of 3x10° CD4*CD25" cells
inhibited weight loss (fig 3) and clinical signs of colitis in
recipients while 1.5x10> CD4"CD25" cells did not prevent
weight loss (data not shown). Results were identical when
CD4"CD25" cells were transferred on the same day as BM
(data not shown). In contrast, mice reconstituted with
CD4*CD25" cells started to lose weight two weeks after BM
transplantation (fig 3) and showed clinical signs of wasting
and colitis (for example, piloerection, hunching, bloody
diarrhoea). Within this group, two mice died two weeks
after BM transplantation. The control group of only
BM="Tge26 mice started to show clinical signs of inflamma-
tion, including weight loss four weeks after transplantation,
confirming previous results (fig 3).”
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Figure 4 Blinded histological scores of the colon of Tge26 mice. Tge26
recipients were transplanted with bone marrow from normal mice and
one week later injected with 3x10° CD4"CD25" cells, 1.5x10°
CD4"CD25" cells, or 3x10% CDACD25 ™ cells or did not receive T cells.
Mice were killed 5-6 weeks later. Inflammation was scored on a scale of
0-4 (see materials and methods) and results are expressed as mean
(SEM). *p<<0.05 versus dll other groups.
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F ?Fure 5 Photomicrographs of the colons of Tge26 mice five weeks after bone marrow (BM) transplant or after transplantation of BM plus transfer of
different T cell subsets. Representative haematoxylin-eosin stained sections from the distal colon are shown (magnification 200x). (A) Normal colon

from a non-transplanted specific rarhogen free (SPF) Tge26 mouse. (B) Severe colitis in a SPF BM transplanted Tge26 mouse demonstrating crypt

hyperplasia, decreased goblet cel

s, pronounced lamina propria lymphocyftic infiltration, and crypt abscesses. (C) No signs of inflammation in a Tge26

mouse that received BM plus 3 x10° CDA"CD25" cells. (D) Active colitis in a BM transplanted Tge26 mouse which was reconstituted with only 1.5x10°
CD4*CD25" cells. (E) Severe colitis in a SPF Tge26 mouse that was injected with BM plus 3x10° CD4"CD25™ cells. Extensive lamina propria cellular

infiltration, crypt hyperplasia, and decreased goblet cells are evident.

Histopathological analysis of the colon from untreated
BM="Tge26 mice showed inflammation in all parts, with the
most severe inflammation in the distal colon and caecum.
This was characterised by leucocyte infiltration in the mucosa
and submucosa, prominent epithelial hyperplasia, loss of
goblet cells, occasional crypt abscesses, and ulcerations
(distal colon score 2.6 (0.5)) (fig 4, 5B). Transfer of 3x10°
CD4*CD25" cells led to an almost normal colon architecture
with only a mild increase in leucocyte infiltration but no
other signs of colitis (distal colon score 0.3 (0.3)) (fig 4, 5C).
Lower transfer numbers of CD4"CD25" cells failed to prevent
colitis (distal colon score 2.8 (0.4)) (fig 4, 5D). CD4"CD25~
cell transfer did not prevent colitis (distal colon score 2.7
(0.3)) (fig 4, SE). Thus CD4"CD25" cells prevented colitis in
the BM=Tge26 model while CD4"CD25" cells had no such
regulatory function.

CD25" Treg cells increase the secretion of TGF-p by
MLN cells

Others have shown that Treg cell action depends at least in
part on the secretion of anti-inflammatory cytokines.**”" To
gain further inside into the mechanism by which CD25" cells
exert their regulatory potential in the Tge26 intestine, we
examined the production of TGF-B and IL-10 in MLN cells
after stimulation with anti-CD3 and anti-CD28, respectively.
Significantly higher levels of TGF-B were detected in super-
natants of MLN cell cultures from CD4"CD25" cell recon-
stituted BM=-Tge26 mice in comparison with CD4"CD25"
cell recipients (fig 6A). Intracytoplasmic staining showed
that the frequency of IL-10 producing MLN CD4" cells in Treg
cell transferred Tge26 recipients was not increased
(CD4*CD25" mice: 0.2 (0.29)%; CD4'CD25  mice: 0.19
(0.14)%; wild-type mice: 0.2 (0.56)%). There was no
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Figure 6 Cytokine production detected in supernatants of mesenteric
lymph node (MLN) cell cultures three days after stimulation with anti-CD3
antibody for transforming growth factor p (TGF-p) (A) and anti-CD28
antibody for interleukin 10 (IL-10) (B). TGF-B and IL-10 were measured
by ELISA. Values represent means (SEM) per CD4* MLN cells in
supernatants of MLN cell cultures from Tge26 mice reconstituted with
bone marrow (BM) plus 3x10° CD4*CD25" cells or BM plus 3x10°
CD4"CD25 cells. *p<0.05 versus Tge26 mice reconstituted with BM
plus CD4*CD25™ cells.

