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ABSTRACT
We describe a new approach, called recombinant inbred intercross (RIX) mapping, that extends the

power of recombinant inbred (RI) lines to provide sensitive detection of quantitative trait loci (QTL)
responsible for complex genetic and nongenetic interactions. RIXs are generated by producing F1 hybrids
between all or a subset of parental RI lines. By dramatically extending the number of unique, reproducible
genomes, RIXs share some of the best properties of both the parental RI and F2 mapping panels. These
attributes make the RIX method ideally suited for experiments requiring analysis of multiple parameters,
under different environmental conditions and/or temporal sampling. However, since any pair of RIX ge-
nomes shares either one or no parental RIs, this cross introduces an unusual population structure requiring
special computational approaches for analysis. Herein, we propose an efficient statistical procedure for
QTL mapping with RIXs and describe a novel empirical permutation procedure to assess genome-wide
significance. This procedure will also be applicable to diallel crosses. Extensive simulations using strain
distribution patterns from CXB, AXB/BXA, and BXD mouse RI lines show the theoretical power of the
RIX approach and the analysis of CXB RIXs demonstrates the limitations of this procedure when using
small RI panels.

ALTHOUGH significant progress has been achieved often not robust enough to accurately localize the under-
in the identification of human genes underlying lying genetic differences associated with the traits under

many pathological conditions, the vast majority of genes study. However, in both experimental and domesticated
have been limited to simple Mendelian traits and well- species, where large collections of molecular and genetic
defined quantitative traits with relatively large and con- markers have been used to develop detailed genetic maps
sistent effects (Nadeau and Frankel 2000; Korstanje and from which large numbers of recombinant individu-
and Paigen 2002). However, the vast majority of mam- als can be generated, statistical analysis of the association
malian phenotypic variation, whether it is morphologi- between phenotype and genotype for the purpose of
cal or susceptibility to various pathological conditions, localizing genomic regions affecting complex traits is
is polygenic and influenced by complex interactions with plausible. Nonetheless, the regions harboring quantita-
environmental factors. Traits that have been historically tive trait loci (QTL) are usually mapped to broad inter-
difficult to analyze include those with incomplete pene- vals and identifying candidate genes after initial map-
trance or expressivity such as behavior, cancer susceptibil- ping has proven to be a difficult task.
ity, and physiological responses to environmental stimuli Because of the genetic resources and manipulations
as well as those traits that change with age. Complicating available and because of the biological similarity to hu-
the analysis of these types of traits is the prediction that mans, the mouse has become the de facto model organ-
many are also controlled by genes that have small effects ism to genetically dissect medically important complex
individually, but whose cumulative action is the cause traits. However, the most widely used experimental map-
of significant interindividual variation. Consequently, a ping approaches, particularly intercrosses and back-
single phenotypic measurement per unique genome is crosses, lack the genetic reproducibility to efficiently

perform multivariant analyses across traits and environ-
mental conditions (Darvasi 1998). This is a particularly
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sity, Nashville, TN 37232. gene-environment interactions or study disease progres-
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sources to genetically dissect additive-effect loci (Nadeau genotypes will be known in advance by imputing from
the parental RI lines; RIX are especially useful for long-et al. 2000; Singer et al. 2004). However, when used

without additional crossbreeding, they lack the genetic term collaborative research because their genotypes
are renewable, making the phenotypic data cumulativecomplexity to detect genetic interactions between non-

syntenic genomic regions. Another powerful resource, within the research community; and, since RIX ge-
nomes are easily replicated, experiments with differentrecombinant congenic strains (RCS), has the ability to

dissect nonsyntenic genetic interactions but lacks the environmental variables or temporal relationships can
be performed on the same genotypes.reproducibility to efficiently investigate gene-environ-

ment interactions because of the backcrosses required In this study, the novel RIX method that builds upon
classical RI panels is evaluated and tested. While subjectsto identify the interacting genomic intervals (van Zut-

phen et al. 1991; Groot et al. 1992). in traditional QTL mapping using backcross or inter-
cross populations all have an identical genetic relat-Recombinant inbred (RI) lines are another of the

major resources that have contributed to genetic dissec- edness to one another, this is not the case for the RIX
design; some RIXs share a common parental RI line,tion of simple and complex traits (Bailey 1971; Swank

and Bailey 1973; Watson et al. 1977; Plomin et al. making them genetically more related to each other
than those RIX that do not share parental RI lines.1991b). A major advantage of RI panels over other com-

monly used mapping approaches is their ability to sup- Specifically, RIX can be viewed as the last generation
of a pedigree originating from two inbred foundersport genetic mapping and correlations among many

traits, even under different environmental conditions or the diallel designs widely used in plant genetics. To
control for this complex relationship structure, we(Plomin et al. 1991a). However, mouse RI panels gener-

ally have low power and precision compared to other adapted a mixed model for RIX mapping that was origi-
nally proposed to handle human pedigree data (Amosresources because of their small size; typical mouse RI

panels have only 15–35 strains from a single pair of 1994). Similarly, we show that the widely used direct
permutation procedure to assess significance in QTLparental inbred lines. The situation is significantly dif-

ferent in other species like plants and invertebrates mapping is not applicable to the RIX design but requires
adaptation to maintain proper relationships amongwhere hundreds to thousands of RI lines may exist be-

cause of the quick generation time and ease of mainte- traits and polygenes. Using these new methods, we com-
pare the relative power of RI panels ranging from 13nance (Johnson and Wood 1982; Burr et al. 1988;

Reiter et al. 1992; Fry et al. 1998). to 34 lines and demonstrate that, although small RI
panels and their derivative RIXs suffer from a lack ofWe recently proposed a novel derivative of RI lines,

called recombinant inbred intercrosses (RIX), that per- power, the RIX approach adds significant power for
larger RI panels.mits repeated interrogation of a fixed, but complex

genotype to reduce nongenetic variance while increas-
ing the power of the original RI panel (Threadgill et al.

