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Abstract
Because of the limited tropism of HIV, in vivo modeling of this virus has been almost exclusively
limited to other lentiviruses such as SIV that reproduce many important characteristics of HIV
infection. However, there are significant genetic and biological differences among lentiviruses and
some HIV-specific interventions are not effective against other lentiviruses in non-human hosts.
For these reasons much emphasis has recently been placed on developing alternative animal
models that support HIV replication and recapitulate key aspects of HIV infection and
pathogenesis in humans. Humanized mice, CD34+ hematopoietic progenitor cell transplanted
immunodeficient mice and in particular mice also implanted with human thymic/liver tissue (BLT
mice) that develop a functional human immune system, have been the focus of a great deal of
attention as possible models to study virtually all aspects of HIV biology and pathogenesis.

Humanized mice are systemically reconstituted with human lymphoid cells offering rapid, reliable
and reproducible experimental systems for HIV research. Peripheral blood of humanized mice can
be readily sampled longitudinally to assess reconstitution with human cells and to monitor HIV
replication permitting the evaluation of multiple parameters of HIV infection such as viral load
levels, CD4+ T cell depletion, immune activation, as well as the effects of therapeutic
interventions. Of high relevance to HIV transmission is the extensive characterization and
validation of the reconstitution with human lymphoid cells of the female reproductive tract and of
the gastrointestinal tract of humanized BLT mice that renders them susceptible to both vaginal and
rectal HIV infection. Other important attributes of all types of humanized mice include: 1) their
small size and cost that make them broadly accessible; 2) multiple cohorts of humanized mice can
be made from multiple human donors and each cohort has identical human cells, permitting
control of intragenetic variables; 3) continuous de novo production of human immune cells from
the transplanted CD34+ cells within each humanized mouse facilitates long term experiments; 4)
both primary and laboratory HIV isolates can be used for experiments; and 5) in addition to
therapeutic interventions, rectal and vaginal HIV prevention approaches can be studied. In
summary, humanized mice can have an important role in virtually all aspects of HIV research
including the analysis of HIV replication, the evaluation of HIV restriction factors, the
characterization of successful biomedical HIV prevention strategies, the evaluation of new
treatment regimens and the evaluation of novel HIV eradication strategies.
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Introduction – Why humanized mice?
According to WHO-AIDS there are 33 million HIV infected people worldwide [1]. Treating
these infected persons and preventing new transmissions are cornerstones of the biomedical
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response to HIV infection. A safe and efficacious vaccine would be the most cost-effective
way to control the HIV pandemic, but such a vaccine is not yet available for clinical
implementation. Therefore, there is an urgent need for improved, potentially curative HIV
therapeutic regimens that can be universally accessed and a need for the rapid
implementation of biomedical prevention approaches to stop the spread of HIV/AIDS.
Patient-based research to develop these interventions requires extensive preclinical
evaluations in robust, reproducible and reliable models of HIV infection. Cell culture
systems and ex vivo tissue explants have been used extensively to model HIV infection
[2-5]. Explants in particular have been used by several groups because of their inherent
increased complexity that includes both epithelium and HIV target cells. However there are
many aspects of HIV infection that can be best modeled using in vivo models. For example,
the entire dynamics of HIV transmission and disease progression in humans is extremely
complex and cannot be replicated in vitro. Mucosal and peripheral organ systems all play
important roles in transmission, replication and pathogenesis. The ability to model the
complexity of HIV disease makes animal models the most versatile experimental systems
for the evaluation of HIV transmission, in vivo replication, pathogenesis mechanisms, novel
therapies and prevention agents.

HIV replication is restricted to humans and chimpanzees, but HIV only causes AIDS in
humans. This strict species tropism has severely constrained in vivo experimentation [6]. As
alternatives, multiple other lentiviruses have contributed to our understanding of HIV/AIDS
when they infect their natural or related hosts as models of HIV infection. For example, wild
chimpanzees and gorillas are naturally infected with the predecessor viruses to HIV, SIVcpz
and SIVgor [7, 8]. Additionally, increased mortality and AIDS-like immunopathology has
been documented in wild chimpanzees infected with SIVcpz [9]. These findings offer critical
insights into the pathogenic potential of the viruses in these great ape populations; however,
great apes are generally unavailable for HIV research. Therefore, alternative model systems
have been sought such as lentiviruses capable of causing immunosuppression following
infection of non-human primates (NHP), cats and cattle. These viruses include simian
immunodeficiency virus (SIV), SIV/HIV chimeric viruses (SHIV), feline immunodeficiency
virus (FIV) and bovine immunodeficiency virus (BIV), respectively [6, 10-15]. Other
lentiviruses that have also been evaluated as HIV models lead to immunoproliferation in
horses, sheep and goats. These are equine infectious anemia virus (EIAV), ovine lentivirus
(OvLV) and caprine arthritis-encephalitis virus (CAEV), respectively [15]. In particular, the
NHP-SIV and NHP-SHIV models have contributed greatly to our understanding of HIV
infection. However, the number of NHP available for research (especially females) is
limited and the costs associated with NHP studies are high. It should also be noted that many
biomedical interventions for HIV prevention and therapy are HIV-specific and that HIV has
genetic and biological differences from SIV and SHIV. Those interventions that inhibit HIV
specifically cannot be evaluated using NHP-SIV or NHP-SHIV models [6]. Therefore, in
vivo infection models that utilized HIV itself are needed and humanized mice have been
shown to help fulfill this need.

The term “humanized mice” has been applied to a variety of mouse models: (a) mice that
have a single or multiple human transgene(s) in an otherwise wild-type animal, (b)
immunodeficient mice transplanted with human cells or implanted with normal or diseased
human tissues, (c) CD34+ hematopoietic progenitor cell engrafted immunodeficient mice
and (d) various combinations of a, b, and c [16-22]. The focus of this review is on
humanized mouse models of HIV infection generated by CD34+ hematopoietic progenitor
cell transplantation. In these mice, CD34+ cells generate de novo human immune cells
capable of supporting in vivo HIV replication. One important point that needs to be
emphasized is whereas most lymphoid cells develop in bone marrow, T cells do not. Thymic
progenitors exit the bone marrow and migrate to the thymus because T cells require the
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special microenvironment present in the thymus to develop. In CD34+ transplanted mice
this takes place in the mouse thymus [23-26]. However, BLT mice represent the only system
where this takes place in the implanted human thymic organoid [27, 28]. Thus in BLT mice
human T cells are generated in the context of human thymic stroma where they are
specifically educated in the context of human leukocyte antigen (HLA). Together, these
relatively recently described humanized mouse models represent rapid, reliable and
reproducible experimental systems for HIV research as evidenced by their extensive use
since parenteral HIV infection of these mice was first reported five years ago (Table 1) and
[29, 30].

