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Abstract

Characterization of the epigenome promises to yield the functional elements buried in the human 

genome sequence, thus helping to annotate non-coding DNA polymorphisms with regulatory 

functions. Here, we develop two novel strategies to combine epigenomic data with transcriptomic 

profiles in humans or mice to prioritize potential candidate SNPs associated with lipid levels by 

genome-wide association study (GWAS). First, after confirming that lipid-associated loci that are 

also expression quantitative trait loci (eQTL) in human livers are enriched for ENCODE 

regulatory marks in the human hepatocellular HepG2 cell line, we prioritize candidate SNPs based 

on the number of these marks that overlap the variant position. This method recognized the known 

SORT1 rs12740374 regulatory SNP associated with LDL-cholesterol, and highlighted candidate 

functional SNPs at 15 additional lipid loci. In the second strategy, we combine ENCODE 

chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) data 

and liver expression datasets from knockout mice lacking specific transcription factors. This 

approach identified SNPs in specific transcription factor binding sites that are located near target 

genes of these transcription factors. We show that FOXA2 transcription factor binding sites are 

enriched at lipid-associated loci and experimentally validate that alleles of one such proxy SNP 

located near the FOXA2 target gene BIRC5 show allelic differences in FOXA2-DNA binding and 
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enhancer activity. These methods can be used to generate testable hypotheses for many non-

coding SNPs associated with complex diseases or traits.
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Introduction

Genome-wide association studies (GWAS) have identified thousands of robust associations 

between single nucleotide polymorphisms (SNPs) and complex human diseases and traits 

(Hindorff et al. 2009). These SNPs are often in linkage disequilibrium (LD) with many other 

known and unknown DNA sequence variants and are located within non-coding regions of 

the human genome. For these two reasons, at most GWAS loci it has been difficult to 

identify the genes and variants that are responsible for phenotypic variation. The 1000 

Genomes Project has generated an extensive catalogue of genetic variation across several 

human populations, partly addressing the first challenge in GWAS fine-mapping projects 

(1000 Genomes Project Consortium 2010; 1000 Genomes Project Consortium 2012). As for 

the second challenge, investigators from the Encyclopedia of DNA Elements (ENCODE) 

Project recently summarized results from comprehensive whole-genome analyses of 

transcription, transcription factor association, chromatin structure, and histone modification, 

allowing for a functional annotation of non-coding DNA variants (Dunham et al. 2012). 

Furthermore, the ENCODE data might be useful to pinpoint functional regulatory variants 

from strongly correlated, but not functional, LD proxies. Many groups have already utilized 

their own epigenomic datasets or ENCODE data to show enrichment of chromatin marks at 

GWAS loci, to identify relevant tissues for experimental design or to prioritize candidate 

functional genes and DNA sequence variants (Jia et al. 2009; Pomerantz et al. 2009; Ernst et 

al. 2011; Cowper-Sal lari et al. 2012; Dunham et al. 2012; Maurano et al. 2012; Schaub et 

al. 2012; Zhang et al. 2012; Karczewski et al. 2013; Trynka et al. 2013).

Additional work is needed to refine these existing methods. We also need to develop new 

tools when there is no evidence in human tissues that the associated non-coding SNPs 

control gene expression, that is when the SNPs are not expression quantitative trait loci 

(eQTLs). In an effort to broaden the application of this approach by the community, we 

further extended the use of epigenomic data to prioritize functional candidate SNPs by 

developing two novel approaches, and we applied these approaches to 95 loci associated 

with lipid levels in humans (Teslovich et al. 2010). We were particularly interested in testing 

if gene expression datasets from relevant knockout mouse models could help prioritize 

candidate functional genes and variants at GWAS loci. Such a strategy could have broad 

implications as it may offer an alternative when there is no eQTL evidence or the human 

tissues are not readily accessible for transcriptomic studies. Our results demonstrate that 

combining human genetic, epigenomic and mouse expression data can provide additional 

fine-mapping resolution at GWAS loci. As a proof-of-principle, we functionally tested and 

validated a variant in LD with a lipid sentinel SNP that interferes with the binding of the 

FOXA transcription factors and is located near a FOXA2 transcriptional target gene as 
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determined by the transcriptomic characterization of Foxa2−/− mouse livers. Our two 

methods, applied individually or together, should be broadly applicable to other human 

complex traits and diseases.

