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Genome structure of a Saccharomyces cerevisiae
strain widely used in bioethanol production
Juan Lucas Argueso,1,9,10 Marcelo F. Carazzolle,3,9 Piotr A. Mieczkowski,6,9

Fabiana M. Duarte,3 Osmar V.C. Netto,3 Silvia K. Missawa,3 Felipe Galzerani,3

Gustavo G.L. Costa,3 Ramon O. Vidal,3 Melline F. Noronha,3 Margaret Dominska,1

Maria G.S. Andrietta,4 Sı́lvio R. Andrietta,4 Anderson F. Cunha,5 Luiz H. Gomes,7
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Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the
yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the
sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid
(JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous
(;2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rear-
rangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences.
Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed
by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near
the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is
consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are
free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and
JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as
high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of
such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles
for future bioenergy technologies.

[Supplemental material is available online at http://www.genome.org. This whole-genome shotgun project has been de-
posited at DDBJ/EMBL/GenBank under accession no. ACFL00000000. The version described in this work is the first
version, ACFL01000000. The microarray data from this study have been deposited at the NCBI Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under accession nos. GSE14601 and GSE17578.]

As concerns mount over the alarming effects of climate change and

of the continued volatility in petroleum markets, nations throughout

the world are increasingly adopting policies to promote the use of

renewable and domestic sources of energy (Robertson et al. 2008).

Among the most viable alternatives, bioethanol stands out as

a benchmark biofuel because its production is based on a proven

technological platform. Bioethanol is produced through microbial

fermentation of carbohydrates derived from agricultural feed-

stocks, mainly starch and sucrose. While the United States and

Brazil are the dominant players in bioethanol, sharing ;70% of the

global market, their production systems differ in many respects

(Sanderson 2006; Goldemberg 2007). North American bioethanol

is currently produced from enzymatically hydrolyzed starch from

grains. Farming this type of feedstock is energy-intensive, resulting

in a final energy balance that is only marginally positive. This

process is currently regarded as a transitional technology, which in

the coming years is expected to give way to advanced cellulosic

biofuels (Gura 2009). The Brazilian system uses sugar cane as feed-

stock, a tropical grass crop that abundantly accumulates sucrose
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that can be converted to bioethanol directly by the yeast Saccha-

romyces cerevisiae without enzymatic pre-treatment. Among other

advantages, sugar cane is semiperennial and has symbiotic in-

teractions with nitrogen-fixing microorganisms, allowing this

system to produce an energy surplus estimated at about eightfold

(Goldemberg 2007; Robertson et al. 2008).

In the microbial fermentation process used in Brazil, the

yeast inoculum is often recycled from one fermentation tank to

the next (Wheals et al. 1999). In many distilleries, this recycling

spans the entire 8-mo sugar cane harvesting season (Basso et al.

2008), imposing both biotic and abiotic stresses on the fermenting

yeast strain. While yeast strains genetically bred for high effi-

ciency in fermentation have been available since the 1980s

(Tavares and Echeverrigaray 1987), they are often outcompeted

in the industrial environment by more robust ‘‘wild’’ yeasts

that contaminate the sugar cane stalks (Wheals et al. 1999; da Silva

et al. 2005). In the 1990s, an alternative strategy was adopted:

selection among the wild yeast contaminants for those that com-

bined high fermentation efficiency with prolonged persistence

in the system. In recent years, such strains have been widely

adopted by the industry. One of the most successful examples is

the PE-2 wild isolate (Basso et al. 2008), currently used by ;30% of

Brazilian distilleries, generating ;10% of the world’s bioethanol

supply.

Thirteen years ago, the S. cerevisiae laboratory strain S288c

became the first eukaryote to have its genome completely se-

quenced (Goffeau et al. 1996). Since then, other haploid strains

from diverse backgrounds have been sequenced (RM11-1a,

YJM789, M22, YPS163, and AWRI1631; S. cerevisiae RM11-1a Se-

quencing Project; http://www.broad.mit.edu/) (Wei et al. 2007;

Borneman et al. 2008; Doniger et al. 2008), and more recently

a large-scale effort to determine the genome sequences of many

others has been completed (Liti et al. 2009).

Extensive analysis has been done to examine the nucleotide

sequence diversity between these strains (Liti et al. 2009; Schacherer

et al. 2009), whereas studies of structural variation have mostly

focused on comparisons of S. cerevisiae to other related species

(Fischer et al. 2000; Goffeau 2004; Scannell et al. 2007; Gordon

et al. 2009). Microarray-based whole-genome hybridization stud-

ies of wild, industrial, and laboratory S.

cerevisiae strains (Winzeler et al. 2003;

Carreto et al. 2008; Faddah et al. 2009;

Schacherer et al. 2009) have uncovered

a recurrent pattern of copy number vari-

ation (CNV) near the ends of chromo-

somes, suggesting a role for repetitive

DNA sequences in structural genome di-

versification. Despite these valuable in-

sights, two central questions regarding

the role of chromosomal rearrangements

in genome evolution in S. cerevisiae re-

main unanswered: First, it is still unclear

how these rearrangements contribute to

long-term fitness in natural environ-

ments; and second, it is not known if they

are compatible with the formation of vi-

able meiotic spores that would allow their

sexual dissemination between natural S.

cerevisiae populations.

In this study, we report a detailed

molecular genetic characterization of a

PE-2 derived diploid (JAY270) and the

complete genome sequence of a derived haploid (JAY291). We

have found extensive structural differences between the genome of

JAY270 and those of other sequenced S. cerevisiae strains, including

chromosomal translocations and insertions of large blocks of DNA

absent in the reference strain’s genome. These differences were

confined to the peripheral regions of the chromosomes, while the

central portions have remained structurally conserved. This pat-

tern of structural variation was fully compatible with the forma-

tion of viable meiotic spores, and in some cases, the chromosome

rearrangements resulted in the amplification of genes implicated

in environmental stress tolerance. This observation supports

a model in which S. cerevisiae chromosomes are organized in two

structural domains (Pryde et al. 1997). Our data suggest a general

chromosome organization in which the central core sectors, har-

boring the essential genes, are refractory to rearrangements, while

the peripheral regions are highly plastic and are free to undergo

ectopic recombination.

Results

Genetic and phenotypic characterization

Before initiating a detailed characterization of PE-2, we used

pulsed-field gel electrophoresis (PFGE) to show that the commer-

cially available stocks of this strain contain a mixture of cells that

have slightly diverged karyotypes (Supplemental Fig. 1). Conse-

quently, we purified a single colony isolate with a representative

karyotype. This isolate, JAY270, was indistinguishable from the

original PE-2 culture in phenotypic tests (Fig. 1A; data not shown)

and was used in all subsequent experiments.