Why humanized mice? Their relative simplicity, small size and cost make humanized mice
broadly accessible for in vivo HIV infection studies. It is important to note that despite their
overall similarities, there are significant differences between humanized mouse models and
that each model has its own advantages and limitations, both of which are addressed
throughout this text. However, a key area where further improvements are needed is in the
development of robust and sustained immune responses across different platforms (Table 1).
Moreover, many organ pathologies caused by HIV are not perfectly recreated because in
vivo reconstitution is limited to the progeny of the transplanted human CD34+ cells. One
important exception is the BLT model where human thymic pathology can be studied in the
context of human thymic epithelium. BLT mice exhibit robust and sustained levels of
human cells in their gastrointestinal and female reproductive tracts, whereas differences in
the levels and uniformity of reconstitution of these important tissues between humanized
mice models using only CD34+ transplants can result in different experimental outcomes.
Other factors to consider when choosing humanized mice for HIV research is the relatively
shorter life-span of mice (compared to NHP and humans), the heightened susceptibility of
immunocompromised mouse stains (especially after irradiation) to opportunistic infections
and death unrelated to HIV infection and the differences in husbandry techniques used in
different animal facilities. Nevertheless, specific advantages of humanized mice for HIV
research include the ability to generate multiple cohorts of humanized mice from multiple
human donors. Each cohort from a single human donor is composed of individual animals
with genetically identical human cells, permitting control of intragenetic variables.
Continuous de novo production of human immune cells from engrafted CD34+ cells within
each humanized mouse enables longitudinal experiments. Importantly, humanized mice do
not require that a surrogate virus be used for infection studies. Humanized mice can be used
for in vivo HIV infection studies because they support transmission and replication of
laboratory adapted and primary HIV isolates. Finally, HIV prevention interventions can be
studied in humanized mice because they are susceptible to multiple routes of HIV
transmission.

An overview
Since the early stages of the AIDS epidemic it was realized that small animal models for
HIV research would permit a wide range of studies of HIV pathogenesis, prevention and
therapy. The challenge noted was that rodent cells are fully refractory to HIV: HIV cannot
bind and enter rodent cells, as it does human cells, unless those cells express the primary
HIV receptor and a co-receptor molecule (human CD4 and human CCR5 or CXCR4,
respectively) [31, 32]. However, even when these critical molecules are expressed on the
surface of mouse cells and successful viral entry occurs, HIV encounters numerous
additional blocks to its replication in rodent cells [33, 34]. Since HIV will typically replicate
robustly in human cells several groups developed xenograft models by placing human cells
in mice such that HIV could replicate in vivo [35, 36]. Two of these mouse models,
designated severe combined immunodeficient-human (SCID-hu) thy/liv and SCID-hu PBL,
have been extensively utilized to study viral cytopathic effects, for the evaluation of antiviral
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drugs and, to a lesser extent, to evaluate potential vaccine approaches [37-42]. These models
are not optimal for the study of anti-HIV human immune responses, pathogenesis or for
mucosal HIV transmission [18, 43, 44]. In contrast, some of the more recently described
CD34+ cell transplanted humanized mice have been shown to be well suited for these types
of in vivo studies.

Common to all CD34+ cell transplanted humanized mouse models is the use of one of
several available immunodeficient mouse strain that are capable of engrafting and sustaining
human hematopoietic cells [44]. The history and characteristics of mouse strains used for
generating humanized mice have been recently described in great detail [44]. The three
strains of immunodeficient mice that are most frequently used to generate humanized mice,
as reviewed here, are: (1) Non-obese diabetic/SCID (NOD/SCID), (2) Rag2nullγcnull and (3)
NOD/SCIDγcnull (Table 2). (1) NOD/SCID mice [NOD/Shi-scid; Central Institute for
Experimental Animals; Kanagawa, Japan and NOD/LtSz-scid/scid; The Jackson Laboratory;
Bar Harbor, Maine] have reduced mouse NK cell levels and are devoid of mouse T and B
lymphocytes [45, 46]. (2) Rag2nullγcnull mice (BALB/c-Rag2nullγcnull; Centre National de
la Recherché Scientifique; Orleans, France) are frequently referred to as double knockout or
DKO mice (the term used herein). DKO mice lack expression of the interleukin 2 receptor
common gamma chain (γcnull) and are completely deficient in mouse T, B, and NK cells
[47]. Humanized DKO mice are sometimes referred to as human immune system (HIS) mice
or Rag-hu mice [26, 30, 48, 49]. (3) There are two NOD/SCIDγcnull strain variants
originating from the NOD/SCID mice introduced above. NOD/Shi-scidγcnull mice are
referred to as NOG mice (Central Institute for Experimental Animals; Kanagawa, Japan),
whereas NOD/LtSz-scid/scidγcnull mice are called NSG mice (The Jackson Laboratory; Bar
Harbor, Maine). NOG and NSG mice also lack expression of the interleukin 2 receptor
common gamma chain (γcnull) and are completely deficient in mouse T, B, and NK cells.
These two similar strains differ in their gamma chain mutations. In NOG mice the gamma
chain is truncated within the intracellular signaling domain while the targeted gamma chain
mutation in NSG mice is a complete null phenotype [44, 50, 51]. While these are not the
only immunodeficient strains utilized to generate CD34+ cell transplanted mice [52-54], the
stains described above account for the CD34+ cell transplanted mice used in HIV research to
date (Table 1).

