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ABSTRACT
The existing statistical methods for mapping quantitative trait loci (QTL) assume that the phenotype

follows a normal distribution and is fully observed. These assumptions may not be satisfied when the
phenotype pertains to the survival time or failure time, which has a skewed distribution and is usually
subject to censoring due to random loss of follow-up or limited duration of the experiment. In this article,
we propose an interval-mapping approach for censored failure time phenotypes. We formulate the effects
of QTL on the failure time through parametric proportional hazards models and develop efficient likeli-
hood-based inference procedures. In addition, we show how to assess genome-wide statistical significance.
The performance of the proposed methods is evaluated through extensive simulation studies. An applica-
tion to a mouse cross is provided.

QUANTITATIVE trait analysis plays an important observed. These assumptions are likely to be false when
the phenotype pertains to the survival time or failurerole in the understanding of genetic variations
time. The Weibull distribution and other skewed distri-in plants and animals. Mapping quantitative trait loci
butions with long right tails are more appropriate than(QTL) can lead to improvements in economic traits,
the normal distribution. Furthermore, the failure timesuch as yield and quality in crop plants and milk produc-
is often subject to censoring so that the trait value istion in cows. QTL mapping in animals can also provide
known only to be beyond the censoring time. An exam-valuable insights into the genetic etiologies of complex
ple of failure time in plant experiments is the floweringhuman diseases (Hilbert et al. 1991; Jacob et al. 1991;
time, which may be censored due to limited durationShepel et al. 1998).
of the experiment; see Ferreira et al. (1995). In animalMuch of the modern statistical methodology for QTL
studies, the failure times of interest include time tomapping in experimental crosses originates from the
tumor and time to death (i.e., survival time), whichseminal work of Lander and Botstein (1989). The
may be subject to censoring because of limited studyLander-Botstein interval-mapping method postulates
duration or death due to unrelated causes. One particu-that QTL occur at a series of positions within a set of
lar example is a mice cross presented by Broman (2003),adjacent marker intervals and that the trait value de-
in which the trait of interest is time to death after apends on the QTL genotype through a linear regression
bacterial infection and in which 30% of the mice aremodel. The distance between each pair of genetic mark-
still alive at the end of the study period. Symons et al.ers is assumed known. The method steps through the
(2002) presented another interesting study, in whichgenome in specified increments, say every 1 or 2 cM,
the phenotype is the time until terminal illness due toand calculates the likelihood-ratio statistic for testing
tumor for E�-v-abl transgenic mice.no QTL present at each position. The position with the

The incompleteness of the trait values presents majorlargest value of the likelihood-ratio statistic is declared
challenges in the application of the interval-mappingto be the candidate QTL location provided that the
approach. Broman (2003) considered a cure model invalue exceeds a certain threshold level. It is widely recog-
which the mice that are alive at the end of the studynized that the interval-mapping method has higher power
are regarded as cured and in which the survival timesand requires fewer progenies than the single-marker
among the deaths follow a log-normal distribution. Thisanalysis (Lander and Botstein 1989; Haley and Knott
is a specialized model, which can deal only with the1992; Zeng 1994). Doerge et al. (1997) described in
situations in which the potential censoring times aregreater detail this method and various extensions.
equal among all study subjects. Symons et al. (2002)Most of the existing QTL-mapping methods require
utilized a variant of the expectation-maximization (EM)that the phenotype be normally distributed and fully
algorithm (Lipsitz and Ibrahim 1998) to map QTL
with censored observations. This method is computa-
tionally intensive and its properties have not been inves-
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sion of the interval-mapping approach of Lander and interference and no genotyping errors, these probabili-
ties are determined by the genotypes of the two flankingBotstein (1989) to censored quantitative traits. Spe-

cifically, we formulate the effects of QTL on the failure markers and the location of the QTL; see Equation 15.2
of Lynch and Walsh (1998).time through proportional hazards models (Kalbfleish

and Prentice 2002, Sect. 2.3). We then develop effi- We assume that censoring is noninformative (Kalb-
fleish and Prentice 2002, p. 195) and that the censor-cient likelihood-based methods for locating QTL and

estimating the effects of QTL. In addition, we show how ing time is independent of the failure time and QTL
genotype. The likelihood for the vector of parametersto assess genome-wide statistical significance by extend-

ing the analytical results of Lander and Botstein (1989) � based on the complete data (Yi , �i , Gi , Mi) (i � 1, . . . ,
n) is proportional toand Dupuis and Siegmund (1999) and by developing

an accurate and efficient Monte Carlo procedure. We
�
n

i�1
�

g��1,0,1

���i(Yi |g)e��0
Yi �(t |g)dt�i,g�

I(Gi�g)
, (2)conduct extensive simulation studies to evaluate the

performance of the proposed methods. Finally, we pro-
vide an application to the mice data of Broman (2003). while the likelihood based on the observed data (Yi , �i ,

Mi)(i � 1, . . . , n) is proportional to

METHODS �
n

i�1
�

g��1,0,1

��i(Yi |g)e��0
Yi �(t |g)dt�i,g . (3)

Interval mapping: In this section, we develop an inter-
To obtain the maximum-likelihood estimator (MLE)val-mapping method for potentially censored failure-

of �, we may maximize the observed-data likelihood (3)time traits in an F2 intercross population by modeling
directly. An alternative approach is to apply the EMa single QTL. Expanding the results to other crosses is
algorithm (Dempster et al. 1977) to (2). The expectedstraightforward. Consider n progenies from an in-
value of the complete-data log-likelihood given the ob-tercross between two inbred strains. Let Ti denote the
served data can be shown to be, up to a constant,quantitative trait for the ith subject, which pertains to

a failure time that can potentially be censored and thus
�
n

i�1
�

g��1,0,1

pi,g(�)��i ln �(Yi |g) � �
Yi

0

�(t |g)dt�, (4)incompletely observed. Let Ci be the censoring time for
the ith subject. The observation on the trait value of

wherethe ith subject consists of two components: Yi � min(Ti ,
Ci) and �i � I(Ti � Ci), where I(�) is the indicator
function for event �. The failure time Ti is fully observed pi,g(�) �

p†
i,g(�)

�v��1,0,1p†
i,v(�)

, g � �1, 0, 1; i � 1, . . . , n,
only when it is uncensored, i.e., �i � 1.

