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Emerging sequencing technologies allow common and rare variants to be systematically assayed across the human ge-
nome in many individuals. In order to improve variant detection and genotype calling, raw sequence data are typically
examined across many individuals. Here, we describe a method for genotype calling in settings where sequence data are
available for unrelated individuals and parent-offspring trios and show that modeling trio information can greatly in-
crease the accuracy of inferred genotypes and haplotypes, especially on low to modest depth sequencing data. Our
method considers both linkage disequilibrium (LD) patterns and the constraints imposed by family structure when
assigning individual genotypes and haplotypes. Using simulations, we show that trios provide higher genotype calling
accuracy across the frequency spectrum, both overall and at hard-to-call heterozygous sites. In addition, trios provide
greatly improved phasing accuracy—improving the accuracy of downstream analyses (such as genotype imputation) that
rely on phased haplotypes. To further evaluate our approach, we analyzed data on the first 508 individuals sequenced by
the SardiNIA sequencing project. Our results show that our method reduces the genotyping error rate by 50% compared
with analysis using existing methods that ignore family structure. We anticipate our method will facilitate genotype calling
and haplotype inference for many ongoing sequencing projects.

[Supplemental material is available for this article.]

In the past decade, genome-wide association studies (GWAS) have

identified associations between thousands of common variants

and a variety of complex traits and diseases (McCarthy et al. 2008;

Hindorff et al. 2009). Next-generation sequencing technologies

enable researchers to look beyond the common variants typically

evaluated in these GWAS and systematically consider the contri-

butions of rarer variants (Li and Leal 2008; Cirulli and Goldstein

2010). The ability to systematically examine these rare variants

may improve our understanding of complex traits, by identifying

the underlying biological mechanisms more completely and by

improving our ability to predict individual outcomes (Manolio

et al. 2009; Eichler et al. 2010).

Next-generation sequencing can be used to study rare varia-

tion either by directly sequencing phenotyped individuals or by

sequencing a reference set of individuals and then using genotype

imputation to study association in phenotyped individuals. In the

first case, it is of primary importance to obtain accurate genotypes

for each of the studied individuals. In the second case, it is also

important to obtain accurate haplotypes, since these are a key re-

agent for the imputation based analyses that follow. Since short

reads from massively parallel technologies typically contain errors,

sequencing depth is a key parameter: Some degree of redundancy is

required to ensure adequate estimates of genotypes and haplotypes

(Le and Durbin 2010; Li et al. 2010). However, we note that deep

coverage can be achieved not only by sequencing a single sample

deeply but also by combining information across individuals

who share a particular haplotype (The 1000 Genomes Project

Consortium 2010; Li et al. 2011).

Most ongoing sequencing studies have focused on the anal-

ysis of unrelated samples. An example of the utility of sequencing

related individuals is the work of Roach et al. (2010). By sequencing

a nuclear family, including two children with Miller syndrome

and their parents, they were able to identify the majority of se-

quencing errors and narrow their search for functional alleles. We

reasoned that, by imposing Mendelian inheritance constraints

and by checking for evidence of each variant across multiple re-

lated individuals, variant callers that directly examine parent-

offspring trios would improve the quality of genotype and haplo-

type calls, particularly in cases where each individual is sequenced at

low to modest depth (Le and Durbin 2010; Li et al. 2011).

Here, we describe a new statistical method for estimating

individual genotypes and haplotypes when next-generation se-

quence data are available on parent-offspring trios. We organize

our paper as follows. First, we will describe how a hidden Markov

model (HMM) designed for the analysis of sequence data in
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unrelated individuals can be extended to trios and parent off-

spring pairs in a computationally efficient manner. Second, we

evaluate performance of the extended model in a variety of sim-

ulated data sets—varying sequencing depth, sequencing error

rate, and sample size. Third, we evaluate our method in data from

the ongoing SardiNIA sequencing project. Our results show that

our method substantially outperforms existing approaches that

ignore familial relatedness.

Methods

Pipeline for SNP discovery and genotype calling
SNP analyses with next-generation sequencing data typically start
with three key steps: read alignment, site discovery, and genotype
calling. In the first step, sequenced reads are mapped to human
reference genome (Li et al. 2008; Li and Durbin 2009) and the
alignment is refined to calibrate base quality scores and account for
known insertion-deletion polymorphisms (indels) (McKenna et al.
2010). Next, variant sites are identified by examining bases over-
lapping each position in the genome and taking into account
a population genetics model (that might describe a prior proba-
bility of polymorphism for each site, an allele frequency spectrum,
and a mutation spectrum, for example) (Li et al. 2008). Finally,
genotypes at each site can be refined using linkage disequilibrium
(LD) information (Le and Durbin 2010; Li et al. 2011). The com-
plete process is illustrated in Figure 1. Each step involves many
challenges, but here we focus on the last step of genotype calling
and haplotype inference.

Describing chromosomes as imperfect mosaics

HMM can be used to describe the haplotypes of each individual
as imperfect mosaics of other haplotypes in the sample (Li and
Stephens 2003). The approach is commonly used for genotype
imputation and haplotype reconstruction (Scheet and Stephens
2006; Marchini et al. 2007; Li et al. 2010) and can be extended to
the analysis of short read sequence data (Li et al. 2011). In this
section, we briefly review how these models can be used to model
sequence data in unrelated individuals. First, haplotypes for each
individual are initialized randomly—sampling an allele consistent
with observed read data at each position. Then, the haplotypes of
each individual are updated (in turn) using a HMM that describes
the pair of haplotypes for the individual as an imperfect mosaic of
other haplotypes in the sample.