There are significant differences observed in the levels of engraftment with human CD34+

hematopoietic progenitor cells and in the levels of repopulation with CD34-derived human
lymphoid cells between different immunodeficient mouse strains. NOD/SCID mice engraft
with human CD34+ cells better than SCID mice due to their lower levels of mouse NK cells
[45, 46]. Better human engraftment in NOG and NSG mice compared to their two NOD/
SCID parent strains has been reported [55]. Female NSG mice have also been reported to
engraft somewhat better than NSG males [56, 57]. This is a remarkable phenotype that could
possibly be exploited to further increase cohort sizes by using reduced numbers of CD34+

cells for the bone marrow transplants in NSG female mice. To generate CD34+ cell
transplanted humanized mice, individual mice are typically preconditioned (i.e. gamma
radiation exposure or treatment with busulfan) to create a niche in the bone marrow for the
transplanted human CD34+ hematopoietic progenitor cells [25, 58-62]. Human CD34+ cells
for transplantation are typically derived from umbilical cord blood, fetal liver or granulocyte
colony-stimulating factor mobilized peripheral blood [63]. One important consideration for
the use of cord blood derived CD34+ cells is their relatively low abundance, limiting the
number of mice that can be generated from a single sample. However, some investigators
have overcome this limitation by combining cord blood CD34+ cells from separate donors
for transplantation [64, 65]. It should be noted that in the case of humanized BLT mice each
animal receives both transplanted CD34+ cells and implanted tissues from the same donor
[27, 28]. Regardless of the source of CD34+ cells, engraftment with hematopoietic
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progenitor cells results in a lifelong (8-24 months - depending on the mouse strain and
humanization strategy utilized; Table 2) supply of human immune cells in transplanted
humanized mice [44, 66].

The nature of humanized mice, which essentially harbor a complete human immune system,
provides biomedical researchers with affordable, accessible and flexible experimental
platforms for in vivo modeling of human diseases and for the development and evaluation of
methods to counter these diseases. In this regard, CD34+ cell transplanted humanized mice
have been primarily used to successfully model a variety of human specific infectious
diseases. However, the applications of humanized mice have not been limited solely to
human infections. Other diseases and conditions that have been successfully modeled in
humanized mice include type 1 diabetes [67], inflammatory arthritis [68], tumor burden
control [69], human breast tumor growth [54] and idiopathic nephrotic syndrome [70].
Besides HIV, human infectious diseases modeled in humanized mice include Epstein-Barr
virus [71-74], hepatitis C virus [75], human cytomegalovirus [76], herpes simplex virus type
2 (HSV-2) [77], live attenuated influenza vaccines [52], Salmonella typhi [78-80], sepsis
[81] and dengue virus [82-87]. Additionally, auto-regulatory lentiviral vectors that permit
doxycycline-inducible gene expression in human hematopoietic cells have been successfully
utilized in humanized mice as a model for inducible genetic therapeutic strategies being
considered for humans [88].

BLT Mice—As indicated above, BLT mice are the only model in which human T cells can
develop in the context of a human thymic microenvironment. This significant difference sets
this model apart and merits special consideration and description. In contrast to the other
humanized mouse models discussed in the following section, in BLT mice implanted human
tissue develops into a bona fide human thymus where human thymocytes are educated and
mature into a diverse repertoire of functional HLA-restricted T cells [28, 89]. Furthermore,
the fact that human T cells were educated in a human thymus could be a contributing factor
in the extensive and reproducible human reconstitution of the BLT mouse gastrointestinal
tract [90, 91].

Generation of BLT mice includes a Bone marrow graft accomplished by the transplant of
fetal liver-derived CD34+ hematopoietic progenitor cells into preconditioned NOD/SCID or
NSG mice previously implanted with autologous fetal Liver and Thymus tissue [27, 28,
92-95]. Human immune cells including T, B, natural killer, myeloid and dendritic cells are
found throughout BLT mice. Beyond peripheral blood reconstitution with human cells, BLT
mouse tissues have been shown to reconstitute with high levels of human immune cells
throughout the body including in the human thymic organoid, bone marrow, spleen, lymph
nodes, liver, lungs, small and large intestines and the female reproductive tract [27, 28,
89-95]. In BLT mice both the intraepithelial and lamina propria compartment of the small
and large intestines are populated with human T lymphocytes [90, 91]. The exquisitely
specific nature of the human reconstitution of the BLT mouse small intestine is highlighted
by the fact that CD8+CD4+ T lymphocytes in NOD/SCID BLT mice were shown to exhibit
a human gut specific surface phenotype [91]. Specifically, the intestinal CD8+CD4neg T
cells express the typical alpha-beta heterodimer on their surface, but the CD8+CD4+ T cells
express a CD8 molecule composed of an alpha-alpha homodimer which is a known human
gut cell surface phenotype [96, 97]. The BLT mouse female reproductive tract is also well
reconstituted with human immune cells [90]. The vagina, ectocervix, endocervix and uterus
of BLT mice have been shown to harbor many human T cells, including CD4+ T cells. In
addition, each of these regions of the BLT female reproductive tract contains human
monocyte/macrophages and human dendritic cells [90]. Thus, BLT mice are fully
reconstituted with multiple human hematopoietic lineages throughout the body, including
critical mucosal surfaces such as the intestines and female reproductive tract.

Denton and Garcia Page 5

AIDS Rev. Author manuscript; available in PMC 2013 August 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Human immune responses in BLT mice are relatively robust and exquisitely specific, which
is in contrast to the limited immune responses described below for CD34+ cell transplanted
DKO/NOG/NSG mice. For example, 2,4-dinitrophenyl hapten-keyhole limpet hemocyanin
(DNP23-KLH) immunization in BLT mice results primarily in DNP specific IgG1 and
IgG2, with minimal DNP-specific IgG3 and no DNP-specific IgG4 detected [94]. This is
quite similar to the IgG subclass distribution in humans after KLH immunization in which
IgG3 antibodies are less frequent and IgG4 antibodies are very slow to develop [94, 98].
Other robust human immune responses in BLT mice include xenograft rejection, T-cell
dependent antibody development, anti-viral responses, specific superantigen responses and
delayed type hypersensitivity (DTH) responses [27, 28, 93-95]. In addition, discussed below
is the fact that BLT mice generate the most extensive human immune responses against HIV
of any humanized mouse model tested to date.

CD34+ cell transplant only mice—As indicated above, in contrast to BLT mice, CD34+

cell transplanted DKO/NOG/NSG mice do not contain a human thymic microenvironment
where human T cells can develop. Rather in each of these models, human T cells are
generated in the mouse thymus [23-26]. The lack of HLA restriction could have major
implications in the potential for developing robust human immune responses in CD34+ cell
transplanted DKO/NOG/NSG mice.