Upon induction of meiosis, JAY270 displayed rapid and effi-

cient sporulation, producing mostly asci with four ascospores. We

dissected 104 tetrads and observed four viable spores per tetrad in

88 (93.3% spore viability). By PCR analysis, we found 2:2 segre-

gation at the mating type locus (MAT) (data not shown). These

results show that JAY270 is a diploid, does not contain recessive

lethal mutations, and is not heterozygous for chromosome aber-

rations that span essential genes. The haploid segregants derived

from JAY270 had stable MATa or MATa genotypes, indicating that

Figure 1. Comparative phenotypic analysis of JAY270 and S288c. (A) Sugar cane extract fermenta-
tion assays (;18% sucrose). The ethanol concentration shown is the average reached in four fermen-
tation assay repetitions, each comprised of four consecutive 15 h of fermentation at 30°C with cell
recycling (see Methods for details). (B) Reactive oxygen (menadione) and temperature effects on colony
growth. Tenfold serial dilutions of saturated cultures spotted (5 mL) in rich medium (YPD) containing
various concentrations of menadione were incubated at the indicated temperatures and scanned after
the indicated incubation period. The S288c-isogenic control strain used in A was the BY4741 haploid
and in B was the JAY309 diploid.

Genome Research 2259
www.genome.org

Bioethanol yeast genome



the strain is naturally heterothallic. We crossed haploid strains

(both MATa and MATa) derived from JAY270 to S288c-derived

strains of the opposite mating type. The hybrid diploids produced

in these crosses sporulated normally, had high spore viability

(75%–95%), and exhibited Mendelian segregation for all auxo-

trophic markers from the S288c-derived parent. These results argue

that the chromosome structure of JAY270 is mostly collinear with

that of S288c, at least in the regions required for viability.

We compared JAY270 and its derivatives to S288c in several

phenotypic tests. In sugar cane extract fermentation assays that

simulate the conditions found in the industry (Fig. 1A), JAY270 and

all four spore clones from a JAY270 tetrad (segregants JAY289,

JAY290, JAY291, and JAY292) produced roughly 50% more ethanol

than the S288c strain. The observation that all four spore clones

were equally proficient in ethanol production argues that the major

alleles contributing to this complex phenotype are homozygous

in the JAY270 diploid. We also compared growth phenotypes un-

der a variety of stress conditions. Tolerance to ethanol, acid wash-

ing, and short-term heat killing were not differently affected in

these strains (Supplemental Fig. 2); however, JAY270 was much

more tolerant to oxidative stress and high-temperature growth

than S288c (Fig. 1B). When grown in the presence of menadione,

an inducer of reactive oxygen species, JAY270 grew normally at

concentrations that were inhibitory to S288c. JAY270 was also

highly tolerant to temperature stress. While S288c had reduced

growth rates at 37°C and did not form isolated colonies at 41°C,

JAY270 formed larger colonies at 37°C than it did at 30°C (Sup-

plemental Fig. 3). At 41°C, JAY270 displayed slower growth

but maintained full viability. These traits are likely important

for long-term viability and competitiveness in the industrial set-

ting, where oxidative stress (Landolfo et al. 2008) and heat are

generated during high-pitch fermentation (fermentation involving

large inocula).

Finally, we examined the patterns of genetic inheritance as-

sociated with two of the most important industrial traits of JAY270:

cell mass accumulation and kinetics of ethanol production. To

bypass the influence of factors specific to sugar cane extract (e.g.,

sucrose utilization), the fermentations were carried out in rich

media with 10% glucose. We mated an S288c-isogenic strain to

a haploid spore derived from JAY270 (JAY291) and generated hy-

brid diploids. Two reciprocal F1 generation diploids (JAY361 and

JAY365) were created by mating r0 mitochondrial petites derived

from either parent (Fox et al. 1991). These two diploids were

phenotypically indistinguishable from each other (data not

shown), indicating that differences between the mitochondrial

genomes of S288c and JAY291 do not have a major influence on

the traits examined. We then evaluated the JAY291 and S288c

haploid parents and the F1 hybrid JAY361 in time-course fermen-

tations. JAY291 displayed a higher growth rate and finished the

fermentation with a cell density 34% higher than S288c; the

JAY361 hybrid had an intermediate phenotype (Fig. 2A). Under

the conditions used in this assay, all three strains reached the same

final concentration of ethanol at the end of the fermentation (Fig.

2B), but JAY291 and JAY361 were much more efficient, displaying

higher kinetics of ethanol production and requiring ;30% less

time than S288c to complete the fermentation. We have not tested

diploidized versions of the JAY291 and S288c parents in these as-

says; therefore, we cannot firmly ascertain dominance effects as-

sociated with these traits. However, if ploidy is not an influencing

factor, our results would suggest that the cell mass accumulation

trait is semidominant, whereas the kinetics of the ethanol pro-

duction trait is fully dominant.

We sporulated and dissected asci from JAY361 to isolate F2

haploids segregating genomic segments from the two parent

strains. Individual clones in this progeny were then examined for

final cell mass accumulation and ethanol concentration after 8 h of

fermentation (the point of highest differential between the par-

ents) as an indicator of ethanol production kinetics. The pheno-

typic distributions for these two traits in the progeny were quite

distinct and gave preliminary indications of the genetic control

associated with each. The distribution of cell mass accumulation

(Fig. 2C) appeared to be bimodal, with two distinct peaks centered

around the phenotypes of the parents and a valley that corre-

sponded roughly to the phenotype of the F1 hybrid. One in-

terpretation of this pattern is that it was created by segregation of

the two alleles of a single gene that is the major determinant of the

cell mass accumulation phenotype. In addition to this major locus,

the segregation of other minor contributing alleles was responsible

for the bell-shaped distribution around each peak. The distribution

of ethanol production kinetics (Fig. 2D) was more typical of

a quantitative trait controlled by loci with roughly equal contri-

butions to the phenotype. From this limited initial analysis, we can

estimate that three or four genes are responsible for the segregation

pattern observed for ethanol production kinetics.

We also asked whether there is a correlation between cell mass

accumulation and ethanol production kinetics. This analysis (Fig.

2E) suggested that the two traits are largely independent of each

other and are presumably controlled by different genes. The cal-

culated broad-sense heritabilities associated with both traits were

very high (H2 > 0.90), indicating that most of the phenotypic

variance observed between F2 individuals was due to differences in

genetic composition.

Molecular karyotype analysis

We compared the molecular karyotypes of JAY270 and S288c using

a combination of PFGE, and microarray-based comparative geno-

mic hybridization (CGH-array) and band-array (Argueso et al.

2008). PFGE analysis revealed clear chromosome (Chr) length

polymorphisms between S288c and JAY270 (Fig. 3A). This analysis

also showed polymorphisms between several pairs of homologs

within the JAY270 diploid. Image tracing of the separated chro-

mosomes in JAY270 revealed that some chromosomes were rep-

resented by two bands, each present in one copy in the diploid. For

example, Chr6 is represented by short (Chr6S) and long (Chr6L)

homologs, differing in size by ;60 kb. Interestingly, karyotypic

analysis of the meiotic haploid spores revealed parental-sized

chromosomes in JAY289 and JAY290, and chromosomes with the

sizes expected for reciprocal recombinants between Chr6S and

Chr6L in JAY291 and JAY292 (Fig. 4A, second band from the bot-

tom). In addition to Chr6, at least Chr3, Chr5, Chr9, Chr11,

Chr14, and either Chr7 or Chr15 had length polymorphisms be-

tween homologs in JAY270.