To describe the model, it is sufficient to specify how haplo-
types for one individual can be updated conditional on current
haplotype estimates for all other individuals. For simplicity, we

focus on bi-allelic markers, although our model naturally extends
to markers with multiple alleles. The first step is to generate a list of
candidate variant sites and to calculate P(Ri|Gi), the likelihood of
observed read data Ri given an hypothetical true genotype Gi at
each site i. Although we do not discuss generation of variant site
lists here, we note that our method will benefit from any im-
provements in that stage of analysis (for example, from methods
that use machine learning to discriminate likely variant sites from
likely artifacts or that explicitly model transition-transversion rates
and other properties of the mutation process during site discov-
ery). Genotype likelihoods can be pre-calculated conveniently
with existing tools (Li et al. 2009) and can optionally incorporate
sophisticated error models, for example, to account for correlated
errors (Li et al. 2008). Assuming independent errors, a simple def-
inition for these likelihoods might be:

PðRi = ðB;EÞjGi = f1;1gÞ
=
Q
j

ð1� ejÞIðbj=1Þð13 ejÞIðbj 6¼1Þ for homozygous genotype 1=1

PðRi = ðB;EÞjGi = f1;2gÞ

=
Y

j

1
2ð1� ejÞIðbj=1Þð13 ejÞIðbj 6¼1Þ
n

+ 1
2ð1� ejÞIðbj=2Þð13 ejÞIðbj 6¼2Þ

o
for homozygous genotype 1=2.

Here, B and E are vectors of base calls and associated error proba-
bilities for bases overlapping position i in the current sample
(bj and ej are the corresponding elements) and I(expression) is an
indicator function that returns 1 when expression is true and 0
otherwise.

The next step is to define P(Gi|Si), which is the probability of
an underlying true genotype Gi given mosaic state Si. To calculate
this, we use the function T(Si), which returns the number of variant
alleles in Gi or in the template haplotypes indexed by Si. Consistent
with Li et al. (2010), we define:

PðGijSiÞ

=

ð1�eiÞ2 TðSiÞ= 0 or TðSiÞ= 2f g and TðSiÞ= TðGiÞ
eið1�eiÞ TðSiÞ= 0 or TðSiÞ= 2f g and TðSiÞ�TðGiÞj j = 1

e2
i TðSiÞ= 0 or TðSiÞ= 2f g and TðSiÞ�TðGiÞj j = 2

ð1�eiÞ2 + e2
i TðSiÞ = 1 and TðSiÞ = TðGiÞ

2eið1�eiÞ TðSiÞ= 1 and TðSiÞ 6¼ TðGiÞ

8>>>>>><
>>>>>>:

Here, ei is the mosaic error rate at ith marker, reflecting the cumu-
lative effects of mutation and gene conversion. Together, P(Ri|Gi)
and P(Gi|Si) allow us to calculate P(Ri|Si) as:

PðRijSiÞ = +
Gi

PðRijGiÞ3 PðGijSiÞ: ð1Þ

Finally, the last ingredient in the definition of the HMM is to define
the transition probabilities P(Si + 1|Si).

PðSi +1 = ðw; vÞjSi = ðx; yÞÞ

=

u2
i =H

2 x 6¼ w and y 6¼ v

ð1�uiÞui=N + u2
i =H

2
Either ðx 6¼ w and y = vÞ

or ðx = w and y 6¼ vÞ
ð1�uiÞ2 + 2ð1�uiÞui=H + u2

i =H
2 x = w and y = v

8>>>><
>>>>:

Here, (x,y) and (w,v) denote indexes for the template haplotypes at
position i and i + 1, ui denotes the mosaic transition rate between
the two consecutive positions, and H denotes the number of
template haplotypes under consideration.

These are all the ingredients needed to calculate P(Si|R), the
probability of a specific mosaic state at position i conditional on

Figure 1. Workflow of SNP discovery and genotype calling. This figure
outlines key elements in a typical variant calling pipeline in next-gener-
ation sequencing studies. The method described here focuses on the last
step for refining genotypes and estimating haplotypes.
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overlapping sequence reads R. Calculating this probability for all
possible values of Si allows us to select a pair of ordered alleles for
every position (either by selecting the most likely pair or by sam-
pling a pair according to its probability, for example). P(Gi|R), the
probability of a specific genotype configuration at position i con-
ditional on overlapping sequence reads, can be obtained by the
formula

PðGijRÞ = +
Si

PðGijSiÞ3 PðSijRÞ,

where Si loops through all possible states. Because our model is
Markovian, P(Si|R) and P(Gi|R) can be conveniently calculated
using Baum’s forward-backward algorithm (Rabiner 1989), which
can be implemented efficiently using recursive left and right prob-
ability functions.

Briefly, we define the left probability function Li + 1 as:

Li +1ðw; vÞ= PðR1; :::;Ri +1; Si +1 = ðw; vÞÞ= +
x;y

PðR1; :::;Ri; Si = ðx; yÞÞ

3 PðSi +1 = ðw; vÞjSi = ðx; yÞÞ 3 PðRi +1jSi +1 = ðw; vÞÞ

= +
x;y

Liðx; yÞ 3 PðSi +1 = ðw; vÞjSi = ðx; yÞÞ 3 PðRi +1jSi +1 = ðw; vÞÞ

= ½Liðw; vÞ 3 ð1� uiÞ2 + +
y

Liðw; yÞ 3 ð1� uiÞ3 ui=N

+ +
x

Liðx; vÞ 3 ð1� uiÞ3 ui=N

+ +
x;y

Liðx; yÞ 3 u2=N2�3 PðRi +1jSi +1 = ðw; vÞÞ:

At the first variant site, the function is defined as

L1ðw; vÞ= PðR1; S1 = ðw; vÞÞ = PðR1jS1 = ðw; vÞÞ3 PðS1 = ðw; vÞÞ,

where P(S1 = (w,v)) is typically assumed to be a constant. Analo-
gously, we define the right probability Qi + 1(w,v) function as:

