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ABSTRACT

We extend our Bayesian model selection framework for mapping epistatic QTL in experimental crosses
to include environmental effects and gene–environment interactions. We propose a new, fast Markov
chain Monte Carlo algorithm to explore the posterior distribution of unknowns. In addition, we take
advantage of any prior knowledge about genetic architecture to increase posterior probability on more
probable models. These enhancements have significant computational advantages in models with many
effects. We illustrate the proposed method by detecting new epistatic and gene–sex interactions for
obesity-related traits in two real data sets of mice. Our method has been implemented in the freely
available package R/qtlbim (http://www.qtlbim.org) to facilitate the general usage of the Bayesian
methodology for genomewide interacting QTL analysis.

MAPPING quantitative trait loci (QTL) involves
inferring the genetic architecture of complex

traits in terms of genomic regions, gene effect, gene ac-
tion, and possible interactions, given observed pheno-
type and marker genotype data (Lynch and Walsh

1998). The variation of most complex traits results from
interacting networks of multiple QTL and environ-
mental factors (Reifsnyder et al. 2000; Carlborg and
Haley 2004; Moore 2005; Stylianou et al. 2006;
Valdar et al. 2006; Wang et al. 2006). Inclusion of gene–
gene interactions (epistasis) and gene–environment
interactions in mapping QTL is expected to aid the
discovery of more QTL, improve the accuracy and pre-
cision of estimates of their genomic positions and
genetic effects, and enhance our ability to understand
the genetic basis of complex traits ( Jansen 2003;
Carlborg and Haley 2004).

Identification of genomewide interacting QTL has been
a formidable challenge for geneticists and statisticians,
mainly due to numerous possible variables associated with
hundreds or thousands of genomic loci (markers and/or
loci within marker intervals) that lead to a huge number of
possible models (e.g., Yiet al. 2005). The problem is further
complicated by the facts that the genomic loci on the same
chromosome are highly correlated and the genotypes at
many loci are unobservable. Traditional QTL mapping
methods utilize prespecified simple statistical models,
which fit the effects of only one or two QTL whose putative

positions are scanned across the genome (e.g., Lander and
Botstein 1989; Haley and Knott 1992; Jansen and
Stam 1994; Zeng 1994). Although successful in many
applications, such approaches require prohibitive correc-
tions for multiple testing and ignore the nature of complex
traits in statistical modeling.

Multiple-QTL mapping has been viewed as a model
selection issue (Broman and Speed 2002; Sillanpää and
Corander 2002; Yi 2004). Rather than fitting prespeci-
fied models to the observed data, model selection
approaches proceed by identifying the QTL models from
a set of potential QTL models that are best supported by
the data. Various model selection methods have been
recently proposed for genomewide multiple-QTL map-
ping from both frequentist and Bayesian perspectives.
Frequentist approaches sequentially add or delete QTL
using forward and backward or stepwise selection proce-
dures and apply criteria such as P-values or a modified
Bayesian information criterion (BIC) to identify the ‘‘best
multiple-QTL model’’ (Kao et al. 1999; Carlborg et al.
2000; Reifsnyder et al. 2000; Bogdan et al. 2004; Baierl

et al. 2006). Such methods usually pick a single ‘‘good’’
(and maybe useful) model, ignoring the uncertainty
about the model itself in the final inference (Raftery

et al. 1997; George 2000; Kadane and Lazar 2004).
Several Bayesian model selection approaches for map-

ping multiple QTL have been developed over the past
decade (Satagopan and Yandell 1996; Satagopan et al.
1996; Heath 1997; Sillanpää and Arjas 1998; Stephens

and Fisch 1998; Gaffney 2001; Hoeschele 2001; Sen

and Churchill 2001; Xu 2003; Wang et al. 2005; Zhang
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et al. 2005). Bayesian approaches for multiple-QTL map-
ping build on the likelihood function for the observed
phenotypic and marker data, by assigning a prior
probability to each model and prior distributions to the
unknowns of each model. Inference is then based on the
conditional distribution of the unknowns given the ob-
served data, the posterior distribution. The Bayesian ap-
proach can simultaneously address both model and
parameter uncertainty (Raftery et al. 1997; Chipman

et al. 2001). However, its practical implementation entails
two major challenges: calculation of the posterior distri-
bution and specification of the prior distributions.

Markov chain Monte Carlo (MCMC) algorithms have
been recently developed to map multiple epistatic QTL
(Yi and Xu 2002; Yi et al. 2003, 2005; Narita and Sasaki

2004). Yi et al. (2005) described a Bayesian model selec-
tion method for identifying epistatic QTL in experi-
mental crosses, based on the composite model space
framework of Yi (2004). This approach places an upper
bound on the number of detectable QTL and employs
latent binary variables to indicate which main and epis-
tatic effects of putative QTL are included in or excluded
from the model. The key advantage of the composite
model space approach is that it provides a convenient
way to reasonably reduce the model space and to con-
struct efficient MCMC algorithms. Yi et al. (2005) de-
veloped a full Gibbs sampler to explore the posterior.
This Gibbs sampling scheme works well in models with
small upper bounds (Yi et al. 2005, 2006). However, it is
computationally demanding when the number of pos-
sible genetic effects is large.