Despite this limitation, CD34+ cell transplanted DKO/NOG/NSG mice have been
extensively utilized in HIV research (Table 1). The primary method for generating these
mice is to transplant CD34+ cells by either an intrahepatic or intravenous injection into
newborn DKO, NOG or NSG mice (Table 1). This technique for the generation of
humanized mice was first described by Traggiai, et al. and Gimeno, et al. and has been
widely adopted [25, 26, 48, 99-106]. In addition, CD34+ cells have also been transplanted
into adult NOG and NSG mice resulting in similar levels of systemic human reconstitution
[23, 57, 58, 62, 107-112]. In each of these instances, the transplanted immunodeficient
mouse becomes systemically populated with human immune cells originating from the
mouse's bone marrow. Human immune cells including T, B, natural killer, myeloid and
dendritic cells are found throughout CD34+ cell transplanted DKO/NOG/NSG mice. Beyond
peripheral blood reconstitution with human cells, tissues from these mice have been shown
to harbor human immune cells in the thymus, bone marrow, spleen, lymph nodes, liver,
lungs [23, 25, 26, 48, 57, 58, 62, 99, 100, 102-112]. Reconstitution of the intestines and
female reproductive tracts of CD34+ cell transplanted NOG and NSG mice has not been
addressed in the literature; however, immunofluorescence analysis of CD34+ cell
transplanted DKO mice showed the presence of human immune cells in the vagina, large
intestine and rectum of these mice [113]. A different research group also addressed the
question of humanization of the female reproductive tract of CD34+ cell transplanted DKO
mice and reported a very different result [77]. Their report indicated that the vaginal tract of
these mice did not harbor human immune cells unless stimulated by either HSV-2
vaccination or vaginal infection with replication competent HSV-2. Interestingly, the human
cells that were detected in the vaginal tissue of these mice following HSV-2 challenge were
CD8+ T cells and CD3-CD56+ NK cells. Notably, no human CD4+ T cells were found [77].
Two additional research groups examined the human cell reconstitution of the gut from
CD34+ cell transplanted DKO mice. One group found that 2 of 6 mice were reconstituted
with greater than 5% human lymphocytes when they examined the entire intestine using
flow cytometry [114]. The other group reported that CD34+ cell transplanted DKO harbor
no to very few human immune cells in their small and large intestines after examining 14
mice by immunohistochemistry and 3 by flow cytometry [115]. Therefore, it is clear that
human cells can migrate into the female reproductive tract and intestines of CD34+ cell
transplanted DKO mice. However, what is uncertain at this point is the extent to which the
human immune cells are able to reconstitute these important mucosal sites of HIV
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transmission in a reproducible and robust manner. It should be noted that the differences in
results obtained between these four research groups while characterizing CD34+ cell
transplanted DKO mice could be due to several factors including: use of different protocols
for the handling and/or culturing of CD34+ cells prior to injection, differences in the
numbers of CD34+ cells transplanted among research groups, age at which mice were tested
for mucosal humanization, and perhaps other unknown factors. Overall, based on these
reports the humanization of the intestines and female reproductive tract of CD34+ cell
transplanted DKO mice appears sporadic and inconsistent [77, 113-115]. These discordant
results regarding the intestinal humanization in this model might help explain to a certain
extent the differences reported in mucosal HIV transmission in humanized DKO mice (see
below).

The functional capacity of the human immune systems in variants of CD34+ cell
transplanted DKO/NOG/NSG mice has been evaluated by multiple research groups. The
results have indicated that both functional and dysfunctional human lymphocytes and NK
cells can be identified in these systems, suggesting that further improvement will be needed
before these models can be effectively used to evaluate human immune responses [25, 26,
58, 99, 104, 111, 112, 116, 117]. Therefore, different approaches have been used to improve
the humanization and immune function in these mice. Exogenous human IL-15 and human
Flt-3/Flk-2 ligand expression in CD34+ cell transplanted DKO mice was reported to
improve NK and myeloid cell levels and function [48, 103, 109]. Similarly, exogenous IL-7
was evaluated for its ability to enhance human thymocyte development and lymph node
maturation in these mice [106]. While this work highlighted the importance of human IL-7
in human T cell development within CD34+ cell transplanted DKO mice, the IL-7
treatments did not improve homeostasis of peripheral T cells in this system [106]. In
addition to treatment with exogenous factors for improved immune reconstitution and
immune function, there have been efforts to generate transgenically modified
immunodeficient mice. CD34+ cell transplanted homozygous knockin DKO mice that
express human thrombopoietin (TPO) (in place of mouse TPO) maintained peripheral
human reconstitution of human lymphocytes for several months beyond what was observed
to occur in DKO mice without human thrombopoietin. These human TPO expressing mice
exhibit higher levels of human granulocytes, but human T cell levels were very low in these
mice [118]. When human CD34+ cells were transplanted into a modified NSG mouse strain
that expresses human stem cell factor (SCF), granulocyte macrophage colony stimulating
factor (GMCSF) and interleukin 3 (IL-3) (called NSG-SGM3 mice), these mice generated
robust human myeloid lineage reconstitution plus an abnormally high number of CD4+ T
cells throughout multiple organs examined. The observed CD4+ T cells increase appeared to
be due to higher numbers of functional CD4+FoxP3+ T regulatory cells, not T helper subsets
[119]. In order to improve the human immune responses in humanized NSG mice, this strain
has also been engineered to express HLA*A0201 covalently bound to human β2-
microglobulin (NSG-HLA-A2/HHD mice) [105]. HLA-A2-restricted human T cell
responses against both Epstein-Barr and dengue viruses have been detected in CD34+ cell
transplanted NSG-HLA-A2/HHD mice [83, 105]. This strain might offer an improved
option for conducting human vaccine research in humanized mice. In short, the relatively
poor human immune responses observed in CD34+ cell transplanted DKO/NOG/NSG mice
are leading to extensive and ongoing efforts to generate better human immune responses in
these models.