Results

Enrichment analysis

For this study, we obtained from the ENCODE Project all DNAseI hypersensitive sites 

(DHS) and ChIP-seq peaks from HepG2, which are hepatoblastoma cells that have been 

extensively used to study lipid metabolism. For comparison, we also analyzed the same data 

in the three tier 1 ENCODE cell lines: B-lymphoblastoid cells GM12878, erythroleukemia 

cells K562 and human embryonic stem cells H1-hESC. In this article, we use the term 

“epigenomic annotation” to refer to any DHS or ChIP-seq peak reported by the ENCODE 

Project in these four cell lines. To quantify the overlap between ENCODE epigenomic 

annotations that mark regulatory DNA sequences and individual SNPs at GWAS loci, we 

counted epigenomic annotations in each cell line that overlap the SNP and assessed 

significance using a simple enrichment analysis framework. We considered variants in LD 

(r2≥0.8, European-ancestry individuals from the 1000 Genomes Project) with the GWAS 

sentinel SNPs and then used 5,000 matched sets of markers to assess the statistical 

significance of the enrichment (Materials and Methods and Supplementary Figure 1).

Applying this approach to 95 lipid loci, we found enrichment of DHS and most histone 

marks associated with transcription regulation. The enrichment was stronger in HepG2 cells 

than in the three other cell lines analyzed: 70% of marks (7 of 10) had enrichment P<0.0002 

for HepG2, whereas the corresponding proportions for GM12878, K562 and H1-hESC were 

20%, 50% and 20%, respectively (Supplementary Table 1). This result is consistent with 

previous reports that used similar or complementary strategies, and emphasizes that most 

functional lipid variants identified by GWAS may exert their effect on phenotypic variation 

through the regulation of gene expression (Jia et al. 2009; Pomerantz et al. 2009; Ernst et al. 

2011; Cowper-Sal lari et al. 2012; Dunham et al. 2012; Maurano et al. 2012; Schaub et al. 

2012; Zhang et al. 2012; Karczewski et al. 2013; Trynka et al. 2013).

Integrating human eQTL data

A large meta-analysis of genome-wide association results for lipid levels highlighted 

variants at 24 of 95 lipid loci that are eQTL in human liver at P<5×10−8 (Schadt et al. 2008; 

Teslovich et al. 2010). Given our enrichment results, we reasoned that the specific causal 

variant(s) at each of these eQTL should be either the sentinel SNP itself or a marker in 

strong LD with it, and marked by epigenomic annotations in HepG2 cells. Because the 

presence or absence of epigenomic annotations at markers within the same locus should be 

independent of LD between them, ENCODE data could help prioritize functional variants 

even if they are perfectly correlated (a limitation of the genetic approach in fine-mapping 

GWAS loci).

The simplest strategy to combine epigenomic annotations and DNA polymorphisms is to 

count the number of DHS and ChIP-seq peaks that physically map in the human genome at 
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the same position as DNA polymorphisms. Our hypothesis is that the best functional 

candidate variant at an eQTL lipid locus should have the highest number of overlaps with 

epigenomic annotations in HepG2, thus allowing discrimination between variants in strong 

LD. Obviously, this one causal variant-one locus hypothesis would not be valid if there is 

evidence of indepencent association signals or in the presence of several causal variants in 

strong LD, as recently proposed in the genomic context of super-enhancers (Hnisz et al. 

2013; Parker et al. 2013; Corradin et al. 2014). However, under the several causal variants-

one locus model, our framework might still identify at least one of the potential functional 

variants. For this analysis, we used all DHS and histone mark peaks; we also included ChIP-

seq data for all available transcription factors since most of them were examined specifically 

in hepatocytes or are general activators or repressors of transcription without a clear cell- or 

biological pathway-specificity. Importantly, epigenomic annotations are biologically 

correlated as many mark the same chromatin state (e.g. promoters, enhancers)(Gerstein et al. 