The contributions of this article are to develop a new,
fast sampling scheme to explore the posterior and to
propose new prior distributions for two types of key
parameters, genetic effects and indicator variables. The
new MCMC algorithm has significant computational ad-
vantages over the previous algorithms, allowing us to iden-
tify interacting QTL fairly quickly even in models with
large numbers of possible genetic effects. The new priors
can better incorporate our prior knowledge about ge-
netic architecture of complex traits into the model and
induce increased posterior probability on more probable
models. We extend the composite model space approach
to model arbitrary covariates and simultaneously detect
gene–gene and gene–environment interactions. While
both gene–gene and gene–environment interactions sig-
nificantly influence many complex traits, simultaneous
identification of these interactions has not received sig-
nificant attention. Benefits of the proposed method are
illustrated by analyzing two obesity data sets of mice.

BAYESIAN MODELING OF GENOMEWIDE
INTERACTING QTL

Composite model space approach and interacting
QTL models: Here we extend the composite model
space approach of Yi et al. (2005) to simultaneously

model main and epistatic effects of QTL, environmental
effects, and gene–environment interactions. We de-
scribe only interactions between main effects of QTL
and fixed-effect environments although the proposed
method can be extended to more complicated inter-
actions. Most phenotypes under study are affected by
both genotype and environment. Accounting for envi-
ronmental effects can dramatically reduce residual varia-
tion. Further, genotypic effects may vary by environment,
making it important to consider gene–environment inter-
actions. Here, environment is broadly interpreted as any
nongenetic influence that can be measured, including
sex, location, and other phenotypic traits under study. We
use the term covariate synonymously with environment.
Including relevant covariates in QTL mapping can par-
tially address some features of design (e.g., block effects,
gradients) and can help identify alternate sets of QTL that
may be involved in different pathways (Stylianou et al.
2006).

We approximate positions for all possible QTL using a
partition of the entire genome into evenly spaced loci,
including all observed markers and additional loci, or
pseudomarkers (Sen and Churchill 2001), between
flanking markers. Before mapping QTL, we calculate
the probabilities of genotypes at these preset loci given
the observed marker data as priors of QTL genotypes in
our Bayesian framework. We place an upper bound on
the number of QTL included in the model. This upper
bound is larger than the number of detectable QTL with
high probability for a given data set.

We use Cockerham’s genetic model to construct main
effects, epistasis, and gene– environment interactions,
although other genetic models are possible (Kao and
Zeng 2002), and we apply conventional methods used
in hierarchical linear models to construct environmen-
tal effects (e.g., Lynch and Walsh 1998; Gelman et al.
2003). Even with a moderate number of the upper
bound, there are many possible genetic effects when
considering interactions, but most are negligible and
can be excluded. We use an unobserved vector of binary
variables g to indicate which genetic effects (main
effects, epistatic effects, and gene–environment inter-
actions) across the possible loci are included in (gj¼ 1)
or excluded from (gj ¼ 0) the model. The indicator
vector g determines the number of included QTL and
the activity of the associated genetic effects. We denote
the positions of the included QTL by l. The vector
(g, l) thus determines the genetic architecture, the
number and position of QTL, and their gene action.
The goal of our Bayesian approach is to infer the pos-
terior distribution of (g, l) and estimate the associated
genetic effects.

Suppose all genotypes are known across the genome.
We denote the design matrices of selected main, epi-
static effects, and gene–environment interactions by XG,
XGG, and XGE, respectively, and the design matrix of
environmental effects by XE. The design matrices XG,
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XGG, and XGE are determined from the genotypes of
QTL through Cockerham’s genetic model. Given (g, l)
and (XE, XG, XGG, XGE), the phenotype y is expressed as

y ¼ m 1 XEbE 1 XGbG 1 XGGbGG 1 XGEbGE 1 e
¼ m 1 Xb 1 e; ð1Þ

where m¼ (m, � � � , m)T is the overall mean; bE are the en-
vironmental effects; bG, bGG, and bGE are the selected
main effects, epistatic effects, and gene–environment
interactions, respectively; and e are independent nor-
mal errors with mean zero and variance s2. We always
include the environmental terms XEbE in the model,
and hence conventional hierarchical linear models are
a special case. To simplify notation, we organize all
effects into b and all design matrices into X.

Prior specification: Bayesian modeling involves ex-
plicit priors that state the degree of uncertainty for all
unknown aspects of a model. Unknowns for our Bayes-
ian QTL modeling include the indicators g, positions of
QTL l, effects b, overall mean m, and residual variance
s2, as well as the QTL genotypes g that determine the
design matrix (XG, XGG, XGE). For m, s2, l, and g, we use
the priors proposed in Yi et al. (2005). We here suggest
new priors on effects b and indicators g that can restrict
their values in a reasonable region of the parameter
space and thus induce increased posterior probability
on more probable models.

Dependence priors on genetic architecture indica-
tors: Independence priors for g work well for many
situations (Yi et al. 2005, 2006), but may not be ap-
propriate when either (1) loci with large main effects
are more likely to have large interactions or (2) many
loci have detectable main effects and thus the probabil-
ity of detecting additional QTL with weak main effects
but strong interactions is low. We here propose depen-
dence priors capturing relations between interaction
and main-effect terms (see Chipman 1996, 2004; Chipman

et al. 2001). Below we detail dependence priors for
epistasis; the same idea extends to gene–environment
interactions.

Consider two QTL indexed by j and k, with main-
effect and epistasis indicators gj, gk, and gjk. Setting
a common inclusion probability for main effects,
Pðgj ¼ 1Þ ¼ Pðgk ¼ 1Þ ¼ pm (Yi et al. 2005), we con-
struct conditional inclusion probabilities for epistasis as

Pðgjk ¼ 1 jgj ;gkÞ ¼
c0pm if ðgj ; gkÞ ¼ ð0; 0Þ
c1pm if ðgj ; gkÞ ¼ ð1; 0Þor ð0; 1Þ:
c2pm if ðgj ; gkÞ ¼ ð1; 1Þ

8<
:

Typically, 0 # c0 # c1 # c2 # 1, implying that main effects
are more likely to be detected than epistasis and that the
importance of an interaction depends on the impor-
tance of its ‘‘parent’’ terms. Setting some ch to zero rules
out certain interactions: c0 ¼ c1¼ 0 and c2 . 0 allows
interactions only if both main effects are included.