We examined the structural polymorphisms between the

Chr6 homologs by excising their respective chromosomal bands

from PFGE, labeling the DNA, and hybridizing them to micro-

arrays covering the entire S288c reference genome (band-array;

Fig. 5). The JAY270 Chr6 homologs differed from each other and

from Chr6 in S288c only near the chromosome ends, in regions

distal to the first and last essential genes (SEC53 and RPN12). This

analysis showed that Chr6L contained an ;16-kb region on the

left arm that was missing in Chr6S (including the AGP3 gene), and

that Chr6S contained an ;12-kb translocation from the right arm

of Chr1 (including the YAR064W gene) that was missing in Chr6L.

Argueso et al.
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Southern analysis (Fig. 4B,C) confirmed this arrangement and

revealed an additional translocation involving AGP3 on one of two

Chr10 homologs of JAY270. Notably, the cumulative band-array

hybridization signal for Chr6L (;322 kb in size; Fig. 2A) accounted

for only ;250 kb of sequence, suggesting the presence of ;70 kb of

DNA that did not hybridize to the microarrays.

We used CGH-arrays to look for sequences that were missing or

duplicated in JAY270 relative to S288c (CNVs; Fig. 3B). Most regions

of the genome were present in equal doses between these strains.

The regions in Figure 3 shown in green near the telomeres of Chr1,

Chr4, Chr6, Chr10, and Chr15 were underrepresented in the

JAY270 genome. These could be either missing in JAY270 or repre-

sent diverged sequences that do not hybridize to the S288c-based

microarrays. The underrepresented regions that were not telomeric

corresponded to regions containing tandemly repeated genes in

S288c (HXT7, HXT6, HXT3, and ENA5, ENA2, ENA1 in Chr4, and

ASP3-1 to ASP3-4 in Chr12) that likely contracted in JAY270 or ex-

panded in S288c as a consequence of unequal crossing over; the

regions shown in red represent sequences that were amplified in

JAY270 relative to S288c. An amplification signal detected in the

central section of Chr15 corresponded to the HIS3 marker locus. This

gene is present in JAY270 but was intentionally deleted in the de-

rivative of S288c that was used in the CGH-array experiments. Thus,

we can effectively detect a single amplified gene by these methods.

The amplification at the left end of Chr16 spans the SAM3 and

SAM4 genes that are involved in the metabolism of S-adeno-

sylmethionine (AdoMet), a key biochemical cofactor that partici-

pates in a variety of metabolic pathways. The Sam4p has been

proposed to participate in the recycling of AdoMet from the in-

active, and possibly toxic, (R,S)-AdoMet isomeric state back to the

biologically essential form (S,S)-AdoMet (Vinci and Clarke 2007).

Based on CGH-array and Southern blot data (Fig. 3B; data not

shown), we estimate that four copies of these genes are present in

JAY270 compared to two in the laboratory diploid strain.

Figure 2. Genetic analysis of cell mass accumulation and ethanol production kinetics. (A) Kinetics of cell mass accumulation and (B) ethanol production
during fermentation of rich media with 10% glucose. The results show the average values and standard error for three biological replicates from each
strain. The S288c-isogenic strains used in these assays were the MATa haploids S1 (r+) and S97 (r0). The JAY361 diploid was obtained by mating JAY291
and S97; this diploid inherited 100% of its mitochondrial genome from JAY291. (C) The distributions of cell mass accumulation after 18 h and (D) ethanol
production after 8 h among haploid F2 spores derived from JAY361. F2 individuals were grouped in bins according to their phenotypes, and the bars
represent the number of individuals in each phenotypic bin. (E) Scatterplot of cell density (x-axis) versus ethanol concentration (y-axis) for all F2 individuals
tested in both assays (gray dots). The relative phenotypes of (P1) JAY291, (F1) JAY361, and (P2) S1. n is the number of F2 individuals in each data set, H2 is
the broad-sense heritability calculated from phenotypic and environmental variances, and r2 is the coefficient of correlation between the two traits
analyzed. Only data from non-flocculant F2 individuals were used in this analysis.
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Another interesting gene amplification resulted in two peaks

at the left ends of Chr6 and Chr14. In S288c these regions contain,

respectively, the duplicated SNO3 and SNZ3, and SNO2 and SNZ2

genes, which are involved in vitamin B6 metabolism and have

a role in oxidative stress tolerance (Padilla et al. 1998; Ehrenshaft

et al. 1999; Rodriguez-Navarro et al. 2002). To determine the extent

and chromosomal distribution of the SNO/SNZ gene amplifica-

tions in JAY270, we did a Southern analysis of pulsed-field gels for

this region (Fig. 4D). We detected nine copies of the SNO/SNZ genes

in JAY270, compared to four in the S288c diploid. Consistent with

this observation, we found that expression levels of these genes

were up-regulated about fourfold in JAY270 relative to S288c

(Supplemental Table 1). These results also showed that SNO/SNZ

genes were redistributed among the chromosomes in JAY270 with

no copies on either Chr6 homolog and new copies on Chr9,

Chr10, Chr13 or Chr16, Chr7 or Chr15, and Chr4 (Fig. 4D).

Strikingly, three of the extra copies were hemizygous (only one

copy of a gene is present in a pair of homologous chromosomes) in

the JAY270 diploid as could be inferred from their Mendelian

segregation among the haploid spores JAY289–JAY292.

Genome sequencing of JAY291, a haploid spore derived
of JAY270

In addition to the molecular genetic analysis described above, we

used massively parallel DNA sequencing to characterize the ge-

nome of JAY270. To avoid complications due to heterozygosity in

the diploid, we sequenced the genome of a haploid derivative,

JAY291. Two independent DNA sequencing platforms were used,

454 Life Sciences (Roche) and Illumina, resulting in 162-fold coverage

(Table 1). Despite this high level of redundancy, because both of

these methods generated relatively short sequence reads (<250 bp),

we were still unable to assemble the genome into one single con-

tiguous sequence per chromosome. Instead, our de novo assembly

of the JAY291 genome resulted in 452 genomic fragments (contigs;

Methods). As expected, when we compared these contigs to the

Figure 3. Molecular karyotype and gene CNV in JAY270. (A) PFGE and densitometric analysis of individual chromosomal bands in S288c and JAY270.
The size of the peaks reflects the intensity of the ethidium bromide staining for each chromosomal band as determined by image analysis using Bio-Rad
QuantityOne software. The predicted chromosome sizes (in kilobases) shown next to the corresponding chromosomal peaks were determined by
comparison to the Bio-Rad l molecular weight ladder (data not shown). Note the presence of different-sized homologs for Chr6 and Chr11 that appear at
lower relative intensities. Contrast the abundance of each Chr6 homolog to the intensity of Chr3 for which both homologs are about the same size, and
compare the abundance of each Chr11 homolog to the intensity of Chr10. (B) CGH-array relative gene dosage plots. Each horizontal line corresponds to
a specific S288c chromosome; the signal of each array probe was smoothed in CGH-miner software in a seven-probe sliding window to reduce noise
(Wang et al. 2005). (Gray areas) Regions of similar genomic dosage; (positive/red peaks) genomic regions overrepresented; (negative/green peaks)
genomic regions underrepresented. The amplification signal on the left end of Chr1 included the SEO1 gene encoding a putative amino acid permease; the
amplification peak on the right end of Chr3 did not include any known genes; all other amplifications are discussed in the text. None of the deletion/
underrepresentation peaks spanned regions containing genes known to be essential in S288c. The S288c-isogenic control strain used in A and B was the
JAY309 diploid.
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S288c reference genome, it became clear that most interruptions

occurred at regions of dispersed repetitive DNA sequences, mostly

Ty retrotransposon insertions. As described below, we compared

the sequences of JAY291 to those of other sequenced S. cerevisiae

strains: S288c, RM11-1a, and YJM789 (Wei et al. 2007). These se-

quence comparisons were done to characterize chromosome

structure differences between these strains, as well as to determine

the level of nucleotide sequence divergence.

