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ABSTRACT Finding the genes underlying complex traits is difficult. We show that new sequencing technology combined with
traditional genetic techniques can efficiently identify genetic regions underlying a complex and quantitative behavioral trait. As a proof
of concept we used phenotype-based introgression to backcross loci that control innate food preference in Drosophila simulans into
the genomic background of D. sechellia, which expresses the opposite preference. We successfully mapped D. simulans introgression
regions in a small mapping population (30 flies) with whole-genome resequencing using light coverage (�1·). We found six loci
contributing to D. simulans food preference, one of which overlaps a previously discovered allele. This approach is applicable to many
systems, does not rely on laborious marker development or genotyping, does not require existing high quality reference genomes, and
needs only small mapping populations. Because introgression is used, researchers can scale mapping population size, replication, and
number of backcross generations to their needs. Finally, in contrast to more widely used mapping techniques like F2 bulk-segregant
analysis, our method produces near-isogenic lines that can be kept and reused indefinitely.

COMPLEX traits are inherently difficult to dissect genet-
ically. Quantitative trait loci (QTL) studies, genome-wide

association studies (GWAS), and forward and reverse genet-
ics are all powerful tools; however, each technique has in-
herent weaknesses that limit ability to find causal loci (Mackay
et al. 2009; Manolio et al. 2009). New methods using next-
generation sequencing (NGS) technology have successfully
captured single loci underlying Mendelian traits generated
from mutagenesis screens (Sarin et al. 2008; Blumenstiel
et al. 2009; Flibotte et al. 2010; Laitinen et al. 2010; Sarin
et al. 2010; Xia et al. 2010; Zuryn et al. 2010); recombinant
inbred lines (RILs) (Huang et al. 2009; Schneeberger et al.
2009); and backcross populations using dominant markers
(Andolfatto et al. 2011). However, we lack a time- and cost-
effective method that maps multiple loci simultaneously with-
out a priori knowledge of their location, number, or effect
size.

Mapping complex traits is more challenging than mapping
Mendelian traits. QTL studies in the past decades have
uncovered a plethora of loci underlying complex traits, but
QTL methods lack the power to resolve candidate regions to
individual genes (Mackay et al. 2009). New NGS approaches
have the potential to capturemultiple causative loci; however,
these methods may also lack sufficient power. Huang et al.
(2009) proposed “whole-genome resequencing” (WGR),
and Baird et al. (2008) proposed “restriction site associated
DNA” (RAD) genotyping, which both useNGS-basedmapping
on bulk segregant populations (Michelmore et al. 1991).
These methods require large mapping populations to detect
multiple loci of weak effect (e.g.,Ehrenreich et al. 2010).
Andolfatto et al. (2011) developed a “multiplex shotgun gen-
otyping” (MSG) method, yet MSG also relies on large back-
cross populations, and it is not clear if their approach can track
quantitative or additive loci of relatively weak effect or if
closely linked loci can be isolated.

We have developed a new approach that efficiently maps
multiple loci contributing to a complex trait. Our method
uses phenotype-based selection and introgression followed
by whole-genome resequencing (PSIseq). Our method can
be easily scaled from rough mapping of a single small pop-
ulation to fine-scale mapping of large and replicated popu-
lations. With minimal replication, low cost, and few genomic
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resources, we can map any complex trait divergent between
any two interfertile populations. This approach takes advan-
tage of the statistical power of window-based mapping algo-
rithms on NGS data (Huang et al. 2009) and the ease of
using relatively small mapping populations. Because intro-
gression is used instead of F2 bulk segregant analysis, map-
ping populations can be treated as near isogenic lines and be
reused indefinitely.

Materials and Methods

Overview

Populations with a divergent complex trait are hybridized
and then selected for a specific phenotype across multiple
generations of backcrosses. Our proof of concept uses
a species-level phenotype, but this method can work on
any two interfertile populations. The trait of interest is
selected for each generation, and offspring are mated to the
other parental line expressing the unselected phenotype
(introgression and backcrossing). Over multiple generations
of selection and backcrossing this hybrid population
becomes homozygous for the majority of the unselected
parent’s genome while loci from the selected parent, which
contribute to the selected trait, remain. Using high-through-
put sequencing, we map the breakpoints of these introgres-
sions and, therefore, map the regions harboring genes
influencing the trait. This scheme is analogous to introgres-
sion-based mapping approaches that use marked transpos-
able elements or molecular markers (True et al. 1996; Laurie
et al. 1997; Desjardins et al. 2010). A recessive trait may also
be introgressed, although this would require an extra in-
breeding step following each backcross.