These values establish a principle of variable selection,
modifying prior mass across possible genetic architec-
ture and greatly reducing the model space.

Hierarchical priors on effects: We want effect priors
that are invariant to the scales of the phenotype and the
contrasts and model complexity. This can be accom-
plished by hierarchical models in which the priors
have empirical hyperpriors that depend on the pro-
portion of phenotypic variance explained by the effect.
We partition the genetic effects into batches, correspond-
ing to different types of effects, e.g., additive, dominance,
additive–additive, additive–environment interactions, etc.
Effects in the same batch k follow the same prior,
bkj � N ð0; s2

kÞ. The prior variance s2
k is a random vari-

able with an inverse-x2 hyperprior, s2
k � Inv-x2ðnk ; s2

k Þ,
and has expected value Eðs2

kÞ ¼ nks2
k =ðnk � 2Þ. The de-

grees of freedom nk controls the skew of the prior for s2
k,

with larger values recommended (here nk¼ 6) to tightly
center the prior around s2

k (see Chipman 2004). The
scale sk

2 is chosen to control the prior confidence region
of the proportion of the phenotypic variance explained
by bkj (i.e., heritability) (also see Gaffney 2001). The
proportion of phenotypic variance explained by bkj is
hkj ¼ Vkjb

2
kj/Vp, with Vkj the sample variance for the

column of X associated with effect bkj and Vp the total
phenotypic variance. Setting s2

k ¼ (nk � 2)E(hkj)Vp/
(nkVkj) yields E(hkj)¼ VkjE(s2

k)/Vp. Expected effect heri-
tabilities, E(hkj), can be set small (say 0.05–0.2) to reflect
prior knowledge about genetic architecture. Environ-
mental random effects have normal hierarchical priors
similar to the above genetic effects; fixed-effect cova-
riates have uniform empirical priors (see Gelman et al.
2003).

AN EFFICIENT SAMPLING SCHEME

Now that we have established the model, we then
describe our MCMC algorithm to explore the posterior.
The joint posterior is proportional to the product of the
phenotype likelihood function, pðy jg; X; b; m; s2Þ, and
the prior distributions of all unknowns,

pðl;g; g;b;c;m;s2 j yÞ
} pðy jg;X;b;m;s2ÞpðlÞpðgÞpðg jlÞpðb jcÞpðcÞ
� pðmÞpðs2Þ; ð2Þ

in which c represents all variance parameters for b. For
notational convenience, we suppress the dependence
on marker data and covariates here and in subsequent
notation.

Our algorithm alternately updates unknowns (l, g, g,
b, c, m, s2). Given l, g, and g, model (1) is a con-
ventional hierarchical linear model, and hence we can
update the parameters m and b given (c, s2) from nor-
mal distributions and all elements of (c, s2) from the
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independent inverse-x2 conditional posterior distribution
given (m, b) (Gelman et al. 2003). The conditional
posterior distribution of each element of g is multino-
mial and thus can be sampled directly as well. The
conditional posterior of each element of l has no
standard form, but the traditional Metropolis–Hastings
algorithm can be used to update the vector l one at time
(Yi et al. 2005).

We improve our MCMC algorithm efficiently in
sampling the indicators g when there are many effects.
We first modify the Gibbs sampler of Yi et al. (2005) to
incorporate the new priors proposed herein and de-
scribe its drawback in models with very large numbers of
effects where many of effects are negligible in size. We
then develop a new, fast Metropolis–Hastings algorithm
and discuss why the new algorithm is more efficient than
the Gibbs sampler.

At each iteration of the MCMC simulation, the full
Gibbs sampler proceeds to generate all the indicator
variables, gj, from its conditional posterior distribution,

pðgj ¼ 1 jg�j ; X; b�j ; c; yÞ

¼ 1� pðgj ¼ 0 jg�j ; X; b�j ; c; yÞ ¼ wL1

ð1� wÞL0 1 wL1
;

ð3Þ

in which ‘‘�j ’’ means all elements except the jth, w ¼
p(gj¼ 1 j g�j) is the prior inclusion probability of the jth
element, and Lm¼ p(y j gj¼m, g�j, X, b�j, c) for m¼ 0,
1. Note that bj is integrated out from L1. A convenient
way to calculate L1 is to use the following identity:

L1¼
pðy jgj ¼ 1;g�j ;X; b�j ; c;bjÞpðbj jg�j ; X; b�j ; cÞ

pðbj j y; gj ¼ 1; g�j ; X; b�j ; cÞ :

ð4Þ

Since L1 is independent of bj, we can compute it by
inserting any value of bj into this expression. A conve-
nient and stable choice for bj is the conditional pos-
terior mean (Gelman et al. 2003).

This Gibbs sampling scheme works reliably (Yi et al.
2005, 2006). However, it is computationally demanding
when the number of possible genetic effects (i.e., the
number of indicator variables) is large. To understand
this, we note that:

1. Even with a moderate L, the number of possible
effects is large. For example, for a F2 population,
taking L¼ 20 leads to 40 (¼ 2L) possible main effects,
760 (¼ 2L(L � 1)) possible epistatic effects, and
many possible gene–environment interactions. Us-
ing the Gibbs sampler it is necessary to compute the
conditional posterior probability (3) for each gj.
Therefore, the Gibbs sampler is usually computa-
tionally demanding.