Chromosome structure polymorphisms

From the PFGE profiles of JAY270 and its haploid descendents (Figs.

3A and 4A), it was clear that this diploid has chromosomes that vary

in size, not only in comparison to S288c, but also between the two

homologs. To investigate the nature of these rearrangements, we

focused our analysis on Chr6. In JAY270, the two homologs were

;261 kb (Chr6S) and ;322 kb (Chr6L) in size. Chr6 of JAY291 is

a recombinant between Chr6S and Chr6L and is ;290 kb in size.

We assembled the complete sequence of Chr6 in JAY291 by

searching the 452 whole-genome contigs for known Chr6 se-

quences from the S288c, RM11-1a, and YJM789 strains; this search

identified 14 candidate contigs. We then used PCR to amplify across

the small gaps between the contigs and to position telomeric re-

peats, confirming their relative order and orientation (data not

shown). The size of the resulting assembled sequences (including

one X and one Y9 element as each telomere) was 290 kb, matching

the observed PFGE size. The chromosome structure and nucleotide

sequence in the central portion of Chr6 were very similar to those of

S288c, whereas in the regions near the telomeres, the sequences

were more diverged or completely different (Fig. 6A). At the left end

of the Chr6 alignment, we found two segments (9.1 and 19.3 kb)

that are absent in the S288c genome. We also aligned the JAY291

chromosome to the Chr6 sequence from Saccharomyces paradoxus

(Kellis et al. 2003), the closest known relative of S. cerevisiae, and

observed continual synteny through most of Chr6, including the

entire left arm. This alignment suggests that the 9.1-kb and 19.3-kb

insertions were present in the last common ancestor of S. cerevisiae

and S. paradoxus and that they were probably lost from the pro-

genitor of S288c. The only structural difference in the central sec-

tion of Chr6 was a Ty2 retrotransposon element insertion that is

present in S288c (YFLWTy2-1) but absent in JAY291. Chr6 had no

full-length retrotransposons in JAY270, but Ty elements were

found in all other chromosomes (Supplemental Fig. 4).

Although we concentrated our sequencing efforts on the

JAY291 haploid, from our analysis of the sequences of S288c,

RM11-1a, and YJM789, and from our examination of the micro-

array data and Southern analysis (Figs. 3–5), we were able to predict

the structures at the left ends of the two Chr6 homologs in the

JAY270 diploid. We then designed specific PCR primers to confirm

our predictions (Supplemental Fig. 5). Repetitive DNA sequences

were found at the breakpoints (shown as boxed letters in Fig. 6B) of

all chromosomal rearrangements in this region, suggesting that

they formed through ectopic homologous recombination.

We determined that JAY270 Chr6S has a portion of Chr1 that

includes the YAR064W gene attached to the left end of Chr6 (Fig.

4C). This translocation is also present in RM11-1a and YJM789,

and the breakpoint is between YAR062W in Chr1 (boxed ‘‘A’’) and

YFL051C in Chr6; both are pseudogene members of the FLO gene

family. The YFL051C pseudogene is also the site of the 19.3-kb

region that is present in JAY270 Chr6L and deleted in Chr6 from

S288c. While YFL051C is short and nonfunctional in S288c, in

JAY270 Chr6L, this open reading frame (ORF) extends into the

19.3-kb region to form a full-length FLO gene (boxed ‘‘B’’). Near the

left end of this insertion region, there was a 4.3-kb translocated

section of S288c Chr10, with breakpoints at HXT8 (boxed ‘‘C’’;

a hexose transporter gene family member) and YJL216C (boxed

‘‘D’’; a gene with similarity to maltase genes). Finally, the leftmost

rearrangement in JAY270 Chr6L contains the 9.1-kb sequence not

represented in S288c. The breakpoint for this rearrangement was at

the THI5 gene (boxed ‘‘E’’; a member of a gene family involved in

the thiamine biosynthesis). In S288c, the SNO3 and SNZ3 genes are

located immediately distal to THI5, whereas this region of Chr6L of

JAY270 contains a copy of the MPR2 gene involved in tolerance to

oxidative stress and ethanol toxicity (Du and Takagi 2007). MPR2 is

also present the RM11-1a and S1278b strains, but strikingly, the

genes in the MPR family are found at different genomic locations

in these strains: in RM11-1a, MPR2 is at the left end of Chr10;

whereas in S1278b, MPR2 is at the right end of Chr10, and MPR1 is

at the left end of Chr14 (Takagi et al. 2000).

This detailed analysis also allowed us to examine the re-

arrangements between the two Chr10 homologs in JAY270 (arbi-

trarily designated A and B). The left end structure of Chr6L was

essentially identical to that found in Chr10 of RM11-1a and in

JAY270 Chr10A (inherited by the JAY289 and JAY292 spores). A

similar Chr6/Chr10 translocation with a breakpoint at YJL216C

(boxed ‘‘D’’) has been described recently in the M22 vineyard strain

(Doniger et al. 2008). The Chr10 structure in YJM789 is similar to

RM11-1a, M22, JAY270 Chr10A, with the exception of the extreme

Figure 4. Molecular karyotype of meiotic products and segregation of
chromosomal rearrangements. (A) Ethidium bromide staining of a PFGE
including the four meiotic spore clones from a JAY270 tetrad. The S288c-
isogenic control strain used was the JAY309 diploid. Southern hybridiza-
tions of the PFGE in A using as probes the (B) AGP3, (C) YAR064W, and (D)
SNO/SNZ sequences that were PCR-amplified from S288c genomic DNA.
The SNO/SNZ (2-3) probe detects only the duplicated SNO2, SNZ2,
SNO3, and SNZ3 genes. The diverged single-copy genes SNO1 and SNZ1
on Chr13 are not detected. The numbers to the left indicate the S288c
chromosomes to which these probes hybridized. The YAR064W gene is
duplicated in S288c and JAY270 at the right end of Chr8.
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left end at positions distal to THI5 (boxed ‘‘E’’) where YJM789 is

similar to S288c Chr6. Interestingly, the YJM789 Chr10 configu-

ration is precisely what would be predicted from a crossover oc-

curring between S288c Chr6 and RM11-1a Chr10 anywhere be-

tween THI5 and YFL051C. An analogous meiotic crossover event

within translocated chromosomal segments has been recently

observed in the S288c/Y101 laboratory hybrid (Faddah et al. 2009).

The second JAY270 Chr10 homolog (Chr10B; inherited by JAY290

and JAY291) had at its left end an ;15-kb translocated segment not

found in the S288c genome. The breakpoint in this chromosome is

near an unannotated Ty1 delta LTR element (boxed ‘‘F’’) that is

located on S288c Chr10 between SGD coordinates 29000 and

29500 and is also present in the JAY291 Chr10 sequence. Finally,

it is important to note that all rearrangements described above

occurred at sites distal to the first essential genes in the Chr6

(SEC53) and Chr10 (PRP21).