HIV replication, pathogenesis and anti-viral responses
One observation is clear, virtually all types of HIV isolates tested to date replicate efficiently
in humanized mice. They include: subtype B — R5-tropic [JRCSF, BaL, YU-2, ADA, NFN-
SX(SL9), UG029A] [29, 61, 66, 89, 90, 120-132], X4-tropic [NL4-3, LAI, MNp] [29, 30,
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61, 66, 91, 124, 128, 131-134], and dual-tropic [NL4-3RA, R3A] [131, 135]; subtype C —
[C1157] [61]. In addition, one SHIV — [SHIV-C2/1] has also been shown to replicate in
humanized mice [132]. HIV replication has been monitored in individual animals for over a
year and mucosal HIV transmission typically results in the expected replication kinetics of
peak viremia followed by viral set point levels in humanized mice [123, 124]. Intravenous
and intraperitoneal HIV exposures were used in most of these studies, while vaginal or rectal
viral exposures were used in six reports [90, 91, 113, 115, 123, 136]. Once infection occurs,
HIV is systemically disseminated. Infection results in similar manifestations in all models,
including CD4+ T cell loss and CD8+ T cell infiltration, regardless of the route of exposure
[137]. Table 1 summarizes the humanized mouse model, the route of mucosal exposure and
the type of experiment performed for each of the studies cited above. In all these studies,
peripheral blood plus primary and secondary lymphoid tissues were most commonly
examined. CXCR4-tropic HIV isolates in general showed the most dramatic pathogenic
phenotypes and a single point mutation (V38E) in the gp41 region of a CXCR4-tropic HIV
isolate was found to significantly alter the ability of the mutant virus to deplete CD4+ T cells
[133, 137]. It should be noted that HIV pathology in humanized mouse intestines, including
reduced gut effector memory CD4+ T cells as seen in human HIV infections, have only been
described in BLT mice [90, 91, 138].

HIV-specific immune responses have been examined in infected humanized mice (Table1).
However, HIV-specific humoral and cellular immune responses have only been consistently
observed in BLT mice [89, 91]. In particular, interferon-gamma producing T cells specific
for gag, nef, pol and env, plus HLA-restricted cytotoxic T lymphocytes specific for known
gag- and nef-epitopes have been detected in BLT mice. All BLT mice evaluated (n=9)
developed human antibody responses to HIV by 12 weeks post-exposure [89]. In addition to
this work in BLT mice, CD34+ cell transplanted NOG, NSG and DKO mice have also been
reported to generate HIV-specific human immune responses, although human HIV-specific
humoral responses are much less frequent in these models [137]. More recently, the role of
CD8+ T cells in HIV infected CD34+ cell transplanted NSG mice was investigated by
Gorantla, et al. who showed that viral RNA levels in plasma are increased and CD4+ T cell
loss is accelerated when human CD8+ T cells are specifically depleted [125]. This is similar
to what has been observed in NHP [139, 140]. A pair of papers by Gorantla, et al. and Dash,
et al. utilized CD34+ cell transplanted NSG mice to demonstrate multi-lineage human
immune cells in the humanized mouse brain as well as significant neuropathology following
HIV infection in these animals [121, 122]. Jiang, et al. demonstrated that FoxP3+CD4+

regulatory T cells are preferentially infected and depleted by HIV in CD34+ cell transplanted
DKO mice and that depletion of the FoxP3+CD4+ regulatory T cells impaired HIV
replication in vivo [135]. The role of immune activation in HIV infection in CD34+ cell
transplanted DKO mice was examined by Hofer, et al. who found a positive association
between chemically-induced bacterial translocation, higher viral loads and lower CD4+ T
cell levels [126]. Additionally, Ince, et al. examined the evolution of CCR5-tropic HIV and
found evidence for CD4+ T cell-induced selective pressure on HIV in CD34+ cell
transplanted DKO mice [127]. In one animal, multiple clone sequences were obtained 44
weeks after infection. These sequences contained mutations that were functionally analyzed
and determined to have an X4 phenotype indicating that a tropism switch had occurred in
the humanized mouse [127]. Human anti-HIV innate immunity has also been examined in
humanized mice. Specifically, Sato, et al. recently showed that human APOBEC3 proteins
can induce mutations in the HIV genome in CD34+ cell transplanted NOG mice; however,
there is a caveat to their interpretation that these mutations occurred despite a functional vif
[129]. Specifically, the data presented indicates that in 3 out of 4 amplicons the vif sequence
was found to be mutated, likely due to reverse transcriptase error, and this resulted in 3.5%
of 86 vif amplicons being prematurely terminated. The 5 of 243 hypermutated (10+ G to A
mutations) amplicons reported did not include vif sequence to confirm that vif was indeed

Denton and Garcia Page 8

AIDS Rev. Author manuscript; available in PMC 2013 August 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



intact in the hypermutated viral DNA [129]. However, there is convincing evidence that
cell-associated DNA carried more G to A mutations at canonical APOBEC 3G, 3F, or 3B
sites when compared to circulating virions [129]. Overall, both innate and adaptive human
immune responses occur in humanized mice and these responses can result in viral
evolution.

HIV therapy
Preclinical evaluation of novel treatments has been an important application of humanized
mice in HIV research. In vivo efficacy reports have focused on antiretroviral (ART) and
gene therapies. Both established and investigational antiretrovirals have been tested in
CD34+ cell transplanted humanized mice. Van Duyne, et al. have described tat-derived
peptides reducing plasma viral RNA at a single time point in CD34+ cell transplanted DKO
and NSG mice [141]. While this data is promising regarding the ability of the tat-derived
peptides to reduce detectable plasma levels of HIV in these mice at two weeks post
intraperitoneal inoculation, longitudinal peripheral blood analysis during ongoing treatment
would further clarify the potential of these peptides for future clinical applications and
provide information regarding the likelihood of developing resistance mutations in vivo.