2. Most of the genetic effects are near zero and thus gj is
zero for most j. If the current value of gj is 0, gj is likely
to be regenerated as zero because the prior proba-
bility w ¼ p(gj ¼ 1 j g�j) in (4) is very small. In the
Gibbs sampler, it is always necessary to calculate the
conditional posterior probability (4) when gj is
currently 0. Such computation may be wasteful.

We here propose a new Metropolis–Hastings scheme
to update g that offers significant computational ad-
vantages over the Gibbs sampler without sacrifice of
statistical efficiency when the number of possible effects
is large. Our Metropolis–Hastings scheme extends the
Bayesian variable selection method of Kohn et al. (2001)
to genomewide interacting QTL analysis. As the full
Gibbs sampler, at each iteration of the MCMC simula-
tion, the new algorithm proceeds to update all indicator
variables. Denote the current value of gj by C (¼ 0 or 1).
Our new algorithm first proposes a new value P (¼ 0 or
1) for gj from the conditional prior probability p(gj ¼
C j g�j). If P ¼ C, the Metropolis–Hastings acceptance
probability is 1, and thus gj remains at C and there is no
need to compute any values, otherwise, we update gj

from the current value C to the proposal 1 � C with
acceptance probability

a ¼ min 1;
pðgj ¼ 1� C jg�j ; X; b�j ; c; yÞ

pðgj ¼ C jg�j ; X; b�j ; c; yÞ

 

�
pðgj ¼ C jg�jÞ

pðgj ¼ 1� C jg�jÞ

!
¼ min 1;

L1�C

LC

� �
;

ð5Þ
in which all terms are defined in (3). If gj is currently 1
(i.e., bj is currently included in the model), we can
calculate the two values L0 and L1 using the prior
variance of bj and the column of X corresponding to
the effect bj. If gj is currently 0 (i.e., bj is currently
excluded in the model) and the involved QTL(s) is
(are) not currently in the model, we first expand X,
sampling one or two new QTL position(s) as needed,
new genotypes for all individuals, and the prior variance
of bj if this parameter is currently out of the model, from
the corresponding priors, and then calculate the ac-
ceptance probability to update gj. This procedure is also
needed for the full Gibbs sampler (Yi et al. 2005).

In this Metropolis–Hastings algorithm, the proposal
probability to generate gj ¼ 1 when it is currently 0 is
p(gj ¼ 1 j g�j), which is very small when the number of
possible genetic effects is large and most of them are
near 0, and thus gj is likely to be proposed as 0.
Therefore, it is unnecessary to compute any values for
most gj, and hence this new algorithm is much faster
than the full Gibbs sampler.

We illustrate the relative advantages of the Gibbs
sampler to our new Metropolis–Hastings algorithm in
terms of statistical efficiency. The transition probability
for gj from C to P, Q(C / P), is
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QGð0/1Þ ¼ wL1

ð1� wÞL0 1 wL1
;

QGð1/0Þ ¼ ð1� wÞL0

ð1� wÞL0 1 wL1
;

and

QMHð0/1Þ ¼ w �min 1;
L1

L0

� �
;

QMHð1/0Þ ¼ ð1� wÞ �min 1;
L0

L1

� �
;

for the Gibbs sampler and the Metropolis–Hastings algo-
rithm, respectively, with w ¼ p(gj ¼ 1 j g�j). Following
Kohn et al. (2001), QG(C / 1� C) . QMH(C / 1� C).
Thus, the Gibbs sampler is statistically more efficient per
scan than the Metropolis–Hastings algorithm in terms
of transition probabilities. When the upper bound of
QTL is large and w is small, the new faster algorithm
does not sacrifice much statistical efficiency, since it can
be easily shown that QMH(C / 1�C)�QG(C / 1�C).

SUMMARIZING AND INTERPRETING THE
POSTERIOR SAMPLES

The mixing behavior and convergence rates of MCMC
algorithms become a critical issue for a high-dimensional
model space problem. Various methods to assess mixing
and convergence have been developed and implemented
in the package R/coda (Plummer et al. 2004). These
diagnostic tools help monitor scalar estimates of interest,
such as the numbers of QTL and epistatic effects.

The posterior samples can be used to estimate the
posterior distribution and search for models with high
posterior probability. Larger effects should appear more
often, making them easier to identify. We use all the
saved iterations of the Markov chain, corresponding to
model averaging, which assesses characteristics of the
genetic architecture by averaging over possible models
weighted by their posterior probability. Model averaging
accounts for model uncertainty and hence provides
more robust inference compared to a single ‘‘best’’ model
approach (Raftery et al. 1997; Ball 2001; Sillanpää

and Corander 2002).
We can use various methods to graphically and nu-

merically summarize and interpret the posterior sam-
ples. The posterior inclusion probability for each locus
is estimated as its frequency in the posterior samples.
Each locus may be included in the model through its
main effects and/or interactions with other loci (epis-
tasis) or environmental effects. The larger the effect
size is for a locus, the more frequently the locus is sam-
pled. Taking the prior probability into consideration, we
use Bayes factors (BF) to show evidence for inclusion
against exclusion of a locus. The Bayes factor for a locus

is defined as the ratio of the posterior odds to the prior
odds for inclusion against exclusion of the locus (Kass

and Raftery 1995). Traditionally, a BF threshold of 3,
or 2 loge(BF) ¼ 2.1, supports a claim of significance
(Kass and Raftery 1995). We can separately estimate
the posterior inclusion probability and corresponding
Bayes factors of main effects, epistasis, and gene–
environment interactions per locus or pair of loci. The
proportions of phenotypic variance explained by the
different effects (heritabilities) can also be estimated.