Nucleotide polymorphisms

We compared the sequences of JAY291 to S288c, estimating the

number of SNPs at 5.4 per kilobase (about 65,000 for the entire

genome). To compare JAY291 to other S. cerevisiae strains, we an-

alyzed an ;49-kb region from Chr14 that has been sequenced for

several unrelated strains (Steinmetz et al. 2002) and used it to

construct an unrooted phylogenetic tree (Fig. 7A). This analysis

indicated that JAY291 is highly diverged relative to S288c, YJM789,

and RM11-1a and, therefore, will be useful in characterizing the

rich sequence diversity present in S. cerevisiae.

We also sought to estimate the degree of heterozygosity in the

JAY270 diploid genome. We performed a limited sequence analysis

of JAY292, a haploid spore derived from the same tetrad as JAY291.

Because the genomic coverage in this case was relatively low (15-

fold with Illumina paired-end reads), we did not attempt to as-

semble the genome de novo. Instead, we assembled the JAY292

sequence using the JAY291 contigs as reference. After filtering out

repetitive elements, regions of high divergence, and regions of low

quality and/or coverage, we estimated a density of ;1.3 SNP/kb in

Figure 5. Band-array analysis of Chr6L and Chr6S homologs in JAY270. The curves indicate the normalized hybridization signal of specific chromo-
somal DNA samples (y-axis) to probes arranged according to their chromosomal coordinates (x-axis) in S288c (A) Chr6 and (B) Chr1. The dashed vertical
lines indicate the breakpoints where JAY270 Chr6S and Chr6L differ from each other and from the S288c chromosomes. Only the data for Chr6 and Chr1
probes are shown. No hybridization signal was detected for other S288c chromosomes, with the exception of the right end of Chr8, which is essentially
identical to Chr1. SEC53 and RPN12 indicate the most distal essential genes in S288c Chr6, and SNO3, SNZ3, AGP3, and YAR064W indicate the position of
Southern blot probes used in Figure 4. The signal valley in the central position of Chr6 corresponds to the position of the YFLWTy2-1 retrotransposable
element (arrow) that is not present in the JAY270 Chr6 homologs. (Black circles) Centromere positions.

Table 1. Summary of JAY291 genome sequencing and assembly
parameters

Haplotype JAY291

Contigs 452
Contig size (average) 25.5 kb
N50a 65 kb
Assembly size 11.6 Mb
Coverage depthb

454 single end 123

Illumina single end 553

Illumina paired-ends 953

Gene modelsc

Extrinsic 5864
Ab initio 5488

Total gene models 5880

aFifty percent of the genome assembly is represented by contigs of N50 size
and longer.
b454 Life Sciences (Roche) reads were ;250 bp, Illumina single end reads
were 35 bp, and paired-end reads correspond to two 35-bp reads physi-
cally linked by ;125 bp of undetermined sequence.
cExtrinsic gene models were predicted based on the established S288c
ORFs; ab initio gene models were predicted without regard to S288c data.
5471 genes were predicted by both models; 392 and 16 genes were found
exclusively in the extrinsic and ab initio models, respectively.

Argueso et al.

2264 Genome Research
www.genome.org



the single-copy genomic regions. Because JAY291 and JAY292 are

sibling haploid strains, about half of their genomes should be

identical by descent, and we found that about half of the genomic

regions had a very low level of polymorphisms (data not shown).

We estimate, therefore, that the JAY270 diploid has ;2.6 SNP/kb

between allelic regions in homologous chromosomes.

We also examined heterozygosis restricting the analysis to the

Chr6 sequences of JAY291 and JAY292. Because these two haploids

carry the two reciprocal products of a meiotic crossover between

the two parental Chr6 homologs (Fig. 4A), it should be possible to

directly find all Chr6 SNPs in the diploid by comparing the JAY291

and JAY292 sibling sequences (assuming that they formed as a re-

sult of exactly one crossover). We found 465 SNPs in the 208-kb

region common to both the Chr6L and Chr6S homologs (Fig. 5).

The Chr6 SNP density (;2.2 SNP/kb) was consistent with our es-

timate for the whole genome.

Overview of specific gene polymorphisms important
for bioethanol production

We compared the sequences of several JAY291 genes to those of

other strains to establish possible links between the genotype and

the observed phenotypes. High-temperature growth (HTG) has

been investigated in S. cerevisiae as a model for complex quantitative

inheritance (Steinmetz et al. 2002; Sinha et al. 2008), and three

major contributing loci have been identified: NCS2, MKT1, and

Figure 6. Genome rearrangements near the ends of chromosomes. (A) Full-length Chr6 sequences aligned with the Artemis Comparative Tool software
(Carver et al. 2005). Red lines connect regions of sequence similarity higher than 85%; gaps in white lower or absent similarity; green indicates S288c Chr6
sequences; thick areas indicate regions conserved in JAY291; thin areas indicate nonconserved regions. The small segment in blue is a translocated fragment
from S288c Chr10. Black indicates S. cerevisiae sequences not found in the S288c genome. The thick gray line corresponds to S. paradoxus Chr6 assembled
from contigs 346, 345, 344, 434, and 433, from left to right, in this order (Kellis et al. 2003). SEC53 and RPN12 indicate the positions of the most distal
essential genes in Chr6. The black circles indicate the position of the centromere (CEN6); the arrow denotes the YFLWTy2-1 element. Y9 and X subtelomeric
sequences are not represented in this alignment. (B) Multistrain chromosome alignment around the left end of Chr6. The horizontal lines represent the left
ends of the designated chromosomes, with the exception of S288c Chr1 (top line), for which the inverted right end is shown. The source strain for each
sequence is indicated to the left in bold; other strains with similar chromosome structures are also indicated. Rectangles represent ORFs and their positions
above and below the central line designate the Watson and Crick orientations, respectively. Chromosomal regions are color coded according to their
correspondence to S288c (orange) Chr1, (green) Chr6, and (blue) Chr10. Regions in black correspond to sequences not found in the S288c genome. The
dotted line in S288c Chr6 represents a discontinuity in the alignment at the site of a 19.3-kb insertion in JAY291. Rectangles hatched in red between
chromosomes indicate a high level of sequence similarity (>85%; analogous to the red lines in A). All sequence similarities are indicated in red except for the
left end of YJM789 Chr10, which contains the SNO3 and SNZ3 genes and is nearly identical to the collinear region in S288c Chr6. Boxed letters (A–F) indicate
the specific chromosomal rearrangements discussed in the text, and SNO3, SNZ3, AGP3, and YAR064W indicate the positions of Southern blot probes used
in Figure 4. The source sequences for this figure were the complete Chr6 sequences from S288c and JAY291, contigs 1.67 (Chr10) and 1.109 (Chr6) from
RM11-1a, contigs 100 (Chr10) and 7 (Chr6) from YJM789, and contig 386 (Chr10) from JAY291. The 10-kb scale bar indicates the size scale for B.
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END3. We found that JAY291 had all three of the alleles that are

related to HTG+ (Fig. 7B). However, HTG, as is often the case for

quantitative traits, is known to be influenced by genetic background

(Sinha et al. 2006). We therefore tested the role of these polymor-

phisms in the JAY291 background by constructing isogenic strains

carrying HTG� allele replacement versions of NCS2 and MKT1

from S288c, and END3 from YJM789. We found that the allele re-

placement strains, individually, were not compromised for HTG,

at least within the resolution of our co-culture competition assays

(about fivefold) (data not shown). This result was analogous to

the background-specific phenotypic response described by Sinha

et al. (2006) and suggested that other uncharacterized alleles pres-

ent in the JAY291 genome are contributing to its distinct HTG+

phenotype.