ART has brought many benefits to HIV patients and demonstration of successful ART in
humanized mice is critical to the future usefulness of these models. Choudhary, et al.
determined peripheral blood and intestinal tissue levels of intraperitoneally delivered
emtricitabine, tenofovir and the integrase inhibitor L-870812. This comprehensive
pharmacokinetic analysis was used to develop a triple-combination ART dosing regimen in
CD34+ cell transplanted DKO mice [114]. Longitudinal analysis of the effects of this
antiretroviral combination showed reduced plasma viral RNA in HIV infected humanized
mice [114]. In two mice, failure of therapy occurred due to the development of resistance
mutations to tenofovir and to the integrase inhibitor suggesting that further optimization of
this drug regimen is needed. Nevertheless, when ART was discontinued, the plasma viral
RNA concentrations rebounded to pretreatment levels in all humanized mice tested [114].
Sango, et al. reported that ART consisting of AZT, lamivudine and indinavir suppressed
HIV in CD34+ cell transplanted DKO mice [142]. This 7-week ART regimen, administered
in sterile drinking water, was able to reduce recoverable replication competent virus from
spleen (which is the site of virus inoculation) 300-fold compared to untreated control mice.
HIV suppression in vivo typically refers to a durable reduction in plasma viremia to below
the limit of detection; unfortunately, in this study only a single data point was reported for
pooled (n=4) plasma RNA at the end of the 7-week ART regimen [142]. Analysis of pooled
plasma can facilitate more sensitive viral RNA detection and 69 copies per ml was reported
for the treated group, indicating that a relatively sensitive assay was used. No breakthrough
in plasma viremia during ART was observed, although longitudinal data was not shown
[142]. This research group also evaluated the ability of the broadly neutralizing anti-HIV
antibody 2G12 to reduce HIV infection when expressed in humanized mice [143]. Human
CD34+ cells were transduced with a lentiviral vector encoding 2G12 prior to being
transplanted to generate humanized NSG mice. One week post-intraperitoneal HIV
inoculation, mice were harvested and both the number of replication competent viruses
recovered from the spleen and the number of plasma viral RNA copies were quantitated.
The results showed that 2G12 reduced recoverable virus 200-fold and the pooled plasma
showed a 70-fold reduction in viral RNA copies versus control [143]. When a separate
research group utilized dimeric 2G12 sustained at low levels in peripheral blood via “back
pack” administration units on CD34+ cell transplanted DKO mice, they found that this
dimerized neutralizing antibody further reduced the detectable viral load and lessened the
loss of CD4+ T cell associated with HIV infection when compared to treatment with
monomeric 2G12 [144]. The data presented from these manuscripts demonstrates successful
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therapy in humanized mice helping to fulfill the critical need for the validation of humanized
mice for preclinical evaluation of novel therapeutic interventions.

HIV infection requires the presence of both a primary receptor (CD4) and a co-receptor
(CCR5/CXCR4). Several therapeutic strategies targeting CD4 or CCR5 have been
considered. There is great potential for the curative capacity of such approaches as
illustrated first by the effective clinical use of CCR5 targeted therapies and by the long-term
control of HIV infection in an HIV-positive patient with acute myeloid leukemia [145]. This
patient received two hematopoietic stem cell transplants from the same HLA-matched
transplant donor who was homozygous for a 32 base pair deletion in CCR5 (delta 32).
CCR5 containing this delta 32 deletion is no longer is capable of acting as a co-receptor for
HIV [146]. Therefore, the CCR5Δ32/Δ32 cells derived from the donor stem cells are resistant
to HIV infection and the transplant recipient's viral load has remained undetectable for more
than 3.5 years in the absence of ART [145, 147]. Holt, et al. tested an exciting application of
therapeutically mutating CCR5 in the human cells of CD34+ cell transplanted NSG mice.
They evaluated the ability of CCR5-targeting zinc-finger nucleases to control HIV infection
[148]. CD34+ cells were nucleofected with zinc-finger nuclease expression plasmids prior to
transplantation. The human hematopoietic cells in the mice transplanted with nucleofected
cells had disrupted CCR5 expression. An advantage of the zinc-finger nuclease approach is
this disruption of the CCR5 gene is permanent, thus all progeny of altered CD34+ cells are
unable to express CCR5 with no overt functional defects. The CCR5-deficient CD4+ T cells
(estimated at 5-7% of the original total CD4+ T cell population) survived HIV mediated
cytopathology and expanded to pre-infection levels [148].

Novel strategies for targeted delivery of siRNA as HIV therapy have also been evaluated in
humanized mice [149]. Kumar, et al. developed and tested a CD7-specific targeting
construct that can deliver anti-CD4, -CCR5, -vif and -tat siRNAs specifically to human T
cells. These constructs were shown to reduce surface CD4 expression on activated PBMC
by 1 log [150]. CD34+ cell transplanted NSG mice were treated intravenously with an anti-
vif/tat construct and then infected intraperitoneally with HIV 18 hours later. Subsequent
administrations of the construct followed at 4-5 day intervals for a total of 40 days. Despite
the fact that this approach did not prevent infection, the peak plasma viral loads in the
treated mice was 30-fold lower in treated mice when compared to the control siRNA-
construct treated mice. This reduction in viral levels was maintained for the duration of the
experiment [150]. Kim, et al. utilized BLT mice to examine whether RNAi-mediated
silencing of CCR5 expression could prevent infection after intraperitoneal injection of HIV
[151]. Their novel immunoliposome siRNA delivery method specifically targeted
lymphocytes for RNA interference based on lymphocyte function-associated antigen-1
(LFA-1) expression. Targeted administration of the siRNA resulted in a reduction in plasma
viral RNA levels and CD4+ T cell loss, but did not prevent infection from occurring [151].
Neff, et al. have shown that aptamer delivered siRNA targeting HIV tat and rev suppressed
plasma viral load levels by several orders of magnitude in CD34+ cell transplanted DKO
mice [134]. In four treated animals, weekly treatment with the Ch A-1 aptamer was
sufficient to suppress viral load to levels below detection for up to 3 weeks after treatment
was ceased; however, viral breakthrough did occur in two mice after 3 weeks of treatment
suggestive of the development of resistance to Ch A-1 [134]. None of these siRNA-based
methods permanently alter the genomic DNA, as with the zinc-finger nuclease above. Still
they hold great promise as HIV therapeutics precisely because they do not require ex vivo
manipulation of targeted cells.

Mucosal HIV transmission
Unprotected intercourse accounts for the majority of new HIV transmissions [1]. Reliable
mucosal HIV transmission in humanized mouse models, like that observed for the BLT
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model, has opened new opportunities for in vivo evaluation of prevention strategies. Vaginal
and rectal HIV infection in humanized mice is contingent on the presence of the human cells
necessary for transmission in the female reproductive tract and the rectum. However, it is
the chosen mouse strain and humanization protocol that determines the extent of human
reconstitution in these important tissues. As described above, human CD4+ T cells,
monocyte/macrophages and dendritic cells extensively reconstitute all regions of the BLT
mouse female reproductive tract [90, 137, 152]. The extensive reconstitution of these
mucosal sites in BLT mice renders these animals susceptible to efficient vaginal HIV
transmission (7 of 8 total [R5]) [90, 153]. Furthermore, the reconstitution of the intestines,
including the rectum of BLT mice with human cells required for HIV transmission renders
them also susceptible to rectal HIV transmission (18 of 26 total [X4 and R5]) [91, 136].