Qi +1 w; vð Þ= P Ri +2; �;RM jSi +1 = w; vð Þð Þ
= +

x;y

P Ri +3; �;RM jSi +2 = x; yð Þð Þ 3 P Si +2 = x; yð Þ jSi +1ð = w; vð ÞÞ

3 P Ri +2jSi +2 = x; yð Þð Þ
= +

x;y

Qi x; yð Þ3 P Si +2 = x; yð Þ jSi +1 = w; vð Þð Þ3 P Ri +1jSi +1 = x; yð Þð Þ:

At the last variant site M, the function is defined as QM(w,v) = 1 for
convenience. Finally, we have

P Si = w; vð ÞjRð Þ} P Si = w; vð Þ;Rð Þ = Li w; vð Þ 3 Qi w; vð Þ:

Joint modeling for trios

The approach described in the previous section assumes all in-
dividuals are unrelated. If related individuals are sequenced, the
above model ignores important constraints on individual geno-
types and haplotypes imposed by Mendel’s laws. In this section, we
propose a strategy for computationally efficient modeling of LD
and the constraints due to Mendelian inheritance. Although this
model is approximate, our simulations and empirical evaluation
show that it performs well in both simulated and real data sets.

We denote Rf, Rm, and Rc as the read data, Gf , Gm, and Gc as the
genotypes for the father, mother, and child in a parent-offspring
trio, and the corresponding genotype likelihoods are P(Rf|Gf),
P(Rm|Gm), and P(Rc|Gc). The two alleles in each genotype are or-
dered (Lange 2002) using the convention that the allele trans-
mitted to the child is listed first (for parental genotypes) and that
the maternal allele is listed first (for child genotypes). In principle,
we could extend the previous algorithm, which is designed to
sample pairs of haplotypes in unrelated individuals, to sample four
haplotypes at a time in trio parents. The main weakness of this
extended model would be that it requires jointly iterating over four
possible haplotypes, resulting in a substantial increase in compu-

tational burden (compute costs would be proportional to H4 in-
stead of H2, where H is the number of haplotypes used as templates
for each update). Instead, we use an approximate but computa-
tionally more tractable solution. First, we sample an ordered pair of
template haplotypes and thus an ordered genotype for one of the
trio parents conditional on the observed read data for the entire
trio. Next, we sample an ordered pair of template haplotypes and
an ordered genotype for the second parent conditional on ob-
served read data for the trio and the sampled haplotypes for the
first parent. For each iteration, the order in which the two parents
are updated is selected at random.

Let R
*

i = Rf ið Þ;Rm ið Þ;Rc ið Þ
� �

denote available read information for
the father, mother, and child at position i. Suppose for the current
iteration we have decided to first update paternal haplotypes by
sampling a mosaic state Sf(i) for the father. To do this, we replace
Equation 1 with:

P R
*

j

���Sf ið Þ

� �
= +

g

P R
*

i

���Gf = g
� �

3 P Gf = gjSf ið Þ
� �

:

Key in evaluating this quantity is calculating the probability
of the reads overlapping a particular position i conditional on
a specific genotype for the father Gf = g. We define this quantity as:

P R
*

i

���Gf = g
� �

= P R
*

i;Gf = g
� �.

P Gf = g
� �

= +
gm

P R
*

i;Gf = g;Gm = gm;Gc = transmit gf ; gm

� �� �.
P Gf = g
� �

= +
gm

P R
*

i

���Gf = g;Gm = gm;Gc = transmit gf ; gm

� �� �

3 P Gf = g
� �

P Gm = gmð Þ
.

P Gf = g
� �

= +
gm

P Rf

��Gf = g
� �

3 P RmjGm = gmð Þ3 P RcjGc = transmit gf ; gm

� �� �

3 P Gm = gmð Þ:
Here, the transmit(Gf,Gm) function returns the genotype for the trio
child conditional on ordered parental genotypes Gf and Gm. For
simplicity and without loss of generality (because we iterate over
all ordered parental genotypes), we specify that the first allele in
the ordered genotype for each parent is transmitted to the child.
While the calculation above is exact when considering a single site
or when all sites are in linkage equilibrium, using it to sample
haplotypes for markers in LD results in an approximate solution
because, when summing over possible genotypes for the second
parent, the calculation of P(Gm = gm) does not account for de-
pendence between genotypes at different loci.

Updates for the second parent, conditional on the sampled
genotype for the first parent, also rely on a replacement for Equa-
tion 1. This time, we consider not only observed reads for the
family, but also the sampled genotype for the first parent. Thus:

P R
*

i

���Si;Gf = gf

� �
= +

g

P R
*

i

���Gm = g;Gf = gf

� �
3 P Gm = gjSið Þ:

This expression can be evaluated using:

PðR
*

ijGf = gf ;Gm = gmÞ= PðRf jGf = gf Þ3 PðRmjGm = gmÞ
3 PðRcjGc = transmitðgf ; gmÞÞ:

Summary

When dealing with samples that include trios, our algorithm thus
proceeds as follows: (a) Find an initial set of haplotypes that is
consistent with available read data (see Appendix A). (b) Sample
a new pair of template haplotypes and corresponding genotypes
for each unrelated individual. (c) For each parent-offspring pair,
randomly pick one parent and sample a new pair of haplotypes for
that parent. Then, sample a new pair of haplotypes for the other
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parent conditioning on both observed read data and haplotypes
sampled for the first parent. (d) Record sampled haplotypes for
every individual. (e) Optionally update estimated recombination
and error rates (Li et al. 2010). (f) Repeat steps b through e.