MATERIALS AND METHODS2002). Although isogenic, a group of RIX individuals
has a genetic structure that is remarkably similar to that Mouse breeding and sample collection: CXB1 through CXB13

RI breeding stock, originally produced from BALB/cByJ crossedof an F2 intercross, except that individuals from the
to C57BL/6ByJ (Dux et al. 1978), were obtained from Thesame RIX can be viewed as clones of F2 individuals that
Jackson Laboratory (www.jax.org). The F1 intercrosses betweeninherit all the advantages of RI strains. Moreover, com-
pairs of CXB RI lines were set up to generate all 78 non-

pared to RI, the advantages of RIX include twice the reciprocal matings by crossing low-numbered female strains
number of recombination sites in a single individual by higher-numbered male strains. This simple low-by-high

breeding scheme results in a systematic bias: CXB1 is alwayssince each is derived from two parental RIs, albeit there
used as a maternal strain and CXB13 is always used as a pater-are no new recombination sites; that dominance effects
nal strain. To assess the role of parental effect we generated 14can be estimated; a large expansion of different RIX
pairs of reciprocal RIXs. Progeny for each RIX were produced

genomes over the parental RI; and, because of the buf- from at least two litters for each cross. We did not use cross-
fering capacity of their heterogeneous genome struc- fostering of litters or standardize the numbers of animals

within litters. All RIX mice were produced in a pathogen-freeture, that RIX genomes should provide more reliable
barrier facility at one site (University of Tennessee Healthtrait means than the parental RIs. However, the non-
Science Center) over a 1-year period. Mice between 50 and 100syntenic associations present in RI panels, particularly
days of age were weighed, anesthetized, and perfused trans-

those with a small number of lines (Williams et al. cardially with 0.1 m phosphate buffered saline (PBS) followed
2001), are retained and even exacerbated in the RIX. by 4% paraformaldehyde (PFA) in 0.1 m PBS. Bodies were

stored in 50-ml conical tubes in 1% PFA at 4� until dissection.The RIX approach also has advantages over classical
Data on body and brain weight, age, sex, litter size, and paritycrosses like the F2 design since each RIX has a higher
were collected. For the parental RI mice we often did notrecombination density because of the map expansion
have data on litter size or parity. Body and brain weights were

of the parental RI, averaging almost fourfold more re- log-transformed and adjusted for log(age) and sex for body
combination sites than a single F2 individual when per- weight or adjusted for log(age) and sex as well as log(body

weight) for brain weight. All mice were housed in an Associa-forming interval mapping (Williams et al. 2001); the
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Figure 1.—Production of RIX hybrids. The relationship between the parental strains and the derivative RIs along with the
relationships between RIXs is shown.

tion for Assessment and Accreditation of Laboratory Animal positive rates are likely to result (Zou et al. 2001). Thus any
appropriate analysis should take this special structure of RIXCare-approved facility under specific pathogen-free conditions.

Crosses to generate an F2 population were between BALB/ genomes into consideration. Furthermore, in some situations
there is interest in estimating parental contributions to traits,cByJ and C57BL/6ByJ. A total of 184 animals, between 49 and

89 days of age, were collected. Measurements were obtained which also requires consideration of the special architecture
of RIX genomes.for body and brain weights, log-transformed, and adjusted for

covariates as described above. Interval mapping, using R/qtl Calculating thresholds and power are important practical
issues in the design and analysis of any QTL study. However,(Broman et al. 2003), was performed to detect loci modulat-

ing body and brain weights for comparison to the CXB RI and the usual pointwise significance level based on chi-square ap-
proximation is inadequate because the entire genome is testedRIX results.

Genotypes: The genotypes of all RI lines used in the simula- for the presence of a QTL. Empirical permutation procedures
to estimate genome-wide threshold values for traditional inter-tion studies were previously reported (Taylor and Phillips

1995; Williams et al. 2001). For analysis of the CXB RIs, 382 val mapping have been proposed (Churchill and Doerge
1994). These procedures can be easily extended to other,markers, representing unique strain distribution patterns (SDPs),

were used. The RIX genotypes were imputed from the RI geno- more complicated situations such as combined crosses where
the permutation can be restricted within each class (Liu andtypes automatically with QTX (Manly et al. 2001) while the

CXB F2 progeny were genotyped for 72 simple sequence length Zeng 2000). However, the appropriate procedure to extend
permutation analysis to RIXs is not straightforward becausepolymorphism (SSLP) markers.

Three pairs of the AXB/BXA RI strains have highly simi- the mating scheme used to produce different RIX genomes
introduces correlation between related RIXs (those sharing alar SDPs (Williams et al. 2001); the high degree of identity is

strikingly different from the 50% expected for independently parental RI line). Ignoring the correlation between related
RIXs is problematic and leads to large biases in estimatingderived RI strains. We therefore used only one representative

from each of these pairs in the simulation studies. Otherwise, thresholds. Intuitively, the data should be permuted such that
the parental contribution is preserved while the major genefalse declaration of linkages and spuriously high and low re-

combination frequency estimates may be produced. effect on the trait is destroyed. To achieve this, we developed
a novel permutation procedure.RIX mapping requires a unique statistical approach: Genetic

mapping algorithms using experimental populations, such as Calculations for the RIX design: The following notations
are introduced for later use. Suppose there are L RI linesbackcrosses, intercrosses, or RI panels, to localize QTL are well

developed. Many excellent open source software packages, such that produce M � (L(L � 1))/2 nonreciprocal RIXs. Then
suppose the RI lines are numbered as RI 1, RI 2, . . . , RIL andas QTLCart (Basten et al. 1994), MapManager (Manly et al.