IMPLEMENTATION IN R/QTLBIM

We have implemented the method proposed herein
and the Gibbs sampler of Yi et al. (2005) in the freely
available package R/qtlbim (Yandell et al. 2007). R/
qtlbim is an extensible, interactive environment for
Bayesian analysis of multiple interacting QTL in exper-
imental crosses. It is built on the widely used R/qtl pack-
age (Broman et al. 2003) and includes all its advantages
for extensibility. In R/qtlbim, the computationally in-
tensive MCMC algorithms are written in C, with data
manipulation and graphics in R.

R/qtlbim provides tools to monitor mixing behavior
and convergence of the simulated Markov chain, either
by examining trace plots of the sample values of scalar
quantities of interest, such as the numbers of QTL and
epistatic effects, or by using formal diagnostic methods
provided in the package R/coda. R/qtlbim provides
extensive informative graphical and numerical summa-
ries of the MCMC output to infer and interpret the
genetic architecture of complex traits (Yandell et al.
2007).

REAL DATA EXAMPLES

We illustrate the application of our proposed method
by reanalyses of two real obesity data sets. The first data
set is a large F2 mouse intercross described in Rocha

et al. (2004), where a large number of main-effects QTL
were detected using traditional interval mapping for
body weight at 6 weeks of age (WK6). We used this data
set to show that the use of the new dependence prior
on indicator variables can detect stronger evidence for
epistatic interactions and the new algorithm has huge
computational advantage over the previous algorithm.
The second data set is a mouse backcross described in
Yi et al. (2005), where three main-effects QTL were
found to influence the trait Fat, a sum of right gonadal
and hindlimb subcutaneous fat pads. Reanalysis of these
backcross data shows that even for models with relatively
small numbers of possible genetic effects our new algo-
rithm still gives substantial computational improvement.

For all analyses, the MCMC algorithm ran for 2 3 105

iterations after discarding the first 1000 iterations as burn-
in. To reduce serial correlation in the stored samples, the
chain was thinned by one in k ¼ 40, yielding 5 3 103
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samples for posterior analysis. To assess convergence and
mixing behavior, we ran three parallel MCMC sequences
with starting points randomly generated from the priors
and used the potential scale reduction factor R̂ that
compares the between- and within-sequence variances for
any scalar estimands (Gelman et al. 2003; Plummer et al.
2004). For several scalar estimands (e.g., the numbers of
QTL and epistatic effects and the total genetic variance),
R̂ fell below 1.1 quickly, indicating that the chains mixed
well and converged rapidly.

In the study of the large F2 intercross (Rocha et al.
2004) where there was evidence for many QTL, MCMC
sampling time was reduced from 8 hr on a P4 personal
computer with the Gibbs sampler of Yiet al. (2005) to�1
hr with our new algorithm. For the backcross data
analyzed below, the Gibbs sampler took 80 min while the
new Metropolis–Hastings algorithm took 15 min. For
the two data sets, the two algorithms gave essentially
identical results.

Real data I: A total of 993 mice (554 males and 439
females) were bred from two lines of mice selected
for increased 3- to 6-week weight gain (M16i) and low
6-week weight (L6); L6 males were mated to M16i
females, with the resulting F1’s inter se mated (no full-
sib pairings) in two consecutive replicates encompass-

ing a total of 64 full-sib F2 families (Rocha et al. 2004).
The two replicates consisted of 490 and 503 mice,
respectively, and the numbers of mice in 64 families
ranged from 4 to 21. Although many traits were mea-
sured in this intercross, for the purpose of illustration,
we analyzed only body weight at 6 weeks of age (WK6). A
total of 63 fully informative microsatellite markers span-
ning the 19 autosomes were genotyped. The marker link-
age map covered 1200 cM (Kosambi) with an average
spacing of 28 cM.

This large F2 data set was analyzed in Rocha et al.
(2004), using standard composite-interval mapping
(Zeng 1994). For WK6, 11 chromosomes were detected
to have evidence of QTL activity with main effects, and
most of the detected QTL had only significant additive
effects. Marker-based linear models were used to test
epistatic interactions among markers. An interaction
between two markers on chromosomes 6 and 17 was
detected (P ¼ 0.0014). Rocha et al. (2004) performed
separate analyses for each gender and found no evi-
dence of gene–sex interactions.

We partitioned each chromosome into a 1-cM grid,
resulting in 1200 possible loci across the genome. The
factors sex and replicate were treated as fixed binary
covariates and family as a categorical random covariate

Figure 1.—F2 data analysis with
independence priors on the indi-
cator variables g and the new
Metropolis–Hastings algorithm
profiles of Bayes factors (rescaled
as 2 logeBF and negative values
are truncated as zero): (a) for all
combined effects (additive, domi-
nance, epistatic, and gene–sex ef-
fects); (b) for main effects, solid
and dashed lines represent ad-
ditive and dominance effects,
respectively; (c) for gene–sex in-
teractions, solid and dashed
lines represent additive–sex and
dominance–sex interactions, re-
spectively; (d) for epistatic in-
teractions, solid lines represent
additive–additive interactions
and other epistatic effects were
not detected. On the x-axis, outer
tick marks represent chromo-
somes and inner tick marks repre-
sent markers.
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in the model. These three covariates were always in-
cluded in the model. We considered gene–gene and
gene–sex interactions. Two types of priors on the
indicator variables g, independence and dependence
priors, were used and compared.