convincing trend towards higher IL-10 secretion by MLN cells
from CD4"CD25" mice in comparison with CD4*CD25~ mice
(fig 6B). These results suggest that CD4*CD25" cells down-
regulate the immune response predominantly by production
of TGF-p.

DISCUSSION

It is unclear whether the development of colitis in
BM="Tge26 mice results from failure of negative selection
of aggressive T cells in the abnormal thymus or from
insufficient production of thymic dependent regulatory T
cells. Our findings provide strong evidence for defective
function of regulatory CD4*CD25" T cells in the pathogenesis
of bowel inflammation in this model. Firstly, CD25" expres-
sion on CD4" cells in the MLN was significantly lower in
BM=Tge26 mice with colitis than in healthy wild-type
animals. Interestingly, our findings correspond to recent
results in IBD patients in whom intestinal CD4"CD25" cells
were decreased in active disease.”’ Moreover, co-administra-
tion of CD4*CD25" Treg cells from MLN of normal mice
clearly protected against wasting and colitis in the
BM=Tge26 model. In contrast, CD4"CD25  cells had no
immunosuppressive effect, indicating that the regulatory
function lies within the CD4"CD25" T cell subset.

Protection of colitis by CD4"CD25" cells has been demon-
strated in SCID and Rag mice.”””* However, the immuno-
logical mechanisms of colitis in these models differ from
the BM=Tge26 colitis model. Transfer of the mnaive
CD4"CD45RB™E" T cell subset from wild-type mice into
SCID/Rag mice induces colitis in the recipients. This can be
prevented by co-injection of the antigen experienced subset
of CD4*CD45RB™" T cells.' The CD25" population comprises
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the inhibitory subset of CD4"CD45RB'" T cells.” In contrast,
colitis in Tge26 mice is driven by CD4*CD45RB™" cells,”
and CD45RB™" cells from colitic Tge26 mice could transfer
severe colitis to untransplanted Tge26 recipients.”’ Prevention
of colitis by CD4*CD25" cells in BM=-Tge26 mice demon-
strates that pathogenic responses by not only naive
CD4"CD45RB™" cells as in the SCID mouse model but also
by activated colitis conferring CD4*CD45RB'™ cells are
suppressed by CD4"CD25" T cells. Adding to the complexity,
Asseman ef al reported that transfer of CD4"CD45RB™" cells
into SCID mice can also induce colitis.”> However, colitis
development was still different from the Tge26 model
because it developed only when anti-IL-10R monoclonal
antibody was co-administered. Furthermore, the ability of
CD4"CD45RB™" cells to induce inflammation was signifi-
cantly reduced when these cells were isolated from germ free
mice. In contrast, in the Tge26 model, the colitis inducing
CD4"CD45RB"" cells are bacteria specific without further
manipulation and have the functional capacity to induce
colitis when transferred to specific pathogenic free recipients
even when isolated from germ free BM=-Tge26 mice.” Based
on our present study we speculate that the development of
bacteria specific T cells may be due to the aberrant thymic
selection of regulatory cells.

Differences in Treg cell mediated protection of colitis in the
SCID mouse versus the Tge26 mouse is also visible in the
number of Treg cells necessary to prevent inflammation.
While Read and colleagues® reported that 5x10* CD4*CD25"
cells were sufficient to prevent colitis in SCID mice, we had to
transfer a minimum of 3 x10° cells into BM=-Tge26 mice for
protection. In the Tge26 mouse a high number of very
activated T cells develop after bone marrow transplantation.
Thus differences in the number and also in the proinflam-
matory potential of colitic T cells in the two models might be
responsible for the different Treg cell numbers necessary for
the effects observed.