The mucosal transmission of HIV in CD34+ cell transplanted NOG/NSG mice has not been
addressed in the literature. However, mucosal transmission has been examined in CD34+

cell transplanted DKO mice. Particularly in the case of rectal exposure in this model, there is
a discrepancy in the literature regarding their susceptibility to HIV transmission. Among the
four research groups that have examined the human reconstitution of these mucosal tissues
described above [77, 113-115], only two groups have attempted either vaginal or rectal HIV
transmission in these mice. Vaginal HIV transmission has been shown to be efficient in this
model twice by the same group (20 of 21 total [X4 and R5]) [113, 123]. However, when
both groups attempted rectal HIV transmission in CD34+ cell transplanted DKO mice, the
results were entirely different [30, 115]. In one case transmission was efficient (11 of 14
total [X4 and R5]), while rectal transmission was rare in the other report regardless of
whether inoculation occurred with cell-free or cell-associated HIV (1 of 23 total [R5]) [30,
115]. In this second report, the authors also unsuccessfully attempted to increase rectal HIV
transmission in these mice by rectal administration of IL-1beta 24 hours preceding viral
exposure in the presence or in the absence of human seminal plasma (1 of 17 total [R5])
[115]. Additional work must be done to address this dramatic discrepancy in the
susceptibility of CD34+ cell transplanted DKO mice to rectal HIV transmission.

HIV prevention
HIV continues to spread at an alarming rate and successful biomedical HIV prevention tools
are urgently needed. Mucosal HIV transmission accounts for the vast majority of new HIV
infections. The fact that vaginal and rectal HIV transmission can be reproducibly performed
in BLT mice makes this model, along with the CD34+ cell transplanted DKO mice, a critical
component in our response to this pandemic in that they will serve as outstanding models for
the preclinical evaluation of HIV prevention strategies.

Clinical interventions designed to decrease HIV transmission currently being tested include
topical pre-exposure prophylaxis (PrEP) and systemic PrEP with antiretrovirals. Recently,
the CAPRISA 004 clinical trial reported that 1% tenofovir applied vaginally before and after
intercourse resulted in a 39% reduction in incidence of HIV in the two high risk populations
of South African women enrolled[154]. Subsequently, the iPrEx clinical trial reported that
daily oral emtricitabine (FTC) and tenofovir disoproxil fumarate (TDF) (co-formulated as
Truvada®) led to a 44% reduction in incidence in HIV in men who have sex with men at
eleven sites in 6 countries [155]. When adjustments were made to account for adherence in
the iPrEx trial participants as defined by detectable study drugs in plasma, the reduction in
incidence was 92%. These very encouraging data show that antiretroviral PrEP has the
potential to slow the spread of HIV in high-risk populations. These observations also bring
us to a critical line of investigation in humanized mice: preclinical in vivo efficacy
evaluations of biomedical interventions for HIV prevention such as topical and systemic
PrEP.
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To date, there are no reports published regarding the efficacy evaluation of topical PrEP
(microbicides) for the prevention of HIV in humanized mice, but both BLT mice and CD34+

cell transplanted DKO mice have been used to demonstrate in vivo the efficacy of systemic
PrEP in preventing HIV transmission [90, 123, 136]. BLT mice were treated once daily for
seven days with Truvada, in a manner that recapitulated the experimental design used for the
iPrEx trial [155]. Three hours following the third FTC/TDF dose, mice were rectally
exposed to HIV. FTC and TDF were very effective at protecting BLT mice from rectal HIV
transmission with a protection level of 100% [136]. The iPrEx trial results indicated that the
most adherent participants experienced a greater than 90% reduction in incidence and the
BLT mouse result that 100% of mice were protected together show that daily systemic FTC/
TDF can prevent rectal HIV transmission and the similar protection levels observed in both
studies serves to validate the BLT system for further preclinical efficacy evaluations of
novel HIV prevention approaches. To this end, the same 7-day regimen of FTC/TDF used
for the rectal study also prevented 100% of vaginal transmissions in BLT mice [90].
Therefore, given the success of systemic PrEP in humans and BLT mice for the prevention
of rectal HIV transmission, as well as for the prevention of vaginal HIV transmission in
BLT mice, there is reason to be optimistic regarding the outcomes of ongoing clinical trials
evaluating systemic PrEP with FTC/TDF to prevent vaginal transmission in women. In the
case of intravenous exposure, the seven day PrEP regimen resulted in 88% protection from
transmission in BLT mice [136]. However, when the FTC/TDF treatment was begun 24
hours following intravenous HIV inoculation, detection of the virus in plasma was only
delayed. This post exposure prophylactic approach offered 0% protection from intravenous
HIV transmission [136]. Consequently, having the drugs present systemically prior to
exposure was important for the protection of BLT mice from intravenous HIV transmission.
The drug investigation pipeline in humanized mice was expanded by Neff, et al. who tested
closely related 7-day systemic PrEP regimens consisting of either oral raltegravir (an
integrase inhibitor) or oral maraviroc (a CCR5 inhibitor) [123]. They found that each drug
showed 100% efficacy at preventing vaginal HIV transmission in these CD34+ cell
transplanted DKO mice [123]. In conclusion, the iPrEx trial results validate the BLT model
for the preclinical efficacy evaluation of biomedical interventions to prevent rectal HIV
transmission which highlights the usefulness of the model for the preclinical efficacy
screening of other prevention interventions, including microbicides.