In the analysis with independence priors on g, the
prior number of main-effect QTL was set at lm¼ 12 and
the prior expected number of all QTL (l0) was taken to
be lm 1 3, allowing for some additional epistatic QTL
with weak main effects. The upper bound of the number
of QTL, L, was then 26 (¼ l0 1 3

ffiffiffiffi
l0
p

, see Yi et al. 2005).
To check prior sensitivity, we reran the algorithm with
several other values of lm and l0 and obtained essentially
identical results (data not shown). Using the above
upper bound and the independence priors on the
indicator variables, the total number of genetic effects
was 1404, including 52 main effects, 52 gene–sex
interactions, and 1300 epistatic effects.

For the analysis with independence prior, the ge-
nomewide profile of Bayes factors comparing the model
with and without the locus showed evidence of QTL
activity on 13 chromosomes (2 logeBF . 2.1) (Figure 1).
Most of the loci were included mainly through their
additive effects, similar to the results of Rocha et al.

(2004). However, our Bayesian analysis found that QTL
on chromosomes 3, 4, 6, 11, 12, and 17 interacted with
sex, and QTL on chromosomes 3, 6, 12, and 17 had
additive–additive interactions. The values of 2 logeBF
for additive–additive interactions were �2.1 on chro-
mosomes 3, 6, and 12 and 6 on chromosome 17. A QTL
on chromosome 3 interacted with a QTL on chromo-
some 12 and a QTL on chromosome 6 interacted with a
QTL on chromosome 17. The proportion of the phe-
notypic variance explained by each locus (i.e., heritabil-
ity) was ,6%, indicating that WK6 is a typical complex
polygenic trait controlled by many loci, each with rela-
tively small effect. Although the proportion of the phe-
notypic variance explained by epistasis was low, these
epistatic effects were detectable using our multiple-QTL
approach.

The above analysis with independence priors on the in-
dicator variables detected a large number of main-effect
QTL and two epistatic effects whose main effects were
detectable. These results indicated that the probability of
detecting additional QTL with weak main effects but
strong epistasis was low and thus motivated us to use
dependence priors on the indicator variables g. Our
second analysis used dependence priors, with c0¼ c1¼ 0

Figure 2.—F2 data analysis
with dependence priors on the
indicator variables g and the new
Metropolis–Hastings algorithm
[one-dimensional profiles of
Bayes factors (rescaled as 2 logeBF
and negative values are truncated
as zero)]: (a) for all combined ef-
fects (additive, dominance, epi-
static, and gene–sex effects); (b)
for main effects, solid and dashed
lines represent additive and domi-
nance effects, respectively; (c) for
gene–sex interactions, solid and
dashed lines represent additive–
sex and dominance–sex interac-
tions, respectively; (d) for epistatic
interactions, solid lines represent
additive–additive interactions
and other epistatic effects were
not detected. On the x-axis, outer
tick marks represent chromo-
somes and inner tick marks repre-
sent markers.
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and c2 ¼ 0.1, thus allowing an interaction to enter the
model only if both corresponding main effects were
included in the model. This dependence prior ruled out
many ‘‘unrealistic’’ models from consideration and thus
greatly reduced model space.

Figure 2 displays the genomewide profile of Bayes
factors, comparing the model with and without the locus
for the analysis with dependence priors. This analysis
detected the same chromosomal regions as those in the

first analysis. As expected, this second analysis detected
the same main effects and gene–sex interactions as in
the first analysis. However, the second analysis detected
not only much stronger evidence of epistatic effects for
chromosomes 3, 6, 12, and 17, but also an additional
epistatic effect for chromosome 10 (see the bottom of
Figure 2). This may have resulted from the fact that we
used dependence priors to focus on promising models.
Each main effect explained 3–5% of phenotypic varia-
tion while each interaction explained 1–3% when pre-
sent. As expected, this analysis uncovered the same
interaction pattern of chromosomes 3, 6, 12, and 17 as in
the first analysis and an additional epistatic interaction
between chromosomes 10 and 17, although this in-
teraction was weaker (Figure 3).

Real data II: A mouse cross was produced from two
highly divergent strains: M16i, consisting of large and
moderately obese mice, and CAST/Ei, a wild strain of
small mice with lean bodies (Yi et al. 2005). CAST/Ei
males were mated to M16i females, and F1 males were
backcrossed to M16i females, resulting in 54 families
and 421 mice (213 males, 208 females) reaching 12 weeks
of age. The numbers of mice in 54 families ranged from
4 to 11. All mice were genotyped for 92 microsatel-
lite markers located on 19 autosomal chromosomes.
The marker linkage map covered 1214 cM (Haldane).
Chromosomes 2, 13, and 15 had 20, 9, and 10 markers,

Figure 3.—F2 data analysiswith thenew Metropolis–Hastings
algorithm: two-dimensional profiles of Bayes factors (rescaled
as 2 logeBF and negative values are truncated as zero) and per-
centageofproportionsofvarianceexplainedbyepistaticeffects
(heritability) on selected chromosomes. The Bayes factor or
heritability of epistasis only is shown above the diagonal; the
Bayes factor or heritability comparing the full model with epis-
tasis to no QTL is shown below the diagonal.