2001), and MAPMAKER/QTL (Lincoln et al. 1992), are avail- denote the nonreciprocal RIXs derived from parental lines
RIi and RIj as RIXi j , where i � j � 1, 2, . . . , L or, alternatively,able. Due to the similarity of RIX and F2 genome structures,

it would appear that methods developed for F2 intercrosses as RIXk , where k � 1, 2, . . . , M for ease of notation.
For quantitative traits, it is often assumed that traits arecould be directly applicable to RIXs. However, the relationship

between different RIXs is complicated. For F2 individuals, the controlled by both poly- and oligogenes, genes with small and
intermediate effects, respectively. The effects of polygenes onrelationship between any pair will on average be the same

with each individual sharing, on average, 50% of its genetic the ability to map oligogenes have been documented and
taken into account in algorithms used for commonly used ge-composition. However, this is not the case for RIX genomes.

Pairs of RIXs sharing one parent are more closely related than netic crosses (Visscher and Haley 1996). Within single crosses,
such as backcrosses or intercrosses, the progeny have identicalthose RIXs that do not share a parent. For example, a RIX

produced by crossing RI 1 and RI 2 (RIX12) is expected to be relationships given the QTL genotypes, resulting in a compound
symmetry structure (Yandell 1997). Thus, unbiased estimatesmore similar to a RIX produced by crossing RI 1 and RI 3

(RIX13) than to a RIX from crosses between RI 3 and RI 4 (RIX34) of QTL effects are obtained even when polygenic effects are
ignored. Nonetheless, the power to detect QTL is influencedsince RIX12 and RIX13 share a parental RI (RI 1) while RIX12

and RIX34 do not share any parental RI lines (Figure 1). From by the magnitude of the polygenic effect. The situation be-
comes problematic for complicated pedigree structures. Meth-a statistical point, if the relationship among individuals is com-

plex and is not modeled, or modeled incorrectly, high false- ods using Wright’s relationship matrix A to accommodate
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different correlations between related individuals have been Consider a toy example where there are four parental RI
developed for analyzing human pedigrees and diallel mating lines, RI 1, RI 2, RI 3, and RI 4, which produce six nonreciprocal
designs (Goldgar 1990; Amos 1994; Zhu and Weir 1996; Xu RIXs: RIX12, RIX13, RIX14, RIX23, RIX24, and RIX34. Now suppose
1998). For the RIX design, a similar approach can be used we get RI 3, RI 1, RI 2, and RI 4 after permuting RI 1, RI 2, RI 3,
since RIX can be viewed as the last generation of a pedigree and RI 4; then the permuted marker genotypes of RIX12, RIX13,
originating from two inbred founders or the diallel designs RIX14, RIX23, RIX24, and RIX34 are the corresponding genotypes
widely used in plant genetics. of RIX13, RIX23, RIX34, RIX12, RIX14, and RIX24, respectively.

Mixed-model analysis: Assume the existence of major QTL Note that instead of permuting the genotypes of RIXs di-
and polygenes, all affecting a trait of interest. In aggregate, rectly, we permute the genotypes of the parental RIs and then
the polygenic effect is normally distributed and acts indepen- create the new genotypes for each RIX; this preserves the orig-
dently of the major QTL. For simplicity, a model with one inal relatedness between RIXs, which is equivalent to main-
major QTL is considered; an extension to a multiple-QTL model taining the relationship between the trait and the polygenes.
is straightforward. We fit the following mixed-effect model, After we randomly reassign marker genotypes to RIXs, we can

treat the permuted data sets in the same way as the originalY � X 1a 1 � X 2a 2 � Z� � e , (1) data and repeat the analysis using model (1).
where a1 is a fixed effect due to nongenetic factors such as
age; a 2 � (a , d) is a fixed effect with a and d corresponding
to the additive and dominant effects of the major QTL, respec- RESULTStively; �(L � 1) is a random effect due to polygenes and other
nonmodeled QTL and is �N(0, � 2

a); and e is a random error Power analysis of RIXs: Extensive simulations were
and is �N(0, � 2

e). Z is an M � L matrix with performed to investigate the properties of the RIX map-
ping method. Rather than simulating hypothetical ge-

zkj � �1 if one of the k th RIX individual’s parents is R j

0 otherwise, notypes of parental RI lines, we choose three panels of
existing, widely used mouse RI lines and their associated

for k � 1, 2, . . . , M, j � 1, 2, . . . , L.
genotypes for the simulations to more accurately reflect

Obviously, �j zkj � 2 for all k � 1, 2, . . . , M since each individ- those in practice. The three RI panels are CXB (13 lines
ual has two and only two parents. Although this model can derived from a BALB/cByJ � C57BL/6ByJ cross), AXB/
be extended to parental effects through the generation of BXA (22 lines derived from an A/J � C57BL/6J crossgenetically identical RIXs using reciprocal RI crosses as noted

and the reciprocal C57BL/6J � A/J cross), and BXDlater, we assumed no parental effects in our analyses.
(37 lines derived from a C57BL/6J � DBA/2J cross);The hypotheses for whether any major QTL exists at a given

locus are these three provide a good range of RI panel sizes. Most
RI panels have well-documented nonsyntenic linkage as-H 0: a � d � 0 vs. H1: a � 0 and d � 0.
sociations that are caused by correlated genotypes that