Our studies examined the mechanisms by which
CD4°CD25" T cells prevented colitis. Protection in our
experiments was seen as early as four weeks after cell
transfer in contrast with the SCID mouse model in which
complete protection became manifest 10 weeks after cell
transfer.” Delayed protection in SCID mice was interpreted as
a sign that Treg cells suppress the inflammatory response via
an indirect mechanism.”” Foussat et al proposed that Treg cells
function indirectly by enhancing differentiation of IL-10
secreting T cells.” Asseman et al suggested that IL-10
secretion by CD4"CD25" T cells is not an absolute require-
ment for inhibition of colitis in the SCID model because
CD4*CD25" cells from IL-10—/— mice inhibited colitis.”” We
detected only minimal and almost identical IL-10 on
intracellular staining of MLN CD4" cells from BM=-Tge26
mice and BM=-Tge26 reconstituted with either CD425% or
CD4725" cells. There was no convincing trend towards higher
IL-10 levels in the supernatants of MLN cell cultures from
BM=Tge26 mice after reconstitution with CD4*CD25" T cells
in comparison with mice that received CD4"CD25~ cells. A
limitation of our study is that we did not transfer CD4*CD25*
cells from IL-10 deficient mice or neutralised IL-10 by a
blocking antibody. Nevertheless, our data do not suggest a
major role for IL-10 as the effector mechanism of protection
conferred by CD4*CD25" cells in this model.

TGEF-B has been shown to be the key immunosuppressive
cytokine in CD4"CD25" regulatory cells in various disease
models.” *” ** Recently, it was demonstrated that TGF-B also
converted CD4"CD25 ™ naive T cells to CD4"CD25" Treg cells.”
These cells expressed the transcription factor Foxp3 which is
associated with the development of Treg cells.* *' In vivo data
demonstrated that Foxp3 expressing Treg cells prevented
colitis in SCID mice.”” In our experiments, TGF-B was
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secreted in significantly higher amounts by MLN cells from
BM=-Tge26 mice that had received CD4"CD25" cells com-
pared with those receiving either BM or BM plus CD4"CD25
cells. While this suggests that TGF-B is involved in the
CD4"CD25" cell mediated prevention of colitis in the Tge26
colitis model, we did not perform experiments with TGF-f
blocking antibodies.

Protection against colitis by Treg cells was dose dependent
in our model. Transfer of at least 3x10° Treg cells was
necessary to prevent intestinal inflammation. Lower Treg cell
transfer numbers led to a higher proportion of activated TNF-a
producing T cells in recipients. Moreover, MLN T cells from
Treg cell reconstituted mice secreted lower amounts of TNF-o
and IFN-y on stimulation than T cells from CD4'CD25"
reconstituted mice. Taken together, this suggests that down-
regulation of activated T cells is one of the immunosuppressive
mechanisms of Treg cells in the Tge26 colitis model.

In accordance with previous reports,” analysis of MLN cells
in BM=Tge26 mice demonstrated that most of the T cells
were CD4" while CD8" T cells were very rare, thereby
increasing the ratio of CD4" to CD8" T cells several fold in
comparison with wild-type mice. Flow cytometry of MLN
from BM=Tge26 mice reconstituted with CD4"CD25" cells
revealed a much lower number and percentage of CD4™ cells
in comparison with mice reconstituted with CD4*CD25 "~ cells
and with BM=-Tge26 mice without additional cell transfer.
The number and percentage of CD8" cells in MLN increased
in response to transfer of CD4"CD25" Treg cells while it
remained low in CD4"CD25" treated mice. The effect on the
peripheral T cell pool was also expressed in the ratio CD4™ to
CD8" cells, which was similar in Treg cell reconstituted and
wild-type mice but remained largely increased in mice
reconstituted with CD4"CD25 " cells. Thus our results provide
evidence that the aberrant proportion of peripheral T cells in
BM=-Tge26 mice is corrected by CD4*CD25" cells.

Our observation that Treg cells regulate the development
of CD8" cells indicates an as yet undefined role for Treg
cells in thymus dependent T cell development. Pettersson
and colleagues® showed that CD8" T cells induced
CD4CD8*CD25" thymocytes. These double positive thymo-
cytes are absent in BM=-Tge26 mice.* We speculate that Treg
cell induced CD8" cells act in a positive loop inducing the
development of double positive thymocytes, thereby promot-
ing the normalisation of the Tge26 thymic architecture and T
cell development.

In summary, our experiments show that CD4*CD25" T cells
play an important role in the prevention of intestinal
inflammation in the Tge26 colitis model. CD4*CD25" T cell
transfer resulted in a substantial modification of the MLN T
lymphocyte subsets. This may identify a possible new
mechanism by which Treg cells induce immune suppression
in experimental colitis.
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