2012). However, they also each provide experimental evidence that a genomic region is 

transcriptionally important. In addition, the accumulation of DHS and ChIP-seq peaks from 

different experiments (and for ENCODE, different laboratories) at a given position in the 

genome decreases the likelihood of false positives. For these reasons, we treated all DHS, 

histone marks and transcription factors ChIP-seq data from ENCODE HepG2 independently 

(including technical replicates when available) and used them to annotate SNPs. Merging 

technical replicates to only analyze intersecting peaks had no significant impact on the 

results.

Results from this analysis are summarized in Table 1. At 19 of the 24 eQTL, the variant with 

the highest number of overlaps with ENCODE epigenomic annotations in HepG2 was 

different than the reported sentinel lipid SNP. The candidate SNPs prioritized by the 

ENCODE data were also on average closer, although not significantly, to the transcription 

start site(s) of the eQTL gene(s) than the sentinel lipid SNPs (78±82 vs. 88±93 kilobases 

(kb)), but still sufficiently far to suggest an influence on enhancer as opposed to promoter 

activities. We performed a receiver operating characteristic (ROC) curve analysis to 

determine the number of overlapping epigenomic annotations that maximize both sensitivity 

and specificity of finding candidate SNPs at eQTL. We compared the number of epigenomic 

annotations for each SNP within the 24 eQTL with the number for each SNP in the 71 non-

eQTL, focusing on the SNP with the highest number of epigenomic annotations in each 

locus. At a threshold of 16 ovelapping epigenomic annotations, the area under the curve 

(AUC) is 0.618, the sensitivity 67% and the specificity 61%. If a SNP has ≥16 epigenomic 

annotations in HepG2, it is more likely to be located at an eQTL in liver (Fisher’s exact 

P=0.03, odds ratio and 95% confidence interval=3.1 [1.1–9.6]). Using a threshold of 16 

epigenomic annotations, we found a functional candidate SNP for 16 of the 24 lipid and 

gene expression levels loci (bold in Table 1). For each of the 16 loci, we list all SNPs in 

strong LD (r2≥0.8) that overlap with ≥16 epigenomic annotations in Supplementary Table 2.

As a positive control, we evaluated the priority of rs12740374, a SNP near SORT1 

previously proposed to be a causal lipid variant at this locus by interfering with binding of 

C/EBP transcription factors (Musunuru et al. 2010). At the SORT1 locus, we identified 

rs12740374 as the most likely functional regulatory variant based on 44 epigenomic 
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annotation overlaps in comparison with 23 overlaps for the second most likely SNP 

(empirical P=0.048, calculated using the two variants with the highest number of 

annotations in each of the 5,000 matched sets of 95 SNPs) and 13 overlaps for rs629301, the 

sentinel lipid SNP (Figure 1A). Another promising example is at the NFATC3 locus. The 

sentinel lipid SNP rs16942887 that is associated with NFATC3 expression levels in human 

livers is located 191 kb upstream of its transcription start site. The highest priority candidate 

SNP at the locus in our analysis, rs7188085, has 81 epigenomic annotation overlaps in 

HepG2 (vs. 20 for rs16942887) and is located only 5.3 kb upstream of NFATC3 (Figure 1B). 

This variant and many others presented in Table 1 are strong functional candidates.

Combining ENCODE and mouse transcriptomic data

Despite a very strong enrichment of epigenomic annotations correlated with transcriptional 

regulation (Supplementary Table 2), only 36% of the 95 loci associated with lipid levels in 

humans were reported to harbor eQTL variants (Teslovich et al. 2010). Many factors could 

explain this observation: transcriptomic profiling was performed in the wrong tissues, the 

genotypic effect on gene expression was too weak to be detected, the transcripts of interest 

were not measured or were undetectable, etc.

One alternative to gene profiling in human samples is to use the mouse, where the relevant 

tissues are readily accessible, and assume that transcription factor homologs will target a 

large set of overlapping genes in both species. In particular, we tested the hypothesis that the 

disruption of specific transcription factors in mouse livers could help identify functional 

lipid genes and variants. First, we performed an enrichment analysis of all the ENCODE 

HepG2 ChIP-seq transcription factor data over the sentinel and correlated SNPs at the 95 

lipid loci and identified ten transcription factors that preferentially bind to these regions: 
CEBPB, ELF1, FOXA1, FOXA2, HEY1, HNF4A, HNF4G, MBD4, MYBL2, NFIC 

(Supplementary Table 3). This enrichment was reproducible across technical replicates. 