An F-statistic or likelihood-ratio test statistic or equivalent LOD make correct QTL localization impossible when by chance
score can be used to test this model. In all subsequent analyses,

one of the highly correlated markers is linked to thethe model was tested in SAS with Proc Mixed (SAS code is pro-
QTL (Williams et al. 2001). When this occurs, othervided as a supplement at http://www.genetics.org/supplemental/

or can be downloaded at http://www.mouselab.org; SAS Insti- follow-up studies are required to determine which re-
tute, Cary, NC). gion is actually linked to the QTL. As would be expected,

Permutation test: Obtaining appropriate threshold values the smaller RI panels are more severely affected by thefor RIX analysis using model (1) is quite complicated. We have
problem of high nonsyntenic correlation. Furthermore,found that the threshold depends on the magnitude of the back-
having a small number of parental RI lines makes itground polygenic effects when all else is equal, especially when

the number of parental RI strains is small, such as with the difficult to separate major QTL effects from polygenic
CXB set where only 13 parental RI lines are available. Thus, to effects. Conversely, we would expect that the larger the
minimize genome-wide type I errors, appropriate permutation RI panel, the greater the power is for mapping majorprocedures must be used to control for polygenic effects when

QTL and for separating major QTL effects from poly-detecting major QTL.
Ideally, when testing the existence of major QTL, the per- genic effects. Thus, the three RI panel sizes can be used

mutation procedure should not destroy the relationship be- to investigate the effect of the number of parental RI
tween the trait and the polygenic effect, but only the relation- lines on QTL mapping using the RIX method.
ship between the trait and the major QTL. If data are permuted

The 13 extant CXB RI lines can produce 78 nonrecip-directly (Churchill and Doerge 1994), the relationship not
rocal RIX genomes, while the 22 AXB/BXA (after strainsonly between the major QTL and the trait but also between

the polygenes and the trait is destroyed. Since this relationship whose genotypes are highly correlated with other strains
is destroyed with the RIX, permutations performed according are excluded) and the 34 BXD RI lines will allow the
to Churchill and Doerge (1994) give artificially low thresh- generation of 231 and 561 RIX unique genomes, respec-olds, resulting in enormously high false-positive rates in the pres-

tively. The total markers used in our simulations wereence of polygenic effects.
382, 591, and 552 for CXB, AXB/BXA, and BXD, respec-To avoid this problem, we extended the permutation method

of Churchill and Doerge in such a way that the special correla- tively (Williams et al. 2001).
tion structure of the data is maintained after permutation. Our simulations were intended to answer the follow-
We first permute 1, 2, . . . , L, the parental strain number, and

ing questions: (a) How does the proposed model per-then suppose we get φ(1), . . . , φ(L). Then the permuted marker
form under different scenarios?, (b) How do the paren-genotypes of RIXi j will be the corresponding marker genotypes

of RIXmin(φ(i ),φ(j ))max(φ(i ),φ(j )). tal RI and derivative RIX designs differ in QTL mapping
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power?, and (c) How does the empirical permutation
procedure perform?

To achieve these, two general scenarios were simu-
lated: (a) no major QTL, with polygenes and random
error; and (b) one major QTL, with polygenes and ran-
dom error. Scenario a can be viewed as the null of b.
For all simulations, � 2

e � 1 and � 2
a is set to 0.25. A series

of additive and dominant effects of major QTL were
simulated, which are explained in subsequent tables
and figures.

For CXB and AXB/BXA, the sample sizes of RIXs are
78 and 231, respectively, which is equal to the maximal
number of unique, nonreciprocal RIXs that can be pro-
duced from the parental RIs. For BXD, in practice, using
all 561 RIXs may be too large so we decided to set the
RIX sample size to 340 with each sample generated by a
clockwise mating scheme. That is, RI1 was mated with the
following 10 RI lines, RI2 , . . . , RI11; RI2 was mated with
the next 10 RI lines following it, RI3 , . . . , RI12; and RIL

was mated with RIL�1 , . . . , RIL�10 . To compare RIXs
with RIs, the same number of RI animals was used. Thus,
for the CXB simulations, we used a single RIX sample
for each of the 78 possible RIX genomes but six replicas
for each parental RI line, giving 78 total individuals
for both populations. The same phenotype-generating
mechanism used for RIXs was applied to the parental
RIs. Instead of analyzing phenotypes from individual Figure 2.—Power comparison of RI and RIX. A QTL with

a series of additive (a) and dominant (d) effects was simulatedRIs, we averaged the phenotypes within each line and
using genotypes from (A) CXB and (B) BXD. Thresholdsused the RI line means for all analyses. For RIs, the
were determined using 10,000 simulations and 2000 experi-following model was fit:
ments were performed for each level of additive effect. The
solid line (2) is the RI power curve and dashed lines are theY � X 1a 1 � Xa � e new . (2)
RIX power curves corresponding to different dominant ef-

The symbols used both in this equation and in Equation fects: (1) no dominant effect; (3) d � a/2; (4) d � a/√3; (5)
d � a/√2; and (6) d � a .1 have the same meaning. The differences between the

two models are that (a) for RIs, the polygenic effects are
nonestimable and have been lumped into the random

sets. The empirical threshold can be, in some degree,error enew , that is, �2
enew