Phenotype-based selection and introgression

We tested our method on a putative complex behavioral
trait divergent between two Drosophila sister species:
D. simulans (c167.4) and D. sechellia (SynA). D. sechellia is
an island-endemic and phytophagous specialist that prefers
the smell and taste of Morinda citrifolia (Morinda) fruit
(Jones 2005; Matsuo et al. 2007; R’Kha et al. 1991).
D. simulans avoids the fruit and dies when in proximity to
it and its constituent organic acids (Jones 1998; R’Kha et al.
1991). As a proof of concept, we introgressed D. simulans
Morinda aversion behavior into the D. sechellia genome over
15 generations of backcrossing and selection. For systems
with longer generation times where 10+ generations of
backcrossing is not a viable option, one can easily reduce
the number of backcross generations (e.g., one to five) while
increasing introgression replication (see Results and Figure 2
for a discussion of how to balance replication size vs. back-
cross generation number).

Virgin D. simulans females were mated to D. sechellia
males to create a large population of fertile F1 females.
These hybrids express D. simulans behavior and were back-
crossed to D. sechellia males. Roughly 30 F2 females were

subjected to our behavioral assay, and individuals displaying
D. simulans behavior were collected and backcrossed to
D. sechellia males. The assay is identical to that described
in Dworkin and Jones (2009). Briefly, octanoic (45 ml) and
hexanoic (15 ml) acids were added to instant Drosophila
media (4.1 g + 22 ml diH20, Carolina Biological Supply),
or not, to create test and control food, respectively. Flies had
48 hr to choose a medium. Flies settled on control media
were considered D. simulans phenotype. This cycle—an as-
say of �30 females then backcrossing—continued for 15
generations. The final generation was inbred for 2–3 gener-
ations to ensure that introgressed loci were mostly in a ho-
mozygous state. Thirty females were pooled for Illumina
library preparation.

Introgression mapping

To map introgression breakpoints, we used reference
genomes of these species to identify single-nucleotide
species differences (analogous to SNPs) that identify geno-
mic regions as particular to a parental genome. While our
proof of concept used the relative high-quality Drosophila
genomic assemblies, nonmodel systems without a finished
assembly can still be used. In principle, a sequenced tran-
scriptome or a rough de novo assembly, for example, can be
used to capture introgression blocks (or transcripts), as well.

We found on average one SNP per 100 bp (1% divergence,
compared to the reported 2% from Kliman et al. 2000). Be-
cause these SNPs represented genetic changes between these
species, markers may have also contributed to phenotypic
divergence. To create our species-specific SNP map, we
aligned the D. simulans and D. sechellia reference genome
sequences (r1.3) reciprocally using BWA (Li and Durbin
2009). Small insertion–deletion (indels) and microsatellites
could also be used, although we did not use them in this
study. We also showed that the genome of D. melanogaster
can be used as a proxy for a reference genome and showed
that SNPs distinguishing D. simulans and D. sechellia could be
identified by aligning short sequencing reads from these spe-
cies to the D. melanogaster reference using a high mismatch
tolerance in the alignment (data not shown). In nonmodel
systems this could be particularly beneficial. If neither paren-
tal line possessed an assembled genome or transcriptome,
a closely related model-system assembly could be used.

Individual flies from this 15th generation introgression
(BC15) lineage were pooled and sequenced en masse using
one lane of Illumina Genome Analyzer 1.0. Sequences were
deposited in the NCBI Short Read Archive (SRA) database
(SRA039418.2). High quality reads were aligned via BWA to
both D. sechellia and D. simulans reference genomes (84 and
72% mapped, respectively). A mismatch call required at
least two confirming reads. Hybrid–parent mismatches were
correlated to our parent–parent SNP database. All hybrid–
parent mismatches also present in the parent–parent SNP
database were considered true hybrid–parent SNPs. Despite
quality filtering hybrid–parent SNPs through these two pro-
cesses (multiple confirming reads and existence of parent–
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parent SNP), we could not be sure if a given SNP call was
accurate due to sequencing and mapping errors. To over-
come this, we mapped introgression breakpoints using a win-
dow approach (as described in Huang et al. 2009). Any
individual miscalled SNP had minimal effect on our search
for large-scale SNP enrichment. Every 1000 parent–parent
SNP was considered a “bin,” and we counted the number of
hybrid–parent SNPs within this bin. Our null expectation
was that hybrid–parent SNPs were binomially distributed
within each bin. Any bin that harbored a significant enrich-
ment of D. simulans SNPs over the chromosomal mean
D. simulans SNP content was considered an introgression
block member (Student’s t-test). This window approach re-
quired multiple independent significance tests, which we
corrected for via a false discovery rate (FDR) calculation.