These transcription factors may define regulatory networks that are important to control 

lipid metabolism in humans. Of particular interest, we saw an enrichment for three families 

of transcription factors expressed in the liver and previously implicated in lipid metabolism: 

CEBPB, FOXA1 and FOXA2, and HNF4A. Second, we identified publicly available 

transcriptomic profiles in livers of control mice and liver-specific knockout animals for 

Foxa1 and Foxa2 (Bochkis et al. 2012), and Hnf4a (Bonzo et al. 2012); unfortunately, such 

data was not available for Cebpb. For each of these conditional gene knockout strains, we 

retrieved the list of mouse genes whose expression in liver was significantly changed when 

compared to control animals: 385, 1009 and 1179 genes for Foxa1, Foxa2 and Hnf4a, 

respectively (Materials and Methods). Third, we searched if any of the human homologs of 

these target genes were located within an arbitrary window defined as 250 kb on each side 

of the 95 sentinel lipid SNPs. For FOXA2, we found ten target genes located within nine of 

the 95 lipid loci; all but one of these loci contain at least one FOXA2 ChIP-seq peak in 

HepG2 (Table 2 and Supplementary Table 3). Results were similarly encouraging for 

HNF4A: there are 20 transcriptional target genes located at 17 of the 95 lipid loci, and for 14 

of these 17 loci, there is at least one annotated HNF4A ChIP-seq peak in HepG2 (Table 2 

and Supplementary Table 3). Because we demonstrated a strong statistical enrichment of 

FOXA2 and HNF4A ChIP-seq peaks at the human lipid loci, and because we focus our 
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query on genes modulated by the disruption of these transcription factors in mouse livers, 

we argue that the genes listed in Table 2 are strong biological candidates for influencing 

lipid levels in humans. Our screen re-identified genes previously implicated in lipid 

metabolism, such as SORT1 and GALNT2, but also other genes with unanticipated functions 

in regulating lipid levels (Supplementary Table 3)(Musunuru et al. 2010; Holleboom et al. 

2011). There were no FOXA1 target genes among these genomic regions, perhaps consistent 

with the previous finding that FOXA1 is preeminently involved in cell cycle regulation 

(Bochkis et al. 2012).

Finding and characterizing potential functional variants

Our analysis presented in Table 2 also allowed us to try to predict functional variants. 

Indeed, if a sentinel lipid SNP (or an LD proxy) overlaps a FOXA2 or HNF4A ChIP-seq 

peak in HepG2 and disrupts a predicted binding site for these transcription factors, it is 

likely to be biologically relevant. We queried the HaploReg database and found that four 

SNPs disrupted binding motifs for FOXA2 and HNF4A (Table 2: rs3776702 and rs4969182 

for FOXA2; rs838882 and rs12185764 for HNF4A)(Ward and Kellis 2012). Many of the loci 

listed in Table 2 do not contain SNPs that disrupt predicted FOXA2 or HNF4A binding 

sites. This is consistent with results from the ENCODE Project that showed that ChIP-seq 

can identify numerous and robust transcription factor peaks with no consensus binding motif 

in the underlying DNA sequence (Neph et al. 2012; Whitfield et al. 2012). In the absence of 

canonical binding sites, it is impossible to predict the effect of SNPs on transcription factor 

binding; this requires functional validation. Therefore, many of the variants listed in Table 2 

might be functional even if they reside in FOXA2 or HNF4A ChiP-seq peaks that do not 

contain canonical binding motifs.