� �2
e � �2

a , and thus only the fixed-
viewed as the true threshold. For power calculationseffect model is necessary; and (b) in RIs, only the addi-
under the alternative, if any of the 20 markers adjacenttive effect a can be tested and X � 1 or �1, an indicator
to the QTL had a LOD score greater than the empiricalfor the two homozygous genotypes.
threshold, the QTL was considered detected. The over-Since the parental RI lines are fixed, it is more reason-
all power was the average power across the 10 sets of �’s.able to fix the polygenic effect for a specific trait than

A direct comparison of the power of the RI comparedto allow it to be totally random each time in the simula-
to the RIX under the model with one major additive QTLtion. It is also important to generate different polygenic
and a polygenic effect shows that the RI has slightly moreeffects to investigate how these effects influence the
power than the RIX to detect additive QTL for both CXBgenome-wide thresholds to obtain a more generalized
and BXD (Figure 2). However, in the presence of QTLpicture because polygenic effects vary for different traits.
with dominant effects the power of the RIX is higher;Thus, in all simulations 10 different realizations (or 10
the intermediate-sized AXB/BXA RI set gives similarsets of �’s) of the polygenic effect were generated. These
power curves (data not shown). Due to the lack of power�’s were held fixed within the CXB (or AXB/BXA or
to detect dominant effects using the RI, it is expected thatBXD) cases for comparisons between RIXs and RIs.
with increasing dominant effects, the power of the RIXThresholds and power were determined by simulating
increases and we have observed that the RIX has sub-10,000 data sets under the null and 200 data sets under
stantially higher power than the RI when dominant ef-the alternative (one major QTL) hypothesis for each
fects are large.set of �’s. For data simulated under the null, the highest

To evaluate the performance of the permutation pro-LOD score among all markers was recorded and the em-
cedure in assessing the genome-wide significance level,pirical threshold was set to the 95th percentile of the

highest LOD score among the 10,000 simulated data we randomly generated 10 data sets under the null for
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Figure 3.—Comparison of permuted and empirical thresh- Figure 4.—Significance thresholds and permutation distri-
olds for RIXs. Ten different realizations of the polygenic effect bution of LOD scores for RIXs. Distributions are shown of maxi-
(x -axis) were simulated for RIXs generated from the (A) AXB/ mal LOD scores of the data set used to generate Figure 3 for
BXA and (B) BXD RI sets. The empirical 95th percentile thresh- RIXs generated from (A) AXB/BXA and (B) BXD using 5000
old was estimated from the maximal LOD score obtained from permutations of one data set (additive effect � 1.7) that was
10,000 simulations where data were simulated under the null simulated with one major QTL (results from other simulated
with every realization of the polygenic effect. For permutation, data sets show similar patterns). The solid line is the maximal
10 data sets for each realization of the polygenic effect and their unpermuted LOD score; the dotted line is the 95th percentile
95th percentile permuted thresholds were calculated. �, per- of the permuted maximal LOD scores.
muted thresholds of 1000 simulated data sets under different
realizations of the polygenic effect; E, empirical thresholds under
different realizations of the polygenic effect. with one major QTL was compared to the maximal LOD

scores for the 5000 permutated data sets. Since the orig-
inal maximal LOD score exceeds all of the 5000 permu-each of the 10 �’s with a total of 100 simulated data sets.
tation maximal LOD scores, one would reject the nullWithin each data set, an additive model is fit and 1000
hypothesis at the 0.05 level.permutations were performed, from which the 95th per-

However, the permutation procedure fails for the casecentile permutation threshold was calculated. The con-
of the CXB panel (Figure 5A). As can be observed, theservative nature of the permutation scheme for BXD
95th percentile of the permuted data sets exceeds theand AXB/BXA panels is demonstrated (Figure 3). For
maximal LOD score of the unpermuted data. This indi-the two largest RIX panels tested, the permutation thresh-
cates that the permutation procedure is too conservativeolds for significance are generally greater than the empiri-
and one cannot reject the null hypothesis at the 0.05cal thresholds, indicating conservativeness of the per-
level. To show that the problem is not specific to RIXs,mutation procedure in controlling the type I error rate.
we also ran the permutation for the parental CXB RIHowever, for the CXB panel where the number of pa-
panel, showing that the potential RI power suffers fromrental strain is small, the permutation procedure is too
the same conservativeness (data not shown).conservative and essentially has no power to detect QTL.

The permutation algorithm reveals lack of power forFor AXB/BXA and BXD, where the number of paren-
small RI panels: For the CXB (both RI and RIX), the per-tal strains is relatively large, the conservativeness of the
mutation test is found to be overly conservative at thepermutation procedure does not prevent the detection
0.05 level. The maximal LOD scores have a bandedof QTL (Figure 4); the conservativeness goes down as
pattern when plotted across different simulations underthe number of parental RIs goes up. The unpermuted

maximal LOD score for the data set that was simulated the one major QTL alternative (HA1). Since the banding
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BXA and BXD with 591 and 552 markers, the probabil-
ity is 6 � 10�4 and 6 � 10�8, respectively.

The probability of a perfect match of a permuted re-
sponse vector is 	0.05 for the CXB, whereas the prob-
abilities for the AXB/BXA and BXD are much less than
the stated 0.05 nominal level. This suggests that the
permutation test will have positive power for the AXB/
BXA and the BXD panels, but the CXB would yield a
95th percentile threshold under the permutation no
less than the observed maximal LOD score. Therefore,
no QTL can be declared at the 0.05 level for the CXB
panel and RI sets of this small size (n � 13) lack power
to distinguish true genetic signals from random associa-
tions. However, it is worth mentioning that the CXB
panel still reserves power for candidate gene testing
where the regions studied are small.