We also examined the sequence of the HO gene that encodes

the endonuclease that stimulates mating type switching in ho-

mothallic strains (Herskowitz 1988). The ho allele in JAY291 has

three missense mutations, including the H475L substitution that is

present in S288c, and has been shown to reduce HO activity sig-

nificantly (Meiron et al. 1995; Ekino et al. 1999). In addition, an in-

frame deletion between 8-bp direct repeats within the gene re-

moved 36 amino acid residues from the DNA-binding domain

(residues 524–559). These mutations likely eliminate the endo-

nuclease activity of HO, explaining the heterothallic life cycle of

JAY270.

Flocculation is a mechanism through which yeast cells ag-

gregate to form clumps, or ‘‘flocs.’’ While flocculation is a desirable

trait in brewing, it is problematic in sugar cane batch fermentation

because it significantly slows fermentation kinetics and can cause

excessive foaming and clogging of pipes. One of the attractive

properties of JAY270 is that it rarely flocculates and produces very

little foam in fermentation tanks (Basso et al. 2008). The JAY291

haploid is also non-flocculant. We examined the sequences of

genes encoding cell surface adhesins involved in flocculation

(FLO1, FLO5, FLO11, and others) and found that they are present

in JAY291, although, due to their internal repeat structures

(Verstrepen et al. 2004), these sequences were sometimes split

between two contigs in our assembly. In addition, we looked at the

FLO8 gene, a positive regulator of flocculation. In S288c, FLO8

contains a nonsense mutation (flo8-1)

that renders the cells non-flocculant (Liu

et al. 1996). The FLO8 gene in JAY291

appears to be functional, indicating that

the non-flocculant phenotype of JAY291

involves a block in a different step of the

pathway. Interestingly, among 120 F2

progeny from the S288c 3 JAY291 cross

described above (Fig. 2), we observed 19

individuals that flocculated in fermenta-

tion media and 101 that did not; roughly

a 1:7 phenotypic ratio expected for a trait

controlled by three unlinked genes (x2 =

1.22; P = 0.27). We genotyped the floccu-

lant progeny by PCR and restriction digest

and observed that all 19 flocculant progeny

inherited the FLO8 allele from JAY291,

therefore confirming the requirement of

a functional Flo8p for flocculation.

In the S288c genome, there is a Ty1

retrotransposon insertion in the HAP1

gene (Gaisne et al. 1999). HAP1 encodes

a heme-mediated transcription factor that

controls the expression of genes involved in fermentation (Mense

and Zhang 2006) and in the biosynthesis of ergosterol, which is

important for ethanol tolerance (Inoue et al. 2000). As in other in-

dustrial strains (Tamura et al. 2004), this interrupting Ty1 element is

absent in JAY291. Consistent with this result, we found that several

of the Hap1p-regulated genes were expressed at a higher level in

JAY270 than in S288c (Supplemental Table 1).

Another gene important for industrial yeast strains is MIP1,

a nuclear-encoded mitochondrial DNA polymerase (Foury 1989). A

polymorphism present in Mip1p (Mip1p-661A) has been shown

recently to be responsible for the high frequency of spontaneous

cytoplasmic respiratory mutations (r� petites) observed in S288c

(Baruffini et al. 2007). The MIP1 sequence in JAY291 contains five

nonsynonymous substitutions relative to S288c, including the

Mip1p-661T variant, which is associated with a low frequency of

petites. This desirable trait was confirmed in semiquantitative petite

mutation assays in which JAY270 produced petite colonies at a fre-

quency about fivefold lower than S288c (data not shown).

Efficient sucrose utilization is essential in sugar cane fer-

mentation. S. cerevisiae strains have long been known to vary in the

number of copies of the SUC genes coding for invertase, the en-

zyme that breaks down sucrose to glucose and fructose, which are

then fermented to produce ethanol (Carlson and Botstein 1983).

S288c only has one copy, SUC2, the only non-telomeric member of

this gene family. Since JAY270 thrives in the sugar cane extract, we

expected to find several SUC copies in its genome. Instead, the only

invertase gene found in the genome sequence of JAY291 was SUC2.

Another gene we did not find in JAY291 was RTM1 (Ness and Aigle

1995), involved in resistance to toxins found in molasses, a by-

product of sugar production sometimes used in bioethanol fer-

mentation. Incidentally, RTM1 is always found clustered with the

telomeric copies of SUC genes (Ness and Aigle 1995).

A comprehensive list of all genes found in both JAY291 and

S288c is presented in Supplemental Table 1, including the local

density of SNPs inside the coding sequences and in the upstream

regulatory regions, and the relative level of gene expression be-

tween these strains measured with cDNA microarrays. In addition

to the shared genes discussed above, it is possible that the genes

present in JAY291 but absent in S288c also contribute to the

Figure 7. Phylogenetic placement and HTG alleles in JAY291. (A) Unrooted phylogenetic tree of 15 S.
cerevisiae strains based on a 49-kb region from Chr14 containing the three HTG QTLs (Sinha et al. 2008).
(B) HTG QTL allele distribution in various S. cerevisiae strains. The three critical amino acid residues
implicated in HTG are shaded in gray, and the HTG (+; �; nd, not determined) phenotype is shown to
the right.
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properties of JAY270. At least 16 such genes have been identified in

the genome of JAY291 (Supplemental Table 1). An attractive ex-

ample of such genes is the two copies of putative S-adenosylme-

thionine-dependent methyltransferases found in the JAY291 ge-

nome (contig404-gene1 and contig386-gene1; their predicted

protein sequences share 92% similarity). These new genes partic-

ipate in the same processes as the amplified SAM3 and SAM4 genes

discussed above. Interestingly, a protein identical to the one coded

by contig404-gene1 has been recently identified and found to be

specific to the West African lineage of S. cerevisiae strains (hypo-

thetical protein 5) (Liti et al. 2009).

Discussion

Diverse genome structure of JAY270 and its implications
for genome evolution

Our molecular analysis of the JAY270 diploid revealed that its ge-

nome is highly heterogeneous, both structurally and at the nucle-

otide level. Thus far, the genomic analysis of S. cerevisiae had been

mostly limited to haploids, often derived from homothallic diploid

strains. In this type of life cycle, immediately after meiosis, the

haploid spores undergo mating type switching, followed by self-

mating to restore a diploid state (Herskowitz 1988). This cycle

generates diploids that are homozygous for the entire genome,

except at the MAT locus. In contrast, heterothallic spores, such as

those derived from JAY270, are unable to switch mating type be-

cause of a mutation in the HO gene. The spores restore the diploid

state by mating to spores of the opposite mating type, either siblings

from the same ascus or by outcrossing (Knop 2006). The hetero-

zygous JAY270 genome richly illustrates how this process is effec-

tive in preserving and amplifying genetic diversity. It is important

to note, however, that both the homothallic and heterothallic life

cycles require the production of viable haploid spores in meiosis,

and thus both types of strains are expected to continuously remove

from the gene pool recessive lethal mutations and chromosomal

rearrangements associated with the loss of essential genes.