Finally, we sought to functionally validate one of our predictions. We selected rs4969182, 

which is in LD with the sentinel lipid SNP rs4129767 (r2=0.96), overlaps with a FOXA2 

peak in HepG2 and is located 171 kb away from the apoptosis-related gene BIRC5, a 

transcriptional target of Foxa2 in mouse livers (Table 2). rs4969182 is a C/T bi-allelic 

variant, and the C-allele disrupts the motif recognized by FOXA transcription factors. Using 

reporter assays in HepG2 cells, we showed that the DNA sequence surrounding rs4969182 

has enhancer activity, and that the T-allele recognized by FOXA2 shows significantly 

increased transcriptional activity compared to the C-allele (Figure 2A, P=2.6×10−5 and 

P=5.0×10−6 in the forward and reverse orientation, respectively). Next, using electrophoretic 

mobility shift assays (EMSA), we tested if alleles of rs4969182 differentially affected DNA 

binding to nuclear proteins. Our results showed that proteins from HepG2 nuclear extracts 

bind probes containing either the C- or the T-allele, but that binding is stronger for the T-

allele-containing probe (Figure 2B). Competition of T-allele-containing labeled probe with 

excess unlabeled probe with the T-allele more efficiently competed away allele-specific 

bands than excess unlabeled probe with the C-allele, providing support for allelic differences 

in protein-DNA binding (Figure 2B). Antibodies against FOXA1 and FOXA2 appear to 

weaken the probe-FOXA interaction but did not supershift the protein-probe complexes 

(Figure 2B). Other examples exist of EMSA experiments in which antibodies appear to 

impair binding without causing a clear supershift of the complex (Musunuru et al. 2010).
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Discussion

Characterization of the epigenome by the ENCODE Project provides a framework to 

functionally annotate non-coding SNPs identified by GWAS. Based on the observation that 

GWAS SNPs are enriched for chromatin marks linked to transcriptional regulation, we 

designed two novel strategies that integrate gene expression profiling with epigenomic 

characterization. We used SNPs associated with lipid levels as a test set because the large 

number allows us to derive meaningful statistics and also because relevant cells and tissues 

are characterized. First, we showed that at eQTL loci, simply counting the number of 

epigenomic annotations that overlap with associated SNPs can improve fine-mapping 

resolution. This is particularly useful to distinguish markers in strong LD, such as SNPs at 

the SORT1 locus (Figure 1A). Second, in the absence of human eQTL information, or to 

complement such datasets, we used gene expression profiling in the mouse to prioritize 

candidate functional genes, and subsequently candidate functional variants. We reasoned 

that if a transcription factor binds preferentially at lipid loci (ENCODE ChIP-seq data), 

disruption of the mouse homolog could identify target genes that may be important for lipid 

levels variation in humans. Indeed, although it is known that transcription factors from 

different species bind different DNA motifs (Schmidt et al. 2010), the transcriptional target 

genes are often conserved across species (Boj et al. 2009; Chan et al. 2009). This strategy 

allowed us to highlight the role of the FOXA2 and HNF4A transcriptional networks in lipid 

metabolism. Importantly, we validated one of our predictions experimentally: a lipid sentinel 

SNP located 171 kb from BIRC5, a FOXA2 target gene in the mouse liver, is in LD with a 

marker that interferes with FOXA2 binding and modulates the enhancer activity of the DNA 

sequence (Figure 2). We did not validate whether BIRC5 plays a role in lipid metabolism; 

there are other potential candidate genes at the locus, although none are FOXA2 target genes 

based on the mouse data. Other candidates include PGS1, a gene involved in the 

biosynthesis of the anionic phospholipids phosphatidylglycerol and cardiolipin.

Fine-mapping may sometimes point to a candidate functional gene that will be different than 

what would be expected based on the known biology of the genes located within the locus. 

We have such an example in our analysis of eQTL data from human livers. rs16942887 is 

associated with HDL-cholesterol levels in humans (Teslovich et al. 2010), and is located 46 

kb from LCAT, which encodes an important enzyme involved in cholesterol transport. 

Whereas common knowledge would suggest LCAT as the likeliest causal gene at the locus, 

genotypes at rs1692887 are associated with expression levels of NFATC3 in human livers, a 

gene located 191 kb downstream. Furthermore, epigenomic characterization of this locus in 

HepG2 highlights rs7188085, a SNP in strong LD with rs1692887 (r2=0.85) and located 

only 5.3 kb from the NFATC3 transcription start site (Figure 1B). NFATC3 encodes a gene 

involved in immune responses. LCAT is critical for lipid metabolism in humans, but there is 

currently no functional evidence that suggests that the SNPs at this locus mediate their effect 

on HDL-C levels through LCAT itself, NFATC3, or both.