The probabilities presented above for a genome-wide
perfect match may be conservative since the true mark-
ers are correlated rather than independent; the proba-
bilities for a genome-wide match may be less than those
where all markers are independent. To be more realis-
tic, simulations were performed in which a marker
picked at random from the genome was permuted and
tested for being a perfect match with all other markers.
However, similar conclusions are drawn and the CXB
panel still shows lack of power to distinguish true genetic
signals from random associations while the AXB/BXAFigure 5.—Significance thresholds and permutation distri-

bution of LOD scores for CXB RIXs. (A) Simulations performed and the BXD reserve the power.
for RIXs generated from CXB as described in Figure 4. (B) Per- Empirical analysis of CXB RIs and RIXs: To provide
mutation results using body weight to identify the 95th percen- experimental support for the power of RIX analysis, astile threshold. The solid line is the maximal unpermuted LOD

well as the problems associated with small RI panels, wescore. The dotted line is the 95th percentile. Solid and dotted
generated a complete nonreciprocal set of 78 RIXs alonglines overlap in B.
with 14 reciprocal RIX hybrid genomes from the 13 CXB
RI lines (Table 1). We phenotyped 2891 individuals (900
RIs, X � 69; 1714 RIXs, X � 22; 277 reciprocal RIXs,pattern appears not to depend on the particular values

of �2
a or �2

e , we considered the case where �2
a or �2

e is very X � 20) for adult body and brain weight, both known
to be under complex genetic control. Additionally, 184small. This scenario corresponds to the case in which

there is no polygenic or random error, an ideal situa- CXB F2 mice were generated and phenotyped for experi-
mental comparison with the RI/RIX results.tion with only one QTL and no error. Under this sce-

nario, the response Yn�1 (n is the number of lines) is a When the parental RI lines were used to map QTL
regulating body or brain weight, specific loci were de-binary vector for the RI case where Yi � aM qtl

i and where
M qtl

i � {�1, 1} is the QTL genotype of strain i . Without tected (Figures 6 and 7). As would be expected from the
small size of the CXB panel, numerous loci are stronglyloss of generality, we let a � 1 so that Yi � {�1, 1}. Now

we permute Y and fit Y to each of the markers indi- associated with the phenotypes. However, there is a gen-
eral correlation between the body and brain mappingvidually. The measure of association (like LOD scores

or correlations) will be maximized when any marker M results using RIs and those using RIXs, with the RIXs
providing significantly higher LOD scores. Althoughis a perfect predictor of Y. M is a perfect predictor of

Y when the value of Yi completely determines Mi . That some of these loci are predicted to be false positives
as described above, many of the body weight QTL dois, if Yi � Mi for all i or if Yi � �Mi for all i , then marker

M is a perfect predictor of Y. If Y is a random vector of colocalize with locations of verified QTL regulating
body weight (Pomp and Nielsen 1999).independent Bernoulli random variables with P � 0.5,

then the probability of a perfect match between any Interestingly, a comparison between the RI and RIX
results with an F2 validation cross revealed significantlikewise random marker would be 2�(n�1). If the markers

were both random and uncorrelated, then the proba- similarities but also differences. For body weight, a ma-
jor locus on chromosome (chr.) 4 is detected with allbility of Y being a perfect match with any one of m

makers would be 1 � (1 � 2�(n�1))m. For CXB with 382 three approaches. However, two highly significant QTL
detected in the F2 , on chrs. 6 and 12, were not detectedmarkers, the resulting probability is 0.09 while for AXB/
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TABLE 1

Numbers of individual CXB RI and RIX genomes used in the analyses

Paternal genome
Maternal
genome 1 2 3 4 5 6 7 8 9 10 11 12 13

1 29 26 8 16 10 22 22 11 18 16 17 18 25
2 14 42 24 20 5 27 18 13 18 16 34 21 22
3 0 0 103 29 23 22 17 33 15 35 10 24 15
4 51 38 0 37 19 25 14 15 31 36 39 16 44
5 6 0 0 0 72 32 18 19 30 17 18 15 18
6 0 0 48 0 16 93 17 21 16 53 20 25 26
7 0 0 0 0 15 2 104 26 23 13 25 9 14
8 0 0 0 0 0 0 0 44 33 20 12 29 25
9 0 0 0 0 0 0 0 0 48 35 28 25 21

10 0 0 18 0 0 21 0 0 0 105 35 31 20
11 0 0 0 0 0 0 0 0 0 12 52 18 22
12 0 0 0 0 0 5 22 0 0 11 0 108 16
13 0 0 0 0 0 0 0 0 4 0 0 0 63

Underlines indicate RI strains. Numbers below the RI diagonal are for reciprocal crosses.

by the RI or RIX analyses. Likewise, several significant identical reciprocal RIXs. For example, CXB1 � CXB2
RIX animals are typically 2.2 g heavier than CXB2 �loci were detected in the RI and RIX that were not de-

tected in the F2 . A similar finding occurred with brain CXB1 RIX animals, even after correction for litter size
and the mother’s parity (data not shown). In contrast,weights, where the single significant locus detected in

the F2 was also detected in the RI and RIX. Contrastingly, body weights of the CXB1 and CXB2 mothers do not
differ significantly.numerous highly significant loci were detected for brain

weight in both the RI and the RIX, with the RIX detect- The 10 reciprocal RIXs with at least 10 offspring from
each reciprocal cross were tested for parental effects (Ta-ing more putative loci that were not replicated in the F2.