Generating consensus haplotypes

Each round of updates generates a new pair of haplotypes for each
sequenced individual. After a predefined number of rounds, a pair
of consensus haplotypes for each unrelated individual is generated
by finding the haplotype pair that minimizes switch error in re-
lation to sampled haplotypes (Li et al. 2010; 2011). For parent-
offspring trios, where sampled haplotypes are ordered, we generate
the consensus by assigning the most frequently sampled allele at
each position to the consensus haplotype.

Data sets

Simulated data

To evaluate the performance of our method, we start with simu-
lated data sets. Simulated data allow us to assess a wide range of
possibilities, varying sequencing depth, number of individuals to
be sequenced, and error rates. Simulations also allow us to compare
our results to a truth set. To be realistic, we simulated 10,000 hap-
lotypes for each of one hundred 1 Mb regions using a coalescent
model mimicking the LD patterns, population demographic his-
tory, and local recombination rates of European ancestry samples
(Schaffner et al. 2005). Next, we randomly selected haplotypes for
founders and generated haplotypes of offspring by simulating
Mendelian transmission. Finally, we simulated short sequence reads
assuming that depth at each site follows a Poisson distribution and
defined per-base sequencing error rate. Genotype likelihoods P(R|Gi)
were then calculated based on the simulated reads R.

We first simulated samples including 30 parent-offspring trios
(which corresponds to 90 sequenced individuals and 60 unrelated
individuals), 60 unrelated individuals, or 90 unrelated individuals.
Each sample was sequenced at depth 13, 23, 43, or 83 and as-
suming per-base error rates of 0.01 (corresponding to an average
Phred scaled base quality of Q20) or 0.001 (corresponding to base
quality of Q30). We also considered a second set of simulations
where sample size was doubled to 60 trios, 120 or 180 unrelated
individuals, and a third more limited set of simulations where the
amount of sequence data to be generated was kept constant. We
repeated each simulation 100 times.

Real data

We applied this method to data from the SardiNIA Medical Se-
quencing Project (see http://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id=phs000313.v1.p1). The project is a col-
laborative effort between the University of Cagliari, the CNR Re-
search Institute in Pula, the University of Michigan, and the Na-
tional Institute on Aging and aims to sequence 2000 Sardinian
individuals at an average depth of ;43. Early sequencing efforts
included sequencing of parent-offspring trios, parent-offspring
pairs, and unrelated samples (Table 1), and our initial evaluation
focused on the first 186 samples sequenced by the project at an
average depth of 3.7 (which include 25 complete trios, 15 parent-
offspring pairs, and 66 unrelated individuals; see Table 1) using
paired end Illumina reads. To evaluate genotype accuracy, we
compared genotypes derived from short read sequence data with
genotypes derived using the Illumina Metabochip (Sanna et al.
2011; Voight et al. 2012), which includes many rare and common
SNPs. In addition to evaluating our method, we also considered
analyses using Thunder, an LD-based genotyper similar to the one

described here but that ignores family structure (Li et al. 2011), and
also analyses using a trio-aware single marker caller (Li et al. 2012)
that ignores LD. Finally, we applied our method to the most re-
cently finished 508 sequenced samples and evaluate the genotyping
accuracy. To conserve compute resources, this larger set of 508 in-
dividuals was not analyzed with alternative genotype calling methods.

Performance metrics

To evaluate the performance of genotype calling, we evaluated the
genotype mismatch rate between genotypes estimated using our
method and gold standard genotypes, the mismatch rate at hetero-
zygous sites, which is a more sensitive measure of accuracy for rare
variants, and the squared correlation r 2 between estimated geno-
types and gold standard genotypes. Gold standard genotypes were
either the underlying simulated genotypes (for simulated data sets)
or the Metabochip array genotypes (for the SardiNIA data). Since
allele frequencies affect genotype call accuracy substantially, we
examined the results stratified according to population frequency.

To evaluate haplotyping accuracy, we considered the number
of mismatched alleles when comparing haplotypes estimated using
short sequence reads and the underlying simulated haplotypes,
the switch errors required to convert the estimated haplotypes
into the underlying simulated haplotypes (Marchini et al. 2006),
and the number of perfectly predicted haplotypes. When evaluating
switch errors and perfectly predicted haplotypes, we first excluded
any mismatching alleles.

Results

Overall performance

We evaluated the performance of our method in simulated and real

sequencing data sets. In our view, the key insights from these com-

parisons arise from examining the relative performance of different

analytical strategies and study designs. The absolute performance

metrics will depend not only on analysis strategy but also on the

population being studied, sample size, local extent of linkage dis-

equilibrium (LD), and accuracy of read mapping.

We first evaluated the number of detected variants when

different strategies were applied to simulated sequence data. As

shown in Table 2 (columns 1–4), when comparing analyses of 30

trios (60 unrelated individuals, plus one offspring for each pair of

individuals) with analyses that included only 60 unrelated in-

dividuals (corresponding, for example, to sequencing only the trio

parents), it is clear that sequencing an additional individual per

family increases the number of discovered variants at all sequencing

depths examined (although the relative advantage is greater at lower

depths). When we compared sequencing of 30 trios with that of

90 unrelated individuals, we observed greater numbers of detected

variants in trios when depth was low (1–23), and greater numbers

Table 1. Family structures of the SardiNIA data sets

Data set 1 Data set 2

Unrelated samples 7 66
Complete trio 13 25
One Parent with one offspring 4 0
One Parent with two offspring 4 15
Total 66 186
Samples genotyped 55 105

The two real data sets consist of unrelated samples, parent-offspring pairs,
and complete trios. In the family with two offspring, one was randomly
treated as an independent sample for each iteration.