Confirmation of X chromosome effect

D. sechelliamaleswith recessive geneticmarkers evenly spaced
along the X chromosome—zn (1-25) and f (1-56)—were
mated to D. simulans females. The resulting F1 females were
backcrossed tomales from theD. sechellia parent. Thus, we can
distinguish D. sechellia X chromosomes from D. simulans X
chromosomes. We compared the influence these two classes
of chromosomes have on adult food preference using a single
fly two-choice oviposition assay (Matsuo et al. 2007). Prior
work has shown that bulk population assays produce similar
results to individual fly assays (Amlou et al. 1998;Matsuo et al.
2007). The single fly assay was simpler for genotyping and it
was different than the selection assay, yet assayed a similar
phenotype. Each female was allowed to oviposit for 2 days in
a chamber containing control or test media (above). Prefer-
ence was determined by which medium received the most
eggs. All assays were conducted at 20� with relative humidity
50–70%.

Results

In our proof-of-concept study in which D. simulans prefer-
ence loci were introgressed into the D. sechellia genome over
15 generations within one lineage, we found that our
hybrids chose non-Morinda medium 71% of the time, com-
parable to D. simulans behavior (94%), and in contrast to
D. sechellia (18%). We found six bins showing significant
D. simulans identity (Figure 1; P , 0.0002). Two of these
bins were relatively large (1–1.5 Mb), whereas four others
were smaller (20–200 kb). Three independent introgression
loci on chromosome arm 2L were found within a 7-Mb re-
gion, illustrating the power of our method in resolving
closely linked loci. We pinpointed a small region on 2R that
contains a gene for Odorant Binding Protein 56e previously
shown to weakly affect preference (Dworkin and Jones
2009). Combined, these six loci account for 75% of D. sim-
ulans aversive behavior. Our bins harbored genes underlying
diverse traits: fatty-acid metabolism (bubblegum), cuticle
tanning (rickets), vision-directed behavior (black), insecti-
cide response (nAcRa-30D), temperature-directed behavior

(pickpocket), antennal development (elbow B), and
olfaction-directed behavior (Smi35a). (A complete list is in
supporting information.)

To confirm that our method was accurately enriching for
regions affecting our complex trait, we used three
approaches. First, we used an introgression model to give
us expected sizes of introgression blocks given recombina-
tion rate, number of backcross generations, and the level of
replication (Figure 2). Second, we created a backcross sim-
ulation to estimate the size and frequency of nonbackcross
parental blocks remaining after 15 generations of backcross-
ing without selection—that is, how often we would expect
to see introgression blocks by chance alone. Finally, to en-
sure that D. simulans enrichment was not simply an artifact
of bin size, we rebinned chromosomes at fewer (500) and
greater (10,000) SNPs per bin (Figures 3 and 4).

Introgression modeling

To confirm that our method mapped regions of an appro-
priate size, we created a forward simulation to estimate the
mean and variance of donor introgression block sizes
(Figure 2). Our model uses recombination rates from Dro-
sophila (True et al. 1996) within the recombination model of
Foss et al. (1993), which incorporates crossover interfer-
ence. We assumed a D. simulans genetic map of 460 cM
and relatively simple interference (a noncrossover event
must occur between adjacent crossovers, m = 1 from Foss
et al. 1993). Over multiple backcross generations, an intro-
gressed block size decreases asymptotically to 0 cM. With
multiple independent introgressed replicates, the variance
in block size also decreases asymptotically to 0. In our case,
one replicate over 15 generations is expected to have a block
size of �56 5 cM. Our experimentally observed blocks were
�0.5–1 cM, falling well within the expected block size. In
Drosophila, 1 cM is roughly equivalent to 0.5 Mb, depending
on chromosomal position.