Permutation results using the body weight data dem- ble 2). For body weight, four reciprocal RIXs gave highly
significant differences (P � 0.005) while for brain weight,onstrate that the CXB RIX lacks power to distinguish true

QTL from random associations since the maximal un- three reciprocal RIXs were highly significant. Unlike con-
ventional F1 hybrids between two inbred strains, the re-permuted LOD score is identical to the 95th percentile

of the permuted LOD scores (Figure 5B); this verifies ciprocal RIX hybrids have identical mitochondrial ge-
nomes and also share the same sex chromosomes. Thethe simulation results previously described. Further-

more, these results show that the banded pattern pro- conclusion that emerges from this comparison is that
trait means derived from conventional inbred strainsduced by the permutations and observed in the simu-

lated data is not an artifact of the simulation but rather can be modulated to a great extent by parental origin
effects. The RIX design exposes this parental effect anddue to the inadequate power of the CXB set. As such,

the additional loci detected in the CXB RI and RIX, also makes it possible to reduce its impact on a mapping
study by using means derived from the two reciprocalalthough potentially valid, may also be due to spurious

associations with random markers. However, it is also RIXs. Consequently, if specific loci are contributing to
the parental effect, they should be mappable in a setimportant to realize that although the same parental

strains were used for the F2 validation cross as were used of reciprocal RIXs.
Comparison of inbred and hybrid trait means: Previ-to generate the CXB RI set, they have been separated

by an interval of 
25 years. Thus, the failure to exactly ous studies comparing inbred lines and their hybrid off-
spring have shown that environmental variance increasesreplicate all positive signals could also be related to ge-

netic drift since the development of the CXB RI lines. with inbreeding, where decreased heterozygosity likely
causes increased developmental sensitivity or decreasedParental origin effects: Fourteen reciprocal RIX hy-

brids were also tested to determine the power to detect environmental buffering capacity (Leamy 1982a,b). Con-
sistent with these results, the variance for the body andparental origin effects. We found that parental effects,

contributed by either maternal uterine or nursing envi- brain weights in RIX hybrids is 10–20% lower, on aver-
age, when compared to the parental RI lines (Figure 8).ronments or parental origin of alleles, are a particularly

important determinant as highlighted by the substantial After adjusting for sex and age, we found that the mean
standard deviations of body weights for RIs and RIXsdifferences in body and brain weights of genetically
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Figure 6.—Localization of body weight QTL. Results for are shown (B) RIs and (C) RIXs generated from CXB and (D) F2’s
from the same parental strains compared to (A) locations of known body weight QTL. Body weight data were adjusted for age,
sex, and the interaction between age and sex. Lines in A are regions known to harbor body weight QTL detected in crosses
from many different strains. Lines in B–D represent LOD scores. Dotted lines distinguish individual chromosomes. The significance
thresholds determined from permutations are not marked since they are higher than any of the resulting curves.

are 0.094 and 0.076, respectively. Similarly, for brain pairs of RI lines, increase the number of available geno-
types from L RIs to L(L � 1)/2 nonreciprocal RIXs orweight, the standard deviations for RIs and RIXs are

0.030 and 0.026, respectively, after adjusting for the ef- L(L � 1) using the reciprocal RIXs. RIXs do not need to
be genotyped since their genotypes can be inferred fromfects of sex, age, and body weight. The difference in trait

variation between RIs and RIXs suggests that fewer RIX the parental RIs. Similar to the parental RIs, experimen-
tal error and environmental variance can be greatly re-individuals are needed compared to RIs to minimize non-

genetic variance (Crusio 2004). Thus maternal modula- duced by testing many isogenic RIX animals and data
are cumulative, enabling multivariate analyses across phe-tion and developmental noise will have a greater impact

on standard RI line means than on the hybrid RIX notypes, environmental conditions, and developmental
timing. Unlike the parental RIs, the genetic structureprogeny, probably because the hybrid F1’s as described

are demonstrably better buffered against nongenetic of an RIX resembles that of an F2 animal, reducing phe-
notypic anomalies associated with inbred genomes. Like-sources of variation.
wise, a set of RIXs closely resembles a set of F2 progeny,
with a 1:2:1 segregation ratio of genotypes permitting

DISCUSSION both additive and dominance effects to be detected and
measured. Unlike either RI or F2 populations, parentalRecombinant inbred intercrosses, produced by gener-

ating all or a subset of the potential F1 hybrids between origin effects on phenotypic variance can be easily de-
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Figure 7.—Localization of brain weight QTL. Results for (A) RIs and (B) RIXs generated from CXB and (C) F2’s from the
same parental strains are shown. Brain weight data were adjusted for age, body weight, sex, and the interactions between age
and sex and sex and body weight. Lines represent LOD scores. Dotted lines distinguish individual chromosomes. The significance
thresholds determined from permutations are not marked since they are higher than any of the resulting curves.