Sequence analysis of parent-offspring trios
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of detected variants in unrelated individuals when depth was

high (83). The pattern makes intuitive sense—at higher depths,

nearly all variants segregating in each family can be identified by

sequencing the parents, and opportunities for detecting additional

variants are maximized by sequencing additional unrelated in-

dividuals; at lower depths, some of the variants segregating in each

family are missed when only parents are sequenced, and including

offspring in the analysis improves power. We observed similar pat-

terns when sample sizes were doubled to 60 trios, 120 unrelated

individuals, and 180 unrelated individuals. When changing per

base sequencing error rates, we observed that improving per-base

error rates from 0.01 (Q20) to 0.001 (Q30) allowed us to call up to

;10% more SNPs at the lowest depths.

Next, we proceeded to evaluate genotype mismatch rates

(Table 2, columns 5–12) and the squared correlation between

simulated and estimated genotypes (Table 2, columns 13–16).

Several patterns emerge: First, the advantages of sequencing trios

and using our analysis method are now very clear—for any given

number of sequenced individuals and depth, trios always provided

the most accurate genotypes; second, genotype error rates are

typically much higher at heterozygous sites—regardless of the se-

quencing strategy; third, increasing sample size provides sub-

stantial benefits in terms of genotype accuracy. For example, when

the number of unrelated individuals increased from 60 to 120 to

180, genotype mismatch rates dropped from 4.4% to 2.7% to 2.0%

at 23 coverage (and per-base error rate 0.01). Sequencing depth

was also a major contributor to genotype accuracy: When 60 un-

related individuals were sequenced, error rates decreased from

10.4% to 4.4% to 1.2% and, ultimately, 0.2% as depth increased

from 13 to 23 to 43 and, ultimately, 83. Compared with the large

impact of sample size and sequencing depth, increased sequencing

accuracy (per-base error rate of 0.001), only, had a more modest

impact on accuracy, reducing error rates by ;20%–30%. Table 2

also exposes a counter-intuitive pattern: At very low depth (13),

decreases in per-base sequencing error rates (from 0.01 to 0.001)

can increase the error rate for heterozygous genotypes. This occurs

because, with more accurate data, it is possible to more aggressively

call additional variant sites, although some of these newly called

sites are very hard to genotype.

When comparing sequencing efforts focused on trios and on

unrelated individuals, we considered two options. In one option,

only the parents of trios would be sequenced (30 trios would be

replaced with 60 unrelated individuals). In the second option,

sequencing efforts might be kept constant (30 trios would be

replaced with 90 unrelated individuals). In both cases, sequencing

trios resulted in markedly lower genotype mismatch rates. For in-

stance, the mismatch rate when 30 trios are sequenced at depth 23

(with per-base error rate of 0.001) was 1.1% compared with 2.4%

and 3.2% for 90 and 60 unrelated samples, respectively. The gains

in genotype accuracy provided by trios remain clear across differ-

ent per base error rates, sequencing depths, and numbers of in-

dividuals sequenced. Interestingly, we note that genotype accuracy

was typically slightly higher for trio offspring than for parents

(Supplemental Table 2), likely because Mendelian inheritance rules

place stronger constraints on offspring genotypes and because

each offspring chromosome is also sequenced in the parents. For

example, the mismatch rate was 0.30% for offspring and 0.45% for

parents when 30 trios were sequenced at depth 43 and the simu-

lated per-base error rate was 0.01.

The advantages of using family trios, particularly at low se-

quencing depths, are especially clear using the r2 accuracy metric—

which examines the correlation between true and estimated ge-

notypes (and places special emphasis on rare genotypes that are

hard to call). For example, with a per-base sequencing error rate of

1% and sequencing depth 13, the r2 correlation was 0.76 when 60

unrelated individuals were sequenced, 0.81 when 90 unrelated in-

dividuals were sequenced, and 0.90 when 30 trios were sequenced

(corresponding to 90 total sequenced individuals, of whom 60

are unrelated). By this metric, the accuracy of sequencing 60 trios

at 13 depth exceeded the accuracy of sequencing the same

Table 2. Error rates for genotype calling in samples of parent-offspring trios or unrelated individuals, as function of sequencing depth (13,
23, 43, or 83) and per-base error rate of the original sequence traces (0.01 or 0.001)

Mismatch Rate R-square

Variants All Heterozygous

Sample 13 23 43 83 13 23 43 83 13 23 43 83 13 23 43 83

BE = 0.01
60 unrelated 2112 2548 3079 3757 0.1040 0.0438 0.0120 0.0021 0.1563 0.0563 0.0147 0.0033 0.7630 0.8772 0.9448 0.9814
90 unrelated 2323 2778 3350 4178 0.0809 0.0324 0.0092 0.0016 0.1262 0.0424 0.0112 0.0024 0.8065 0.9040 0.9545 0.9848
30 trios 2351 2827 3435 3993 0.0380 0.0151 0.0040 0.0008 0.0523 0.0175 0.0048 0.0011 0.9037 0.9506 0.9760 0.9901

BE = 0.001
60 unrelated 2448 2853 3447 4084 0.0878 0.0319 0.0084 0.0015 0.1774 0.0538 0.0126 0.0030 0.7786 0.8933 0.9521 0.9865
90 unrelated 2616 3128 3796 4576 0.0667 0.0238 0.0065 0.0011 0.1363 0.0405 0.0098 0.0022 0.8213 0.9122 0.9574 0.9886
30 trios 2641 3172 3773 4223 0.0320 0.0106 0.0031 0.0006 0.0607 0.0169 0.0046 0.0011 0.9084 0.9543 0.9756 0.9920

BE = 0.01
120 unrelated 2472 2923 3565 4529 0.0687 0.0265 0.0076 0.0013 0.1087 0.0344 0.0093 0.0021 0.8128 0.9009 0.9459 0.9805
180 unrelated 2686 3156 3898 5041 0.0537 0.0203 0.0060 0.0011 0.0863 0.0266 0.0075 0.0016 0.8469 0.9182 0.9516 0.9805
60 trios 2722 3253 4049 4866 0.0264 0.0104 0.0027 0.0005 0.0371 0.0120 0.0033 0.0008 0.9210 0.9547 0.9753 0.9897