We have found that the genomes of JAY270 and S288c are

collinear through most regions, and hybrids generated by crosses

between these genetic backgrounds have good spore viability.

Structural variation, although abundant, was limited to the end

sections of chromosomes. A similar pattern has been previously

observed in microarray-based surveys of genome variation among

different S. cerevisiae strains (Winzeler et al. 2003; Carreto et al. 2008;

Schacherer et al. 2009), which found that most polymorphisms,

including SNPs and CNVs, were more common within 25 kb of the

telomeres. In these studies, however, the full extent of the structural

variation in these regions could not be revealed because the

microarrays used were based on the S288c genome, and regions of

high sequence divergence or sequences that were absent in the

reference strain could not be examined. This gap has been recently

filled by a whole-genome sequencing-based survey of dozens of S.

cerevisiae and S. paradoxus strains (Liti et al. 2009). This study iden-

tified DNA sequences, including 38 genes, which are present in

some of these strains but are absent in the reference S288c genome.

Importantly, these new genes are mostly subtelomeric.

The peripheral regions of chromosomes in S. cerevisiae typi-

cally contain genes that participate in an alternative carbon source

and vitamin metabolisms, ion and amino acid transport, floccu-

lation, and other processes that are not essential for viability. In the

S288c genome, ;8% of all genes are located at sites distal to es-

sential genes (Supplemental Table 1). Some of these genes, like

SNO/SNZ and SAM, are functionally clustered. Previous studies

have shown that there are very few functionally clustered genes in

S. cerevisiae, and that those that are clustered tend to be associated

with specific functions that differ between strains (Hall and Dietrich

2007). Analogous distributions of nonessential genes are also

found in other species. For example, in Plasmodium falciparum, the

peripheral regions encode variable surface antigen genes (contin-

gency genes) that help this parasite evade the host’s immune de-

fenses (Freitas-Junior et al. 2000; Barry et al. 2003). Many of the

genes found in such regions are members of multicopy gene

families that allow structural variation to occur through ectopic

homologous recombination events similar to those detected in

JAY270. In addition to their repetitive nature, the telomere-prox-

imal regions of chromosomes are often spatially colocalized at the

nuclear envelope, forming clusters of chromatin that are believed

to facilitate ectopic recombination interactions (Palladino et al.

1993; Gasser et al. 2004). Pryde et al. (1997) integrated these ob-

servations to formulate a model in which the yeast genome is

structured in chromosomal sectors that are either rigid (central

core) or plastic (peripheries). A schematic model of this concept as

it relates to a set of S. cerevisiae haplotypes is shown in Figure 8.

We recently demonstrated a mechanism in diploid strains that

explains how repetitive elements participate in ectopic homolo-

gous recombination through their differential interactions with

DNA double-strand breaks (DSBs) (Argueso et al. 2008). While le-

sions in single-copy regions of the genome are efficiently repaired

to restore the original structures, DSBs that occur within repetitive

sequences often lead to chromosomal rearrangements by engaging

in homologous recombination with ectopic repeats. This experi-

ment imposed no restrictions regarding the fitness effect or the

haploid viability associated with the rearrangements; thus, we

identified re-structuring events spanning the entire S. cerevisiae

genome. Because most rearrangements were nonreciprocal and

involved regions containing essential genes, it is likely that those

events would be deleterious in meiosis, generating inviable spores

and therefore eliminating them from the population. In contrast,

the naturally occurring rearrangements observed in JAY270 are not

detrimental, since the translocations do not span genes essential for

Figure 8. Structural diversity in S. cerevisiae: rigid and plastic domains of
the genome. The model depicts a set of homologs of a hypothetical
chromosome in several unrelated S. cerevisiae strains. The top line (contin-
uous gray) depicts the structural configuration of this chromosome in the
first sequenced strain (i.e., S288c; reference), whereas the chromosomes
shown below represent the rearrangements found in other strains. The di-
verged structural configurations (colors) in the peripheral regions harbor
genes that are not required for viability, but that may contribute to fitness in
specific environments. The entire set shares structural conservation in the
central core region (delimited by the most distal essential genes, arrows);
therefore, meiotic crossovers between the unrelated haplotypes can gen-
erate new combinations, while remaining compatible with haploid viability.
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viability. At least six chromosomes in JAY270 were polymorphic in

length, and yet the diploid had excellent spore viability. Further-

more, crosses between spores derived from JAY270 and S288c

generated hybrid diploids in which structural differences were

present in virtually every homolog pair. Despite their heteroge-

neous karyotype, these hybrids produced mostly viable spores

(75%–95%). We propose that all DSBs that occur in repetitive ele-

ments of the genome are able to promote ectopic recombination

and generate chromosomal rearrangements. Those that span es-

sential genes result in poor spore viability and are, therefore,

eventually eliminated from the population, whereas those that

involve the peripheral chromosome regions do not affect spore

viability and may lead to increased fitness.

A distinguishing feature of the JAY270 genome architecture

that may contribute to its fitness in competitive environments is

the hemizygous distribution of useful stress-tolerance genes. It is

possible that this configuration offers alternative mechanisms for

diploid cells to adjust the copy number of these genes through

mitotic crossover, break-induced replication, or meiotic segrega-

tion followed by re-mating of sibling haploid spores (Paques and

Haber 1999; Knop 2006; Llorente et al. 2008). For example, these

mechanisms could, in just a few generations, produce diploids

containing 0 to 4 copies of MPR genes and 6 to 12 copies of SNO/

SNZ genes. Notably, once the homozygous state is achieved, it may

be reversed over time through outcrossing or ectopic homologous

recombination between neighboring repeats. This scenario may

explain how the highly plastic genome structure at the peripheral

regions of chromosomes could enable S. cerevisiae to rapidly re-

spond to a changing environment.

Finally, it is interesting to contrast the pattern of spatially

restricted chromosomal rearrangements in S. cerevisiae to the much

more radical chromosomal rearrangements recently described in

the haploid asexual yeast pathogen Candida glabrata (Polakova

et al. 2009). These very complex genome reconfiguration events

included chromosome fusions, large translocations, aneuploidy,

and even possible circularization that are completely incompatible

with meiosis. These authors proposed that C. glabrata has taken

genome re-structuring to the extreme, sacrificing its sexual life

cycle to fully explore the adaptation potential provided by a highly

unstable genome structure. We believe that S. cerevisiae has found

the middle ground by confining the genome rearrangements to

the ends of chromosomes.

Implications of highly adapted industrial strains to future
bioenergy technologies

In addition to the insights into genome evolution discussed above,

the analysis of the JAY270 genome offers several opportunities

for the development of a new generation of industrial yeast strains.

The finding that JAY270 is genetically compatible with laboratory

strains indicates that the full arsenal of research tools developed to

study yeast as a model system can be readily applied to the mod-

ification of this naturally adapted strain. We envision the use of

JAY270 as an ideal delivery vehicle for future renewable energy

technologies. One of the most active fields of investigation in the

effort to develop these technologies has been the search for strat-

egies to efficiently break down cellulosic feedstocks and to use its

complex derived sugars in bioethanol fermentation (Gura 2009).