Backcross simulation

D. simulans-enriched regions could also remain due to drift
alone. To reveal the variation of introgression size by chance
(that is, without selection), we performed a simulation of
introgression with backcrossing. We populated a virtual pool
of chromosomes made up of two parental genotypes, A and B.
Each generation, an A chromosome was recombined with a B
chromosome, experiencing one crossover event at a random
position. Each event created two daughter chromosomes that
received reciprocal products. To maintain a stable population
size, one daughter from each crossover was picked at random
to propagate the next generation. This daughter was then
“backcrossed” to a B chromosome. This cycle—recombination
to B (the “backcross”) followed by randomly choosing daugh-
ter recombinants (“drift”)—was repeated 15 times with two
levels of replication (2000 and 20,000; see below). We
tracked the size of A chromosome blocks maintained at each
generation and calculated the population-wide A allele con-
tent after 15 generations.
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In infinitely large populations, theory predicts that, on
average, half of the A alleles will remain after each cycle of
recombination and drift. In noninfinite populations, how-
ever, drift will likely remove more than half of A alleles. This
is because once an A allele is lost, it is lost forever, and the
probability of A alleles being lost due to drift is additive
across generations. To get a sense of allele loss due to drift,
consider an infinite population experiencing recombination
and drift over 15 generations. This should produce a fre-
quency of A alleles equal to (1/2)15, or 3.05 · 1025% of
the population allele frequency. In our simulation of 2000
independent backcross lineages we found only one surviving
A block within one chromosome for a population frequency
of 3.8 · 1029% (152 bp in one 20-Mb chromosome).

Disregarding the low probability (1 in 2000) of introgres-
sion by chance alone, we measured the variation in A fre-
quency under a selection-free scenario. Simulations were
repeated until 14 independent A blocks were found (20,600
replicates). Conditioning on an A block persisting (N = 14),
sizes ranged from 0.7 to 27% of one chromosome (avg =
6.1 6 7.4%). At a population level (N = 20,600), sizes
ranged from 3.4 · 1027% to 1.3 · 1025%. In our pilot exper-

iment, we introgressed one lineage with selection and found
at least 6 blocks ranging in size from 20 Kb to 1.5 Mb (0.1–
7.5% of a 20-Mb chromosome). Our simulation script is avail-
able within the PSIseq manual (supporting information).

Figure 2 Mean size of candidate chromosomal region. Shown are results
from a forward model estimating the size of introgressed blocks in a back-
cross with selection scenario. The block, x, is the chromosomal region
uniquely overlapped by all introgression lines, L. The size of x will depend
on the number of generations of introgression and the number of in-
dependent lines (Replicates). We simulated this process for 2–10 replicate
lines and 5–20 generations. The average x is blue; green and red dots
represent 1 SD above and below the average, respectively.

Figure 1 Fifteen generations of introgression show D. simulans enrichment for six regions across autosomes. Percentage similarity to D. simulans was
calculated via comparing hybrid SNPs to all possible species-level SNPs within a bin (1000 SNPs, overlapping, sliding). If all hybrid SNPs correspond to all
possible D. simulans SNPs, the percentage similarity is 1. If the opposite is true, all hybrid SNPs correspond to D. sechellia SNPs, and the percentage
similarity is 0. Regions showing significant enrichment for D. simulans SNPs are marked (*, P , 0.0002 or within-arm-FDR-correction). We estimate that
these factors explain approximately 75% of D. simulans aversion behavior. Three loci were found clustered within a 7-Mb region on 2L (1, 0.5, and 0.3
Mb, moving from telomere, left).

1206 E. J. Earley and C. D. Jones

http://www.genetics.org/content/suppl/2011/09/21/genetics.111.129445.DC1/129445SI.pdf


Binning effect

In our effort to find regions of the 15th generation hybrid
genome enriched for D. simulans, we binned chromosomes
into overlapping 1000 SNP (�100 kb) sections. This size
was chosen primarily with consideration of Drosophila genic
density. However, choice of bin size influences one’s ability
to detect significant SNP enrichment. For example, picking
a large bin size will mask enriched regions by including
adjacent nonenriched regions. A bin size that is too small
will force many comparisons and the corrected a threshold
will be too low. Ultimately, bin size determines one’s ability
to detect enrichment.

To illustrate the influence of binning on our analysis, we
rebinned generation 15 chromosome arms 2L and 2R at dif-
ferent sizes. Starting with a bin size of 500 SNPs (�50 kb) we
tracked clustering of D. simulans SNPs, calculated P-values,
and then repeated this process, increasing bin size to a max-
imum size of 10,000 SNPs/bin. All bins overlap by 10% of
their bin size. Because bin size scales inversely with the num-
ber of bins (hence the number of significance tests), the
threshold of significance according to a FDR changes.