BE = 0.001
120 unrelated 2780 3323 4063 4962 0.0559 0.0193 0.0054 0.0009 0.1167 0.0332 0.0082 0.0018 0.8217 0.9073 0.9475 0.9846
180 unrelated 3034 3610 4516 5626 0.0426 0.0146 0.0044 0.0007 0.0917 0.0255 0.0068 0.0014 0.8531 0.9211 0.9497 0.9850
60 trios 3081 3708 4530 5155 0.0205 0.0070 0.0020 0.0004 0.0404 0.0114 0.0032 0.0007 0.9242 0.9570 0.9736 0.9920

A family-based variant calling method (Li et al. 2012) was applied prior to genotype refinement. The mismatch rate was calculated at the overlapped sites
called at all depths.
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number of unrelated individuals at 23, and sequencing trios at

23 outperformed sequencing of unrelated individuals at 43. The

advantages of trios are even clearer for haplotyping, discussed below.

Performance stratified by frequency

The summaries presented so far, which focus on overall summaries

of genotype accuracy, mask substantial variation in genotype ac-

curacy for different allele frequencies. The issue is illustrated in

Figure 2, which summarizes genotype accuracy at heterozygous

sites when 30 trios, 60 unrelated individuals, or 90 unrelated in-

dividuals are sequenced (figures for other scenarios present similar

patterns and Supplemental Table 1 provides additional details).

The figure makes clear that rare heterozygous sites are especially

hard to call, whatever the sequencing depth; and that the relative

advantages of sequencing trios are greatest for calling the rarest of

these sites.

Accuracy of haplotype inference

Another important advantage of our analysis methods for trio se-

quence data is in haplotype reconstruction, which is essential for

follow-up imputation analyses and can inform inferences about

population history. We evaluate the accuracy of our method by

using three measures of haplotype accuracy: allelic error, switch

error, and perfectly predicted haplotypes. Simulation results for one

hundred 1 Mb regions are summarized in Table 3. Analogous to

analyses of genotype data (Li et al. 2010), larger sample sizes increase

the accuracy of estimated haplotypes. For instance, at 43 depth,

analyses of 90 unrelated individuals yield 40 switch errors per sim-

ulated sample (;1 per 25 kb), while analyses of 60 unrelated sam-

ples yield 60 switch errors per simulated sample (;1 per 17 kb). Trios

perform much better in this setting—and at 43 depth we expect <2

switch errors per simulated individual when trios are sequenced (;1

per 600 kb). Note that, because sites with mismatching alleles are

excluded from the switch error calculation, our comparison actually

underestimates the relative advantages of trio sequencing. Inter-

estingly, haplotype switch error rates sometimes increase with se-

quencing depth because at higher depth more rare sites, which are

hardest to phase and genotype, are discovered.

Constant sequencing effort

Supplemental Table 3 illustrates results for a design where, as an

alternative to sequencing trio offspring, parents are sequenced at

higher depth. In this design, the amount of sequence data to be

generated is constant. Results show that increased depth provides

clear benefits in terms of genotyping accuracy, so that genotyping

trio parents at greater depth provides genotypes that are slightly

more accurate than when sequencing effort is distributed across the

family (typically, reducing genotyping error by 0%–10%). However, it

is also clear that haplotyping accuracy remains much greater when

trios are sequenced (eliminating 75%–98% of phasing errors).

Evaluation using SardiNIA sequencing data

The performance of our method in simulation data encouraged us

to extend our evaluation to more challenging real data sets. We first

analyzed the two initial sets of individuals sequenced by the Sar-

dinia project (the first 66 sequenced individuals and the first 186

sequenced individuals, Table 1). These samples were sequenced us-

ing paired end Illumina reads to an average depth of 3.7 per

sample (read lengths varied from ;100 to ;120 bp). Each data set

was analyzed using the methods described here, and also using

previously described methods that consider family structure but

ignore LD (Li et al. 2012) or that model LD but ignore family

structure (Li et al. 2011). Table 4 presents comparisons of geno-

types derived from sequence data with those generated using

Illumina Metabochip arrays (Voight et al. 2012) segregated ac-

cording to Metabochip genotype; as before, we will focus our

Figure 2. Frequency stratified mismatch rate at all sites and heterozygote sites at different depths for 30 trios, 60 unrelated, and 90 unrelated samples at
a base error rate of 0.01. We divided markers into allele frequency rate deciles and estimated the average mismatch rate within each bin.
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discussion on mismatch rates at hard-to-call heterozygous sites.

For LD-based algorithms (whether or not family structure is

modeled), larger sample sizes yield better genotype calling accu-

racy; in addition, the two callers that model LD seem to greatly

outperform the caller that only uses population allele frequencies

and family structure. For instance, in the set of 186 individuals,

the single marker caller produces an error rate of ;28.7% at het-

erozygous sites, compared with 5.5% for an LD-based approach

ignoring relatedness and 3.7% to our approach that models both

LD and allelic transmission within trios. As can be seen from the

large decreases in error rate when the sample size increased from

66 individuals to 186 individuals, and consistent with other

analyses (Li et al. 2011), we expect accuracy to increase further as

more individuals are sequenced.

Table 5 and Figure 3 present results of the same comparisons,

stratified by allele frequency and alternative allele counts. It is clear

that the benefits of the LD-aware genotyping methods, which

combine information across individuals sharing similar haplotypes,

are greatest for common sites—where we expect many carriers of the

relevant haplotypes to be present in the sample. As sample size in-

creases, we expect these benefits to extend to rarer sites.