Figure 4.—Backcross data analysis with the Gibbs sampler
[one-dimensional profiles of Bayes factors as 2 logeBF (nega-
tive values are truncated as zero)]: (top) for all combined ef-
fects (additive, epistatic, and gene–sex effects); (bottom) for
individual effects, solid, dashed, and dotted lines represent
additive effects, gene–sex effects, and epistatic interactions,
respectively. On the x-axis, outer tick marks represent chro-
mosomes and inner tick marks represent markers.
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respectively, with an average spacing of 5.5 cM; all other
chromosomes had 3–4 markers with average spacing of
28 cM.

In this study, we analyzed Fat, the sum of right
gonadal and hindlimb subcutaneous fat pads. In Yi

et al. (2005), the phenotypic data were linearly adjusted
by sex and family, and the obtained residuals were used
as a new phenotype. We here used two models to
reanalyze the data. Our first analysis included sex and
weight at the age of 12 weeks as binary and continuous
fixed covariates, respectively, and family as a categorical
random covariate. We permitted the inclusion of gene–
gene interactions and gene–sex interactions in the
model. In the second analysis, we analyzed log2(Fat)
adjusting for sex, log2(weight at 12 weeks), and their
interaction as three fixed covariates and include family
as a categorical random covariate. Fat and weight dis-
tributions were both skewed, corrected by log trans-
formation. We permitted the inclusion of gene–gene
interactions and all three types of gene by fixed-
covariate interactions in the model.

Each chromosome was partitioned with a 1-cM grid,
resulting in 1214 possible loci across the genome. The
prior number of main-effect QTL was set at lm ¼ 3, the
number of QTL detected in the nonepistatic analyses
(Yi et al. 2005), and the prior expected number of all

QTL (l0) was taken to be lm 1 3. The upper bound of the
number of QTL, L, was then 14 (see Yi et al. 2005). The
total number of possible genetic effects in this analysis
is much smaller than in the first data analysis above.
The two algorithms, the Gibbs sampler and the new
Metropolis–Hastings algorithm, were used to analyze
the data, with independence prior on the indicator
variables.

Analysis I: As shown in Figures 4 and 5, the two
algorithms produced essentially identical results. The
genomewide profile of Bayes factors comparing the
model with and without the locus showed evidence of
QTL activity on nine chromosomes. Most of these QTL
(i.e., on chromosomes 1, 2, 13, 15, 18, and 19) were
detected by Yi et al. (2005), but this reanalysis found new
QTL on chromosomes 6, 8, and 14. This supports the
fact that including relevant covariates is more appro-
priate in QTL analysis than using residuals as new
phenotypic values. QTL on chromosome 2 had strong
main effect and were also found to interact with sex.
Except for QTL on chromosome 4, all the detected QTL
were found to have strong evidence of epistatic effects;
QTL on chromosomes 2, 8, 13, 15, and 19 had not only
main effects, but also epistatic effects, while QTL on
chromosomes 1, 6, and 18 had only epistatic effects. The
two-dimensional profile of Bayes factors comparing the
model with and without epistasis is displayed in Figure 6,
showing five pairs of strong epistatic interactions, i.e.,
chromosomes 1 and 18, 2 and 13, 6 and 8, 13 and 15, and
15 and 19.

Figure 5.—Backcross data analysis with the new Metropolis–
Hastings algorithm [one-dimensional profiles of Bayes factors
as 2 logeBF (negative values are truncated as zero)]: (top) for
all combined effects (additive, epistatic, and gene–sex ef-
fects); (bottom) for individual effects, solid, dashed, and dot-
ted lines represent additive effects, gene–sex effects, and
epistatic interactions, respectively. On the x-axis, outer tick
marks represent chromosomes and inner tick marks repre-
sent markers.

Figure 6.—Backcross data analysis with the new Metropolis–
Hastings algorithm: two-dimensional profiles of Bayes factors
[rescaled as 2 loge(BF) and negative values are truncated as
zero] on selected chromosomes. The Bayes factor of epistasis
only is shown above the diagonal; the Bayes factor comparing
the full model with epistasis to no QTL is shown below the
diagonal.
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Analysis II: The genomewide profiles for main
effects, epistasis, and G 3 E interactions are similar to
those in analysis I. We here focus interpretation on the
three chromosomes (2, 13, and 15) with denser marker
coverage. Figure 7 shows the one-dimensional marginal
scan of 2 loge(BF) for (Figure 7a) the complete data set.
The combined analysis is dominated by chromosome 2,
which shows evidence for main effect, epistasis, and
G 3 E. Chromosomes 13 and 15 show evidence for main
effects and possible epistasis and/or G 3 E. The presence
of G 3 E suggests value in separate analysis for (Figure 7b)
females and (Figure 7c) males. Here, log2(weight at 12
weeks) and family were retained as fixed and random
covariates, with G 3 E examined for weight. Figure 7, a–c,
shows that there may actually be two distinct QTL on
chromosome 2 and that males show evidence for geno-
type-by-weight interaction on chromosome 13, while
females do not.

Figure 8 examines the relationship between Fat and
weight at 12 weeks, separating by sex and adjusting
within plot by genotype for (Figure 8a) the chromo-

some 2 QTL or (Figure 8b) the chromosome 13 QTL,
using the closest marker to the peaks from Figure 7c.
There is a strong QTL effect, but no apparent G 3 E for
chromosome 2. However, the G 3 E interaction is
evident for males when adjusting for chromosome 13
in Figure 8b. A two-dimensional profile of 2 loge(BF) for
epistasis found strong evidence between chromosomes
2 and 13, with peak 2 loge(BF) of 5.5 for epistasis and
10.8 for the full model including main effects and
epistasis. This evidence for epistasis suggests a more
careful look at the G 3 E interaction with chromosomes
2 and 13, shown in Figure 9. Here we see that the
genotype-by-weight interaction is apparent only when
the chromosome 2 genotype is H.