Figure 3 and Figure 4 show data from chromosome arms
2L and 2R, respectively, produced by four sample bin sizes.
The two large regions on 2L showing significant D. simulans
SNP enrichment maintained this significance under all bin
sizes. As expected, regions are not identified as significant

for all bin sizes. As arm 2R (Figure 4) shows that, while
regions harboring sharp peaks in D. simulans enrichment
stand out, large regions with relatively shallow enrichment
can still approach significance (e.g., centromeric region of
2R). One’s ability to detect significance at a given bin size is
influenced by the physical size of the introgression block and
the magnitude of SNP enrichment; thus it is difficult to pre-
dict what is the “right” bin size. When choosing a bin size it
is more important to consider the biological and experimen-
tal conditions: recombination rate, generation number, gene
density, influence of recombination hotspots, etc.

Independent confirmation of the effect of the
X chromosomes

The X chromosome appeared not to harbor any genes
affecting aversion behavior. An alternate explanation for
this pattern is that our single introgression did not capture
all regions affecting aversion. (As noted above, we captured
only about three-quarters of the D. simulans phenotype with
this single introgression line.) This will most likely occur
within chromosomes where local recombination landscape
can affect the efficacy of selection. We did not expect this
problem within an independent linkage group.

Backcrossed D. simulans/D. sechellia flies with X-linked
markers were subjected to an oviposition assay. When con-
trolling for the influence of the X chromosome, we confirmed

Figure 3 Ability to detect D. simulans enrichment with
dynamic binning. Shown are sections from a heat plot of
P-values on chromosome arm 2L from generation 15
hybrids, the same region shown in Figure 1. Four bin sizes
were chosen to illustrate the binning effect described
above: 500, 1000, 5000, and 10,000 SNPs/bin moving
from middle to top. Heat plot colors correspond to cor-
rected P-values (normal approximation of binomial; signif-
icance set by FDR); dark red regions have met the FDR
threshold and are considered significantly enriched for D.
simulans. The color gradient from light red to dark blue
corresponds to scaled P-values, which are not significant.
Bottom shows reproduction of Figure 1 for reference. Hor-
izontal positions in the heat plots correspond to physical
location on bottom.

Figure 4 Identical to Figure 3, but for chromosome arm
2R. The single peak on this chromosome encompasses
Obp56e, which is known to affect aversion behavior.
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the absence of its effect. Of the 169 flies with D. sechellia X,
77% avoided the Morinda medium. Of the 202 flies with D.
simulans X, 73% avoided the Morinda medium. This pattern
goes in the opposite direction predicted and is not statistically
significant (x2 = 0.642, d.f. = 1, P = 0.4229).

Discussion

We have shown that PSIseq can efficiently map the genetic
basis of a complex trait. This method can find multiple loci
with small mapping populations that remain usable beyond
mapping experiments. Other NGS methods rely on transient
F2 mapping populations, which are irrevocably lost once
nucleic acids are extracted. On the other hand, introgression
stocks can be tested in future assays to further resolve candi-
date regions. Only low sequencing coverage is needed for
rough mapping, and replicate populations can be created over
time. We found at least six loci contributing to D. simulans
aversion of Morinda compounds, and we confirmed the in-
fluence on behavior of an odorant binding protein locus dis-
covered previously (Obp56e; Dworkin and Jones 2009).

NGSmapping is typically composed of threemain steps: (1)
create a mapping population, (2) extract DNA and prepare
libraries, and (3) assemble short reads and genotype. PSIseq
improves the first and third steps. First, PSIseq uses introgres-
sion lines propagated for more generations instead of an F2
backcross line because this allows mapping of smaller candi-
date regions. Closely linked loci can be decoupled andmapped
separately, especially if multiple replicate introgressions are
made. For example, Baird et al. (2008), Sarin et al. (2008),
Blumenstiel et al. (2009), Huang et al. (2009), Schneeberger
et al. (2009), Zuryn et al. (2010), and Andolfatto et al. (2011)
all used F2 backcross populations and successfully mapped
single loci frommutagenesis screens or dominantmarkermap-
ping. PSIseq was able to isolate at least six distinct loci in our
pilot study, three of which occurred within a 7-Mb region (See
Figure 1).