Table 6 presents updated results based on 508 recently se-

quenced samples. Compared with 186 samples (Table 5), the geno-

typing accuracy is greatly improved, especially at rarer sites. For in-

stance, the mismatch rate for allele frequency <2% drops from 1.09%

to 0.16% overall and from 13.84% to 4.83% at heterozygous sites.

Summary

Our simulations show that sequencing parent-offspring trios can

greatly increase the accuracy of genotypes and haplotypes derived

from next-generation sequence data, with little adverse effect on

the total number of discovered variants. In addition, we show that

increases in genotyping accuracy are most substantial for the rarest

sites. Our results are supported not only by simulations but also by

analyses of data generated by the SardiNIA sequencing study. In

samples that include both trios and unrelated individuals, se-

quencing and appropriately analyzing some trio families also

improves the accuracy of estimated genotypes for unrelated in-

dividuals in the sample (data not shown), likely because analysis

of each sequenced sample is informed by preliminary haplotype

estimates for the other sequenced samples.

Computational complexity

Given N sequenced, unrelated individuals, the complexity of a

naı̈ve implementation of our algorithm is O(N3), because each iter-

ation requires that N updates and N2 haplotype pairs be considered

for each update. As N increases, this naı̈ve implementation becomes

extremely challenging. Thus, we also allow for the possibility that

each update considers only a subset of the available haplotypes. If H

haplotypes are considered (and H << N), the cost of computational

cost of the algorithm is O(NH2), increasing linearly with the number

of sequenced individuals N. In principle, careful attention to the

choice of haplotypes included in each update should increase the

accuracy of this computationally efficient implementation.

Discussion
The method presented here can accurately call genotypes and infer

haplotypes for whole genome shotgun sequencing data collected

in trios, unrelated individuals, or parent-offspring pairs. In addi-

Table 3. Quality of estimated haplotypes in simulated 1 M regions

13 23 43 83

Depth
Allelic
errora

Switch
errorb

Perfect
hapsc

Allelic
error

Switch
error

Perfect
haps

Allelic
error

Switch
error

Perfect
haps

Allelic
error

Switch
error

Perfect
haps

60 unrelated 220.2 46.9 0.2 111.7 58.5 0.3 37.1 59.9 0.4 7.8 60.8 0.2
90 unrelated 188.7 33.4 0.3 90.0 39.5 1.2 31.0 39.5 2.4 6.6 42.0 0.6
30 trios 89.5 6.0 6.9 42.8 2.8 26.6 13.8 1.5 47.0 3.2 0.7 68.3

120 unrelated 170.2 26.1 0.6 77.5 28.6 3.1 27.1 30.4 5.4 6.0 33.6 1.8
180 unrelated 144.4 17.5 2.0 64.1 18.6 12.5 23.4 20.5 14.9 5.4 23.7 6.2
60 trios 71.9 3.4 36.8 33.6 1.5 88.2 10.8 0.9 118.5 2.6 0.4 150.0

All metrics are averaged over one hundred simulated 1M regions. Mismatched sites are excluded prior to calculating switch error and perfectly predicted
haplotypes.
aAllelic error: the number of mismatched genotypes per person, comparing inferred and true haplotypes in the simulated region.
bSwitch error: the number of switch errors per person, comparing inferred and true haplotypes excluding mismatched genotypes.
cPerfect haps: the number of predicted haplotypes that perfectly match simulated haplotypes for that individual.

Table 4. Overall genotype discordance between Metabochip and low-pass sequence data from SardiNIA project

66 samples 186 samples

Count Singlea Thunderb TrioCaller Count Single Thunder TrioCaller

Overall (%) 107,165 12.70 4.23 2.32 222,049 12.18 2.37 1.51
Heterozygote (%) 31,339 28.79 8.69 5.19 60,878 28.72 5.53 3.66
Alternative homozygote (%) 19,412 12.09 3.18 1.59 37,307 13.07 1.94 1.23
Reference homozygote (%) 56,414 3.95 2.12 0.98 123,864 3.9 0.96 0.55

Three methods were applied to the same data sets for comparisons. Results were stratified by minor allele frequency.
aSingle is a family-based genotype calling algorithm on single marker.
bThunder is a LD-aware genotype calling algorithm ignoring the relatedness.
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tion to modeling simple family structures, our model considers

haplotype stretches shared across families. In both simulated and

real data, our method clearly outperforms methods that ignore LD

patterns or family structure. Our method improves genotyping

accuracy across the entire frequency spectrum, including both

common and hard-to-call rare variants. The joint model can

greatly reduce the Mendelian errors, which is crucial to the family-

based association analysis.

Our method updates each parent alternatively and makes the

computation feasible. Direct joint modeling of the four parental

haplotypes would increase computational costs substantially, but

could allow for more accurate solutions. To ascertain how much

accuracy our approximation sacrifices, we also implemented this

more demanding model and compared the results with our

method in a small-scale simulation focused on four to eight sim-

ulated trios. In this small example, Supplemental Table 4 shows

that our method results in a 5%–10% loss in accuracy while re-

ducing computational cost by orders of magnitude (typically

a factor of ;100 running time and ;1000 for memory use). The

largest losses in accuracy from our approximation were observed

at the lowest depths.

Our method includes a stochastic component, and conver-

gence can be relatively slow. Rather than phasing every site com-

pletely at random (for an initial guess), we

have found it useful to generate initial

haplotypes using a computationally in-

expensive method and then refine those

rough haplotype estimates using our trio

aware caller. This possibility is illustrated

in Table 6, where we show that the hybrid

approach increases the genotype accuracy,

especially at the hard-to-call heterozygote

sites. For instance, the mismatch rate is re-

duced from 1.67% to 1.04% across all sites

for the same number of iterations. Using

random initial haplotypes (as described in

the methods section), our method would

require many more iterations and com-

puting time to achieve similar accuracy.