DISCUSSION

We have extended the composite model space
method for mapping epistatic QTL of Yi et al. (2005)
to simultaneously model and detect main effects of mul-
tiple QTL, gene–gene interactions, arbitrary covariates,

Figure 7.—One-dimensional mar-
ginal scan of 2 loge(BF) on chromosomes
2, 13, and 15 for (a) both sexes, (b) fe-
males, and (c) males. Lines indicate con-
tributions for main effects (solid lines),
epistasis (dotted lines), G 3 E (dashed
lines), and the combined sum (dotted-
dashed lines). The QTL on chromosome
2 dominates, showing evidence for a
main effect and some sort of genotype-
by-covariate effect. b and c suggest there
may be different QTL for males and fe-
males on chromosome 2; thus sex seems
to be the primary covariate on this chro-
mosome. While overall evidence of G 3 E
is slight for chromosomes 13 and 15 (a),
separate analyses by sex show substantial
genotype-by-weight interaction for males
(c) but not females (b). Note in males the
evidence for some epistasis on chromo-
somes 2 and 13. Chromosome 15 shows
only a modest main-effect QTL for males
only.
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and gene–environment interactions. Our methods are
developed in the Bayesian model selection framework,
which treats the dimension of models as an unknown
and which models uncertainty better than frequentist
approaches. We have developed a new sampling for ex-
ploring the posterior distribution that can give sub-
stantial improvement over the sampling scheme of Yi

et al. (2005) in problems with large numbers of possible
effects. We have developed new priors on indicator var-
iables and genetic effects that can incorporate our prior
knowledge about genetic architecture of complex traits
and thereby focus searching on biologically more realis-
tic models. These new priors and the computationally
efficient MCMC algorithm greatly improve the ability of
the Bayesian model selection methods to rapidly detect
complex interactions. We demonstrate the utility of the
algorithm and new priors in the analysis of two mouse
obesity data sets, in which we report stronger evidence
for epistatic interactions than if they were not used and
substantial improvement on computational intensity.

We developed our new algorithm using the conven-
tional Metropolis–Hastings technique based on the
composite model space. The proposed algorithm is
similar to a reversible jump MCMC algorithm, which
goes through each indicator variable and uses the prior
probability as the proposal and which proceeds to
generate one or two new QTL position(s), new geno-

types for all individuals, and the prior variance of bj,
from the corresponding priors and the associated effect
bj from the full conditional posterior. However, this
reversible jump MCMC algorithm can be derived only
by using our composite model space approach. For
nonepistatic models, Yi (2004) showed that the com-
posite model space approach includes many reversible
jump MCMC algorithms as special cases.

The methods described herein have been imple-
mented in a software package called R/qtlbim for the
open-source R environment (Yandell et al. 2007). The
MCMC algorithm is written in compiled C code and
wrapped with R code, making the software available
for Windows, UNIX, and MacOS operating systems.
R/qtlbim is fully compatible with and complementary
to R/qtl, an extensive and interactive package of fre-
quentist approaches to QTL mapping in experimental
crosses (Broman et al. 2003). A key advantage of the
Bayesian approach, as implemented by simulation, is
the flexibility with which posterior inferences can be
informatively summarized. We have developed various
methods to graphically (and numerically) summarize
and interpret posterior samples and to diagnose con-
vergence of the Markov chain. These methods have
been implemented within R/qtlbim. A detailed de-
scription of these graphical methods will be published
elsewhere.

Figure 8.—Lattice plots of log2(Fat2) vs. log2

(weight at 12 weeks) by sex, grouped within plot
by (a) chromosome 2 QTL genotype or (b) chro-
mosome 13 QTL genotype (A, circles, solid lines;
H, triangles, dotted lines). Note the significant
difference in slopes only for males grouped by
QTL 13.
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The basic framework of our composite model space
approach provides flexible ways to reduce the model
space. We have incorporated two global constraints on
models into our algorithms and software R/qtlbim as
options. These constraints dramatically reduce the
model space and may be useful for efficiently detecting
interacting QTL. The first constraint restricts the
spacing among multiple linked QTL. On chromosome
c, forcing QTL to be at least dc cM apart excludes the
possibility of fitting closely linked QTL if dc is large. The
distance dc should depend on the density of markers on
chromosome c and on the sample size n. We suggest
setting it to the average length of marker intervals on
chromosome c. Our second constraint restricts the
number of detectable QTL on each chromosome to Lc

with L #
P

Lc and Lc # Dc/dc, where Dc is the length
of chromosome c. End users can use these global con-
straints to rule out many unrealistic models from
consideration.

The process of Bayesian analysis can be idealized by
consisting of four steps: (1) setting up a joint probability
distribution for all observable and unobservable quan-
tities, (2) calculating (sampling from) the appropriate
posterior distribution, (3) interpreting the posterior
sample, and (4) evaluating the fit of the model and the
implications of the resulting posterior distribution
(Gelman et al. 2003). Despite our best efforts to include
as much information in modeling as possible and to
search model space as comprehensively as possible, all
resulting models are approximate. Hence, checking the

fit of a model to data and prior assumptions is always
important. Model checking and assessment have been
largely ignored in QTL studies. We are also investigating
ways to check the fit of inferred QTL models to data
and prior assumptions. Our future plans also include
extensions to joint analysis of multiple traits, experi-
mental crosses derived from multiple inbred lines, and
outbred populations. Computationally efficient algo-
rithms are an essential feature for the practical analysis
of complex genetic architectures in these more compli-
cated cases.
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