PSIseq also improves the third step in NGS mapping:
genotyping. Instead of using only common SNPs (à la GWAS),
PSIseq uses all possible SNPs and avoids potential bias in map-
ping to particular regions. A major issue with current short-
read technology is the high per-base sequencing and mapping
error rates. PSIseq overcomes this by using a window-based
mapping approach, as described by Huang et al. (2009). A
group of SNPs are collected into bins (“windows”), and statis-
tical tests are performed on these bins. Thus, while a small
percentage of SNPs may be inaccurate, these false SNPs are
engulfed by surrounding populations of true SNPs. This
method works particularly well when mapped regions are
fixed for one parent and contain few polymorphisms (e.g.,
RILs) and for rough mapping of hybrid genomes sequenced
lightly. As an alternative to the window approach, Andolfatto
et al. (2011) developed a customized hidden-Markov model
(HMM) to assign the probability of a SNP’s ancestry. The power
of this method lies in its ability to map with high resolution the
boundaries surrounding the recombination breakpoint itself.

We take a more simplistic approach in identifying ancestry
by measuring SNP enrichment under a binomial expectation.

PSIseq has additional advantages. First, the experimental
replication needed to increase mapping resolution can be
spaced out over time, and population sizes within a replicate
need only be large enough to maintain the introgression
line—as small as one lineage per replicate. This approach
allows us to increase introgression replicate sizes and the
quality and number of phenotypic measurements. Second,
like sequenced RILS (Huang et al. 2009), these selected in-
trogression lines are potentially shelf stable and can be used
in future experiments. Third, complex traits can be mapped
in organisms lacking a high-quality genome assembly. For
example, with transcriptome sequence from parental and
introgression lines one could identify gene transcripts
enriched for alleles from the selected parent. Finally, in ad-
dition to being flexible and extensible, our approach needs
only low sequence coverage (�1·) for rough mapping,
given enough SNPs (e.g., �100-kb resolution). To increase
resolution of candidate regions one could replicate intro-
gression crosses (see Figure 2) or take advantage of new
targeted enrichment sequencing (Antson et al. 2000; Albert
et al. 2007) to increase coverage for only interesting regions.
This strategy would be particularly useful for regions with
repetitive elements, duplications, pseudogenes, and other
elements difficult to align at lower coverage.

Our study measured a divergent trait between two
species, but our approach can be applied to two genetically
diverged individuals. The parental line would be sequenced,
unique SNPs identified, and then introgression and selection
performed. Typically, these strains would have a lower SNP
density. We provide a simple model for estimating the
expected mapping resolution for a trait given sequence
divergence rate and bin size (supporting information). For
example, populations with relatively low sequence diver-
gence (0.1%) and bins of 1000 SNPs each could be mapped
to 2-Mb regions within one replicate introgression lineage,
depending on recombination rates, strength of phenotypic
selection during introgression, and mapping quality.
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SUPPLEMENTAL METHODS 

Predicting Physical Resolution of Mapping 

 How much resolution can one expect from PSIseq? The following parameters influence choice of bin 

size: recombination rate, gene frequency, genome-wide sequence divergence, quality of reference assemblies 

(or transcriptomes), and level of replication. 

For example, D. simulans and D. sechellia are roughly 2% divergent (KLIMAN et al. 2000), and given 

the quality of each reference genome assembly we captured half this divergence in our SNP map (1%). At 1,000 

SNPs/bin this provides 100kb resolution. We chose 1,000 SNPs/bin given Drosophila gene frequency (~1 gene 

per 12kb or ~8 genes per 100kb; calculation based on annotation from FlyBase D. melanogaster r5.37). 

! 

S =
B

(x /2)
 

 Where, B is bin size, or #SNPs/bin; x is average sequence divergence, and S is expected physical size 

resolution. Thus, for populations 1% divergent with SNP markers capturing half this divergence, bin sizes of 

1,000 SNPs/bin will provide 500kb resolution. With an average of one crossover per chromosome per 

generation, fifteen generations of introgression will isolate 0-2% of the mappable genome (see Figure 2). A 

resolution of 500kb in Drosophila easily captures 2% of the genome (~3.6mb). 

PSIseq Guide 

 Included in a separate .pdf is a step-by-step guide for our informatic pipeline. 
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This guide, File S2, is available for download as a compressed folder at            
http://www.genetics.org/content/suppl/2011/09/21/genetics.111.129445.DC1.  

 
 
 
 