tected using RIXs generated from reciprocal crosses be- and Botstein 1989) and regression interval mapping
(Haley and Knott 1992). Also in our simulations, we as-tween RI pairs. All these attributes suggest that the RIX

approach will be highly useful for many traits, particu- sume no maternal or paternal effects and thus only
nonreciprocal RIXs are simulated. However, if maternallarly those that cannot be genetically dissected with other

mapping populations. or paternal effects are suspected, reciprocal crosses can
be generated and tested for those effects.A similar approach using RI hybrids to generate im-

mortal F2 populations has been performed in rice (Hua From our simulations, we can conclude that the higher
the number of parental RI strains, the greater is theet al. 2003). However, unlike the situation in mice where

limited numbers of RI lines are available, immortal F2’s chance to separate the major QTL effects from poly-
genic effects. Furthermore, due to the low number of pa-can be generated from combinations of rice RI lines that

are randomly mated such that no parental sharing oc- rental CXB lines, we find that the polygenic effects fre-
quently correlate with unlinked markers and largelycurs in the RIXs. The analysis of this type of population

structure is identical to that for an F2 population and, elevate the F - statistic or likelihood-ratio statistic under
the null hypothesis, largely a result of nonsyntenic asso-as such, does not require crosses with parental sharing

or a unique permutation analysis like that proposed ciations observed in small RI panels that will also be
present in RIX progeny (Williams et al. 2001); thus ahere.

Although single-marker analysis was used in our simu- more stringent threshold is needed to control type I
error. However, the low number of parental strains alsolations, the relative high marker density of the parental

RI, and thus RIX, supports results similar to those that interferes with the permutation procedure, producing a
very high threshold and essentially making the mappingwould be obtained using more complicated mapping

methods, such as traditional interval mapping (Lander method have zero power. On the other hand, with the
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TABLE 2

Comparison of phenotypes from reciprocal RIX offspring

Reciprocal P - value P - value
RIX cross No. of mice RIX cross No. of mice body weight brain weight

1 � 2 26 2 � 1 14 0.005 0.997
1 � 4 16 4 � 1 51 0.094 0.503
2 � 4 20 4 � 2 38 0.120 0.288
3 � 6 22 6 � 3 48 0.0004 0.166
3 � 10 35 10 � 3 18 0.000006 0.0002
5 � 6 32 6 � 5 16 0.614 0.0005
5 � 7 18 7 � 5 15 0.302 0.000007
6 � 10 53 10 � 6 21 0.005 0.046

10 � 11 35 11 � 10 12 0.382 0.082
10 � 12 31 12 � 10 11 0.514 0.101

Only RIX crosses with at least 10 offspring from each reciprocal cross are shown. Italics indicate P -values �0.005.

larger number of parental AXB/BXA and BXD lines, the the greater the power is for mapping QTL and with RI
panels equal to or larger in size to the 22 AXB/BXAinfluence of polygenic effects on the LOD score under

the null hypothesis is much smaller. Additionally, the lines, RIXs can provide substantially increased power,
particularly in the presence of dominance and mostpermutation procedure is slightly conservative and ap-

propriately controls the type I error. likely also with complex epistatic interactions as pre-
viously demonstrated with the immortal F2 populationsThe difference in strategy represented by RIX and

RI lines was anticipated by Knapp and Bridges (1990). in rice (Hua et al. 2003).
A variation of the immortal F2 is to use combinedTheir work primarily pertained to plant genetics, where

sets of RI lines exist that number in the hundreds; this crosses sharing at least one parent in common and that
generally improve the power of QTL mapping (Liu andprovides a choice between changing the number of RI

strains in a QTL mapping experiment and changing Zeng 2000; Zou et al. 2001). Since all three RI panels
used in our simulation studies share one common par-the number of individuals per strain. Knapp and Bridges
ent, C57BL/6, we plan to extend the mixed model de-argued that, for any given QTL model consisting of a
scribed here to handle RIX crosses generated from mul-specified number of QTL at specified locations, the trait
tiple RI panels. We predict that by using multiple RI sets,variance can be divided into three components: (1) the
the increase in the number of parental RIs will bettervariance explained by the QTL in the model, (2) the vari-
differentiate the major QTL from the polygenic effects.ance explained by QTL not in the model, and (3) non-

Another major use of the RIX approach will be withgenetic variance. Furthermore, they showed that increas-
the collaborative cross (CC) proposed by the Complexing the number of RI strains would decrease variances

2 and 3, whereas, increasing the number of individuals
per strain would decrease only variance 3. Further work
suggested that the number of F2 individuals required
to produce a similar power provided by a panel of RIs
is inversely proportional to the heritability of the trait in
the RI lines (Belknap 1998). Consequently, a major bene-
fit of RIXs is expected for QTL with low heritabilities.

Previous studies have suggested that the effectiveness
of RI strains in identifying and mapping QTL is limited.
Our simulations imply that with RIXs, caution is needed
as well, especially when starting with small numbers of
parental RI lines, because of nonsyntenic associations be-
tween independent RI lines as described above. For ex-
ample, CXB may not be a good source for genome-wide
QTL mapping, using either RI or RIX. Nonetheless, the Figure 8.—Distribution of phenotypic variance. Within-

strain variance for body and brain weights from RIs and RIXsRIX approach, even for small numbers of RI lines, is
generated using the CXB phenotypic data. Data were adjustedstill suitable for ad hoc testing of specific allele combina-
as described in Figures 6 and 7. Plots represent the range oftions to support other genetic data; this is achieved by maximal standard deviations within each representative set

making virtual, segregating congenics in the target inter- while shaded boxes show mid-50th percentiles and boldface
lines show the means.val. In general, the larger the number of parental RIs,
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major goal of the CTC is to establish a community re- review of this article. This work was supported by National Institutes of

Health (NIH) grants CA079869, ES011391, and CA105417 to D.W.T.;source that consists of 1000 multiparental RI lines that
MH070504 to F.Z.; and MH062009, AA013499, and EY01299 to R.W.W.will support complex trait analysis. With such a large
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