Several studies have proposed to use epigenomic annotations to prioritize DNA sequence 

variants at GWAS loci for functional testing (Jia et al. 2009; Pomerantz et al. 2009; Ernst et 

al. 2011; Cowper-Sal lari et al. 2012; Dunham et al. 2012; Maurano et al. 2012; Schaub et 

al. 2012; Zhang et al. 2012; Karczewski et al. 2013; Trynka et al. 2013). We extended these 
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methods and also developed a novel paradigm by proposing to integrate mouse 

transcriptomic data as an additional filter to prioritize candidate functional variants and 

genes. As with the other bioinformatic methods, ours also have limitations that are inherent 

to the type of data available. For instance, genomic regions that are difficult to sequence 

using next-generation DNA sequencers are less likely to be annotated by the ENCODE 

Project and might thus escape detection using such methods. Equally important is the fact 

that most epigenomic marks catalogued by the ENCODE Project are associated with 

transcriptional activation. Thus, functional genetic variants that relieve transcriptional 

repression are less likely to be found using these strategies. Finally, if the transcription 

factors tested by ChIP-seq do not have a mouse ortholog (unlikely since 99% of human 

genes have a mouse equivalent (Mouse Genome Sequencing et al. 2002)) or if the mouse 

knockout models do not exist, our second strategy is not applicable.

In conclusion, we presented two simple strategies that combine epigenomic and 

transcriptomic profiling to prioritize functional genes and variants at GWAS loci. These 

methods should be applicable to prioritize rare genetic variants as well because they rely on 

the annotation of physical positions and are independent of allele frequency. The predictions 

from our approaches, which are statistically supported through enrichment analysis, are 

readily testable in the laboratory. These methods should be applicable to characterize genetic 

markers associated with many complex diseases and traits, and in particular those related to 

immune or hematological phenotypes as relevant tissues are easier to access. Combining 

human genetic findings with epigenomic characterization and gene expression data from 

mouse knockouts offer an alternative solution, in particular when human tissues are not 

accessible. Finally, as the repertoire of epigenomic annotations in various human tissues 

continue to expand, we anticipate that our strategies will become amenable to most human 

complex phenotypes.

Methods

ENCODE enrichment analysis

The enrichment pipeline strategy is summarized graphically in Supplementary Figure 1. For 

each epigenomic annotation, peak coordinates were identified using software developed for 

the ENCODE Project (http://encodeproject.org/ENCODE/encodeTools.html). We obtained 

epigenomic annotations in the form of peak calls mapped onto the human genome (build 

hg19) directly from the ENCODE Project website (accessed June 2012). In total, we 

considered in our analysis 116, 147, 111, 177 different epigenomic annotations files for 

HepG2, GM12878, H1-hESC and K562, respectively. To quantify the enrichment of SNPs 

associated with a specific complex disease or trait, we developed a four step strategy: First, 

we generated sets of variants (with replacement) that are matched with the sentinel variants 

based on allele frequency (±4%), gene proximity (±100 kb) and linkage disequilibrium (LD; 

all SNPs within the same set have r2≤0.5). For our analysis of the lipid loci, we generated 

5,000 sets of 95 SNPs using information from European individuals from the 1000 Genomes 

Project. Second, for each variant in the seed and matched sets, we retrieved all other variants 

in LD (r2≥0.8) using the 1000 Genomes Project European population genotypes and the 

PLINK software (Purcell et al. 2007). Third, we annotated all variants and their LD proxies 
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for overlap with specified epigenomic annotations. Finally, we assessed statistical 

enrichment by computing empirical P-values for each epigenomic annotation by counting 

the number of matched set with more SNP-epigenomic annotation overlaps than found in the 

set of sentinel variants. We provide a step-by-step description of our methods in the 

Supplementary Information.

Gene expression datasets

Human liver eQTL results (P≤5×10−8) were available from previous reports (Schadt et al. 

2008; Teslovich et al. 2010). The list of genes differentially expressed in liver-specific 

knockout Foxa1−/− and Foxa2−/− mice were obtained from a previous report (fold-change ≥

±1.5, false discovery rate=15%)(Bochkis et al. 2012). To identify the list of genes 

differentially expressed in Hnf4a−/− liver mice compared to wild-type animals, we 

recovered the corresponding dataset from NCBI Gene Expression Omnibus (GSE34581)

(Bonzo et al. 2012) and analyzed the data with the GEO2R module, correcting for multiple 

testing using the Benjamini & Hochberg procedure (adjusted P≤0.05). We converted mouse 

gene symbols to human gene symbols assuming a one-to-one homolog (Supplementary 

Information).