Conclusions and Future Directions
The versatility of humanized mice in HIV research is evident in the body of work presented
here. The ability to study HIV biology and anti-HIV approaches in vivo using humanized
mice is a major advance in the field of HIV research. These mouse models are already being
utilized to perform preclinical efficacy evaluations of HIV prevention and HIV therapeutic
interventions, but they can be used to a much greater extent in these efforts. To best harness
the power of the humanized mouse models we need to know more about the human immune
responses occurring in these animals. It will be critical to discern whether anti-HIV NK
responses are occurring as well as whether HIV neutralizing antibody titers (broad or
narrow) are being generated within humanized mice, what is the magnitude of any detected
responses and whether secretory IgA or other antibody isotypes are involved in the response.
An underexplored area of humanized mouse research is their potential usefulness for
vaccines. Functional human anti-viral immune responses in BLT mice combined with
relevant routes of infection provide a unique opportunity to evaluate protective HIV-specific
immune responses. Furthermore, the ability to reliably perform mucosal HIV transmissions,
especially in BLT mice, presents numerous opportunities for examining the protective
effects of antibodies at mucosal surfaces. Another critical experimental question to address
in HIV infected humanized mice is: does the development and maintenance of a latent viral
reservoir during anti-retroviral therapy occur in humanized mice as it does in humans?
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Focusing research in humanized mice on each of these critical aspects of the fight against
HIV can accelerate the effort to help individuals infected with HIV or at risk of becoming
infected with HIV. This effort will be further enhanced as humanized mouse researchers
begin to diligently compare data from their humanized mouse research with data available
from human and NHP studies whenever possible. In the future we expect significant
refinements to these humanized mouse systems, which will enhance the already enormous
potential of humanized mice to contribute to all aspects of HIV researchss.
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Table 1
Humanized mouse models and topical listing of HIV-related references.Δ

CD34+ TRANSPLANTED HUMANIZED MICE

Mouse Strain /
Humanized Mouse DKO* NOG* NSG* BLT#

In vivo HIV replication and
pathogenesis

• Baenziger, 2006

• Berges, 2006

• An, 2007

• Gorantla, 2007

• Zhang, 2007

• Berges, 2008

• Hofer, 2008

• Jiang, 2008

• Van Duyne,
2008

• Berges, 2009

• Choudhory,
2009

• Ince, 2009

• Hofer, 2010

• Sango, 2010

• Neff, 2010

• Luo, 2010

• Neff, 2011

• Watanabe,
2007
(Blood)^

• Watanabe,
2007 (JVI)^

• Nie, 2009

• Sato, 2010
(JVI)

• Sato, 2010
(Vaccine)

• Van
Duyne,
2008

• Kumar,
2008

• Gorantla,
2010 (JI)

• Gorantla,
2010 (AJP)

• Holt, 2010

• Joseph,
2010̂

• Dash, 2011

• Sun, 2007

• Denton,
2008

• Brainard,
2009

• Denton,
2010

• Kim, 2010

• Garg, 2011

Human anti-HIV responses

Humoral

• Baenziger, 2006
◆

• An, 2007 ⊗

• Gorantla, 2007
⊗

• Ince, 2009 ⊗

Cellular

• An, 2007 ⊗

Humoral

• Sato, 2010

(Vaccine) ◆

• Watanabe,
2007

(Blood)^◆

APOBEC

• Sato, 2010

(JVI) ◆

Cellular

• Gorantla,

2010 (JI) ψ

Humoral

• Sun,2007 ψ

• Brainard,

2009 ψ

Cellular

• Brainard,

2009 ψ

HIV therapy

ART

• Choudhory,
2009

• Sango, 2010

tat-derived peptides

• Van Duyne,
2008

Neutralizing Ab

• Luo, 2010

aptamer delivered siRNA

Not Evaluated

tat-derived peptides

• Van
Duyne,
2008

T-cell directed siRNA

• Kumar,
2008

Zinc-finger Nuclease

• Holt, 2010

Neutralizing Ab

T-cell directed siRNA

• Kim, 2010
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CD34+ TRANSPLANTED HUMANIZED MICE

Mouse Strain /
Humanized Mouse DKO* NOG* NSG* BLT#

• Neff, 2011
• Joseph,

2010̂

Mucosal HIV transmission

Vaginal

• Berges, 2008

• Neff, 2010

Rectal

• Berges, 2008

• Hofer, 2008

Not Evaluated Not Evaluated

Vaginal

• Denton,
2008

Rectal

• Sun, 2007

• Denton,
2010

HIV prevention

Vaginal

• Neff, 2010 Not Evaluated Not Evaluated

Vaginal and Rectal

• Denton,
2008

• Denton,
2010

Intravenous

• Denton,
2010

Δ
Note that some papers covered multiple topics and therefore are repeated under the various appropriate headings on the last 4 lines of the table.

*
Unless indicated by the ^, mice were generated by the typical protocol where the CD34+ cell transplant was given to newborns.

Those entries marked ^ are studies in which the CD34+ cell transplant was given to adult mice.

#
BLT mouse generation includes a Bone marrow transplant of CD34+ hematopoietic progenitor cells into NOD/SCID or NSG mice previously

implanted with autologous fetal Liver and Thymus tissue.

⊗
HIV-specific human immune responses were examined, but not detected.

◆
HIV-specific human immune responses were occasionally detected.

ψ
HIV-specific human immune responses were consistently detected.
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Table 2

Key characteristics of immunodeficient mouse strains most frequently used for humanization.

Parent Strain Additional Mutation Most commonly humanized strains
Strain Characteristics
(from Shultz, et al.
2007)

Frequent labels for
humanized mice of
each strain

Rag2 Knockout mice IL2 receptor gamma
chainknockout BALB/c-Rag2nullγcnull

• Typical
lifespan
greater than
1 year

• No mouse T,
B, or NK
cells

• Radiation
resistant

• double
knockout
or DKO-
hu HSC

• RAG-hu
mice

• HIS or
“human
immune
system”
mice

Non obese diabetic /
Severe Combined
Immuno-deficient

IL2 receptor gamma
chain knockout

NOD/SCIDγcnull

(NOG: NOD/Shi- scidγcnull) (NSG:
NOD/LtSz- scid/scidycnull)

• Typical
lifespan
greater than
1 year

• No mouse T,
B, or NK
cells

• Radiation
sensitive

• Fewer stem
cells
required for
engraftment

• NOG-hu
HSC
mice

• NSG-hu
HSC
mice

• NSG
BLT
mice

→ NOD/SCID
(NOD/Shi-scid) (NOD/LtSz-scid/scid)

• Lifespan of
∼1 year due
to thymic
lymphomas
that develop
in some
animals

• No mouse T
or B cells /
Reduced NK
cell levels

• Radiation
sensitive

• No human T
cells develop
in absence of
human thy/
liv implant

• BLT
mice

• N/S BLT
mice
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