These advances would dramatically improve the overall energy

balance in bioethanol production. While the early signs of success

in this effort are very encouraging, it is important to remember that

even when the solutions for this problem are found, there will be

a need to efficiently deliver these technologies to the industrial

setting. Decades of experience in the development of industrial

strains have convincingly demonstrated that any large-scale at-

tempt to introduce genetically modified yeast strains in the bio-

ethanol industry will be futile unless they are based on naturally

adapted strains. Therefore, strains such as JAY270 are likely to play

a key role in facilitating the transition from laboratory techno-

logical breakthroughs to industrial-scale field applications.

Methods

Growth media and yeast strains
Yeast culture, mating, sporulation, and tetrad dissection were
conducted using standard procedures (Rose et al. 1990). Menadi-
one was obtained from Sigma-Aldrich. The PE-2 stock used to pu-
rify JAY270 was from our own laboratory collection, which was
derived from commercially available dry active yeast sold to bio-
ethanol distilleries (LNF-Latino Americana). The S288c-isogenic
strain used as a control in the fermentation assays in Figure 1A was
the BY4741 haploid (Giaever et al. 2002). For the initial genetic
characterization of JAY270, the S288c-isogenic strains used were
from the FY series (Winston et al. 1995). FY833 (MATa, ura3-52,
leu2D1, trp1D63, his3D200, lys2D202) and FY834 (MATa, ura3-52,
leu2D1, trp1D 63, his3D200, lys2D202) were crossed to the JAY270-
derived haploid spores JAY289 (MATa), JAY290 (MATa), JAY291
(MATa), and JAY292 (MATa) to generate hybrid diploids. FY23 (MATa,
ura3-52, leu2D1, trp1D63) and FY86 (MATa, ura3-52, leu2D1, his3D200)
were crossed to each other to generate the JAY309 diploid used as
a control in comparative stress tolerance assays (Fig. 1B; Supple-
mental Figs. 2 and 3). Finally, the S288c-isogenic strains used in the
quantitative genetic analysis described in Figure 2 were S1 and S97
(Steinmetz et al. 2002). Genomic DNA was also prepared from
RM11-1a and YJM789 strains.

Fermentation assays

The fermentation assays shown in Figure 1A were carried out by
inoculating 4 g of fresh yeast cells in 36 mL of autoclaved sugar
cane extract (pH 4.0, 18.2% Total Reducing Sugars—mostly su-
crose). Fermentation cultures were incubated without agitation for
exactly 15 h at 30°C. The cells were recovered by centrifugation
and the supernatant was distilled for the measurement of ethanol
by densimetry. Cells were recycled for five consecutive fermenta-
tion cycles, and four independent replicates were analyzed for each
genotype. In each replicate, only the data from cycles 2 to 5 were
considered, since the data from the first cycle (adaptation round)
are usually highly variable. The final ethanol concentration mea-
surements from cycles 2 to 5 from all four replicates were com-
bined to generate the average and standard error shown.

The fermentation assays used in the quantitative genetic
analysis (Fig. 2) were carried out by inoculating 0.08 g of fresh yeast
cells in 8 mL of media containing 0.5% yeast extract, 1% peptone,
and 10% glucose. Cells were pre-grown in the same media for two
cycles to provide an adaptation round. The cell mass concentration
was normalized to 1% prior to the third cycle, which was used to
record cell growth and ethanol production kinetics. Cultures were
incubated at 30°C in a slow rotating drum to avoid decantation.
Samples were taken at regular intervals and centrifuged in pre-
weighted tubes to determine the weight of the cell pellets. The
supernatant was frozen and later used to determine the ethanol
concentration using the BioChain Saccharide Removal and Etha-
nol Assay kits in sequence according to the manufacturer’s rec-
ommendations.
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Microarray and physical analysis of DNA

CGH-array and band-array experiments and PFGE procedures were
conducted as previously described (Argueso et al. 2008). Image
tracing of PFGE bands was obtained using Bio-Rad Quantity One
software. All PCR reactions were conducted using Bio-Rad iProof
High-Fidelity DNA polymerase. For the differential gene expres-
sion experiments shown in Supplemental Table 1, total RNA was
extracted from exponentially growing cells of JAY309 and JAY270.
Three independent biological replicates were grown in YP 2%
glucose liquid media, with 30°C incubation and 200-rpm agita-
tion. First-strand cDNA was synthesized and labeled with dUTP-
Cy3 or dUTP-Cy5, respectively, using the Invitrogen SuperScript
Direct labeling kit. Labeled cDNAs were then competitively hy-
bridized to microarrays containing all S288c ORFs. The log2 (Cy5/
Cy3) signals for all three replicates and average for each microarray
probe are shown. The CGH/band-array and the differential gene
expression microarray data are available under GEO accession
numbers GSE14601 and GSE17578, respectively.

Parallel sequencing and genome assembly

Total genomic DNA from JAY291 was isolated using the QIAGEN
Maxi kit. We performed sequencing in the Illumina Genome An-
alyzer II and 454 Life Sciences Genome Sequencer FLX (Roche)
platforms (Table 1), using standard manufacturer’s recommended
sample preparation procedures. The Illumina and 454 reads were
assembled into longer contigs using de novo assembler Edena
(Hernandez et al. 2008) and Newbler (Roche), respectively. The
hybrid assembly was performed through the combination of 3581
Illumina contigs and 1259 454 contigs resulting in 452 hybrid
contigs (pipeline, ‘‘Zorro,’’ developed in our group) (GGL Costa,
RO Vidal, MF Carazzolle, JMC Mondego, MJ Guiltinam, SC
Schuster, JE Carlson, PA Mieczkowski, JL Argueso, LW Meinhardt,
et al., in prep.). Briefly, the Zorro pipeline consists of (1) masking
repeat regions in the contigs, (2) overlap detection, (3) unmasking
repeat regions, and (4) assembly of hybrid contigs. In phase 1, the
repeat regions were determined based on counting occurrences of
k-mers in the Roche 454 reads; the assembler then masks k-mers in
the contigs that occur at high frequency. The absence of repeats
produces correct overlap detection in phase 2. The contigs are then
unmasked in phase 3, and the correct hybrid assembly can be
obtained in phase 4 by merging all overlapping contigs into hybrid
contigs. The overlaps detection and consensus generation were
performed using the Minimus package (Sommer et al. 2007). The
hybrid contigs were ordered and oriented with the Bambus pro-
gram (Pop et al. 2004) using paired-end information and manual
verification producing 427 scaffolds. These sequences were aligned
to the reference genome (S288c) using the MUMmer package
(Kurtz et al. 2004). The genome comparisons were visualized using
the Artemis Comparison Tool (ACT) (Carver et al. 2005). Ab initio
and extrinsic gene predictions were obtained using AUGUSTUS
(Stanke and Morgenstern 2005) and exonerate (Slater and Birney
2005), respectively. For the AUGUSTUS analysis, we used the
training sets available for S288c, and for exonerate, we used the
reference curated ORFs (SGD; http://www.yeastgenome.org) that
were aligned into our hybrid assembly.
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