Luciferase transcriptional reporter assays

HepG2 hepatocellular carcinoma cells were cultured in MEM-alpha (Invitrogen) 

supplemented with 10% FBS, 1 mM sodium pyruvate and 2 mM L-glutamine. A 181 bp 

fragment (hg19 chr17: 76,392,913–76,393,093) surrounding the SNP rs4969182 was PCR-

amplified using primers 5’-TGTGAGAGCTGTCTAAAACGAA-3’ and 5’-

TTCATCAGGGTGTTTATTTCCTC-3’ from DNA of individuals homozygous for either 

allele and cloned in both orientations into the multiple cloning sites of the minimal 

promoter-containing firefly luciferase reporter vector pGL4.23 (Promega, Madison, WI). 

Fragments are designated as ‘forward’ or ‘reverse’ based on their orientation in the genome 

with respect to the BIRC5 coding sequence. Five independent clones for each allele for each 

orientation were isolated, verified by sequencing and transfected in duplicate into HepG2 

cell line. Luciferase assays were performed as previously described (Fogarty et al. 2013).

Electrophoretic mobility shift assay (EMSA)

Nuclear cell extract was prepared from HepG2 cells using the NE-PER nuclear and 

cytoplasmic extraction kit (Thermo Scientific) as described (Fogarty et al. 2013). 17 base-

pair oligonucleotides were designed to the sequence surrounding rs4969182 alleles: Sense 5’ 

biotin-ATATTTAC[T/C]CTCTGGCC-3’, antisense 5’-biotin-GGCCAGAG[G/
A]GTAAATAT-3’ (SNP alleles in bold). For supershift assays, before adding labeled probe, 

2 µg of polyclonal antibody against FOXA1 (ab23738; from ABCAM) or 4 ug of FOXA2 

(ENCODE ChIP-seq antibody, SC-6554X; from Santa Cruz Biotechnology) was added to 

the binding reaction and incubated for 25 minutes. EMSAs were carried out on a second 

independent day and yielded comparable results.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. We combined eQTL and ENCODE data to prioritize functional variants at lipid 

loci.

2. We integrated mouse transcriptomic and ENCODE data to fine-map GWAS 

loci.

3. We validated in silico predictions using functional experiments for a lipid locus.
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Figure 1. ENCODE HepG2 epigenomic annotations at the (A) SORT1 and (B) NFATC3 lipid loci
For the sentinel lipid and eQTL SNPs (SORT1: rs629301; NFATC3: rs16942887) and their 

linkage disequilibrium proxies (r2≥0.8, European populations from 1000 Genomes Project), 

we counted the number of overlaps with peaks from HepG2 DNase I hypersensitive sites, 

histone marks or transcription factor binding ChIP-seq data. For both loci, the SNP with the 

highest number of epigenomic annotations is different than the published sentinel SNP.
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Figure 2. Allelic differences in regulatory activity at rs4969182
(A) Differential transcriptional enhancer reporter activity in HepG2 cells. The T-allele, 

found in FOXA consensus binding motifs, showed significantly increased luciferase activity 

compared to C-allele in both orientations and with respect to a minimal promoter vector. 

Error bars represent standard error of five independent clones for each allele. Results are 

expressed as fold change compared to empty vector control. P-values were calculated by a 

two-sided t-test. (B) Electrophoretic mobility shift assay (EMSA) using HepG2 nuclear 

extract shows differential protein-DNA binding of rs4969182 alleles. The probe containing 
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the T-allele shows increased protein binding (arrow A) compared to the probe containing the 

C-allele. Excess unlabeled specific probe containing the T-allele (T-comp) more efficiently 

competed away allele-specific binding than the unlabeled C-allele (C-comp). Incubation 

with FOXA1 and FOXA2 antibody reduced the DNA-protein complex (arrow A). To 

enhance visualization of protein complexes, free biotin-labeled probe is not shown.
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