Our approach can be extended from

trios to nuclear families with more than

one offspring and, perhaps, larger pedi-

grees. A simple starting point might be to

‘‘split’’ a nuclear family into multiple trios

with duplicated parents. Parents could

then be updated once (according to our

current scheme; conditional on a ran-

domly selected child; or perhaps condi-

tional on all the children) and each child

could then be updated in turn conditional

on the selected parental haplotypes. A key

in extending our approach to larger pedi-

grees is to ensure that joint modeling of

LD and family structure does not render

any proposed approach computationally

unfeasible. These investigations are be-

yond the scope of this paper and left for

future research and experimentation.

One big advantage of our trio-aware

caller is in haplotype estimation—haplo-

type switch error rates are reduced by

>95% compared with analysis of unrelated

individuals. Haplotype information can inform many genetic

analyses, including LD mapping of disease genes, studies of im-

printing effects and gene expression regulation, and inference about

evolutionary processes such as selection and recombination. In LD

mapping of disease genes, genotype imputation is often used to

allow variants discovered by sequencing to be studied in additional

individuals, increasing power. Since reference haplotypes are a key

substrate for genotype imputation, improved haplotyping accuracy

should facilitate these downstream analyses. In studies of imprint-

ing effects and gene expression regulation, it is often important to

decide whether two polymorphisms map in cis (so that their impact

on the expression of nearby variants, for example, can be appro-

priately modeled).

The analysis presented here all focus on SNPs, but our method

naturally extends to indels and other types of variants. Although

a simple error model was described for the illustration purpose,

more advanced models (Li et al. 2008) have potentials to improve

the genotype calling. Modern tools used for site discovery (such

as GATK, the Genome Analysis Toolkit [McKenna et al. 2010],

and samtools [Li et al. 2009]) all have the ability to report ge-

notype likelihoods for each sample (the probability of observed

reads given an hypothetical true genotype) and store these in

VCF format (Danecek et al. 2011). The resulting files can serve

Table 5. Stratified genotype discordance between Metabochip and low-pass sequence data
from Sardinia project

Overall Heterozygotes

MAF Nsample Nsnp Single Thunder Triocaller Single Thunder Triocaller

66 Samples
All freq 55 1950 12.70 4.23 2.40 28.79 8.69 5.19
0%–2% 55 75 1.92 2.64 2.32 30.82 16.78 16.08
2%–5% 55 180 2.42 2.37 0.91 25.19 11.95 6.30
>5% 55 1695 14.26 4.50 2.48 28.87 8.57 5.11

186 Samples
All freq 105 2116 12.18 2.41 1.55 28.72 5.46 3.66
0%–2% 105 120 1.34 1.42 1.09 34.43 14.47 13.84
2%–5% 105 273 2.76 1.34 0.72 34.98 9.53 5.47
>5% 105 1723 14.52 2.65 1.71 28.49 5.28 3.51

(MAF) Minor allele frequency, stratified in three categories. (Nsample) Number of samples with geno-
types available in Metabochip. Results were stratified by the minor allele frequency with focus on rare
sites (MAF < 5%).

Figure 3. Genotype distributions and discordance for heterozygotes, reference homozygotes, and
alternative homozygotes. (Left) Genotype discordance between the MetaboChip and low-pass se-
quence data stratified by the alternative allele count. The overall concordance rate is also shown at the
top. (Right) Genotype counts.
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directly as input for our implementation of the methods de-

scribed here.

Here, we have focused on genotyping and haplotyping ac-

curacy. In addition to these, analysis of trios and other small

families might provide additional advantages for design of se-

quencing studies (such as the ability to increase genetic load by

focusing on related individuals who share a phenotype of interest

or the ability to observe multiple copies of variants that are very

rare in the population). The optimal mix of unrelated, trios, and

other small families for human disease studies remains a fertile

research area. It will also be interesting to investigate the optimal

allocation of sequencing reads across a family (allowing the pos-

sibility that it may be worthwhile to sequence different family

members at different depths).

The methods described here are implemented in freely avail-

able C++ code that works with standard formats (e.g., Li et al. 2009;

www.1000genomes.org) and is compatible with our Michigan var-

iant calling pipeline (a short walk-through is available online,

http://genome.sph.umich.edu/wiki/TrioCaller).

Data access
The URLs for the software implementing this method presented

herein are as follows: Triocaller: The C++ program based on the

method described in this paper, http://genome.sph.umich.edu/

wiki/TrioCaller.
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Appendix

Sampling an initial haplotype set

To start our iterative haplotype estimation process, an initial

guess of individual genotypes and haplotypes is needed. There are

several ways to obtain the initial genotypes. We proposed two as

follows.

Single site genotype calling and phasing

For each unrelated sample, individual ge-

notypes can be sampled by calculating the

posterior probabilities P(G|R) = P(R|G) 3

P(G)/P(R) based on the estimated pop-

ulation frequency P(G) and the probability

of observed sequence data P(R|G). The ge-

notype is unordered and no phase infor-

mation is available from this initial guess.

Therefore, when a heterozygote geno-

type is sampled, we order the two alleles

randomly.

For parent-offspring trios, the accu-

racy of the initial guess can be improved

by calculating posterior probabilities conditional on the whole

trio. For example,

PðGf jRf ;Rm;RCÞ} +
Gm ;Gc

PðRf jGf Þ3 PðRmjGmÞ3 PðRcjGcÞ

3 PðGf Þ3 PðGmÞ3 PðGcjGf ;GmÞ

Here, ordered genotypes can be sampled and initial haplotype es-

timates at deeply covered sites are relatively accurate, improving

the convergence of the algorithm. This benefit becomes larger as

sequencing depth of coverage increases.

External genotypes and haplotypes from other software

The alternative way to have an initial haplotype configuration is to

run an initial analysis of data using an alternative haplotype based

caller, as illustrated in the discussion.
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