Suppose that we have data on a set of genetic markers and
with a known genetic map. Let Mi denote the multipoint
marker genotype data for the ith subject. We consider p†

i,g(�) � �i,g exp��i(	1g 
 	2(1 � |g |)) � �
Yi

0

�(t |g)dt� .
a putative QTL locus d in the genome with two possible
alleles q and Q from the two inbred parents and define In the E-step, we evaluate pi,g(�) at the current estimate
Gi � �1, 0, or 1 according to whether the ith subject of �. The M-step can proceed in a similar manner to
has genotype qq, Qq, or QQ, respectively, at the QTL. the case of complete data since expression (4), with �
We specify a proportional hazards model for the effects in pi,g(�) fixed, takes the same form as the complete-
of the QTL genotype on the failure time such that, data log-likelihood. We begin the EM algorithm by as-
conditional on the QTL genotype Gi , the hazard func- signing an initial value to � and iterate until conver-
tion of Ti takes the form gence. The initial value for � is set to 0 and that of �

to some value in the parameter space of �. The resulting�(t |Gi) � �0(t)e	1Gi
	2(1�|Gi | ), i � 1, . . . , n, (1)
MLE is denoted by �̂. See appendix a for further detail.

We test the null hypothesis of no QTL effects, i.e.,where 	1 and 	2 pertain to the additive and dominant
H0: � � 0, by the likelihood-ratio statisticeffects of the QTL, and �0(·) is an unknown baseline

hazard function (Kalbfleish and Prentice 2002, Sect.
LR � 2 ln

L(�̂)
L(�̃)

,2.3). In this article, we assume a parametric model for
�0. In particular, we consider a Weibull hazard function
�0(t) � �1�2t�2�1, �1 � 0, �2 � 0 (Kalbfleish and Pren- where L(·) is the observed-data likelihood, and �̃ � (0,

�̃) with �̃ being the restricted MLE of � under H0. Thetice 2002, p. 33).
Write � � (�, �), where � � (	1, 	2) and � � (�1, LOD score is LR/(2 ln 10). Under H0, LR is asymptoti-

cally 
2-distributed with 2 d.f. (appendix b). Note that�2). At each locus, we may calculate �i,g � Pr(Gi � g |Mi)
(g � �1, 0, 1; i � 1, . . . , n), which are the conditional pi,g(�), �̂, L(�̂), LR, and LOD all depend on the locus

d through the dependence of �i,g on d. In the sequel,probabilities of the QTL genotypes given the observed
marker data. Under the assumptions of no crossover we include d in the expressions to emphasize their de-
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pendence on d if ambiguity arises. Note also that �̃ and W(d) � n�1UT
	(�̃; d)V̂�1(d)U	(�̃; d),

L(�̃) do not depend on d. Thus, as in the case of stan-
where V̂(d) � n�1�n

i�1Ûi(d)ÛT
i (d) is a consistent estima-dard interval mapping, the likelihood under H0 is calcu-

tor of the limiting covariance matrix V(d). It can belated once while the likelihood under the alternative is
shown that W(d) is asymptotically equivalent to LR(d)evaluated at each location in the genome to produce a
(Cox and Hinkley 1974, Sect. 9.3).LOD curve for each chromosome. The position with

In general, the limiting distribution of supdW(d) isthe largest value of the LOD score is declared to be the
not analytically tractable. We use a resampling approachQTL location provided that the value exceeds a certain
similar to that of Lin et al. (1993) to approximate thethreshold level. We show how to determine the thresh-
null distributions of n�1/2U	(�̃; d) and supdW(d). Fromold level in the following section.
appendix b, it is easy to see that n�1/2U	(�̃; d) convergesThresholds: When searching the entire chromosome
to a zero-mean Gaussian process with covariance func-or whole genome for QTL, one should select a threshold
tion �(d1, d2) that is the limit of n�1�n

i�1Ũi(�; d1)ŨT
i (�;level for the LOD score such that the probability (under

d2) at (d1, d2) and that �(d1, d2) can be consistentlythe null hypothesis) that LOD or some other test statistic
estimated by n�1�n

i�1Ûi(d1)ÛT
i (d2). Define Û(d) � �n

i�1exceeds this level anywhere in the genome equals the
Ûi(d)Zi , where Zi (i � 1, . . . , n) are independentdesired false-positive rate. The pointwise significance
standard normal random variables that are independentlevel based on the 
2-approximation is inadequate be-
of the observed data. Conditional on the observed data,cause of the multiple tests while the Bonferroni correc-
n�1/2Û(d) is a Gaussian process with mean 0 and covari-tion is too conservative because of the dependence of
ance function n�1�n

i�1Ûi(d1)ÛT
i (d2) at (d1, d2), which con-the test statistics at different points in the genome. In

verges to �(d1, d2). Thus, the conditional distributionappendix c, we show that the likelihood-ratio statistic
of n�1/2Û(d) given the observed data converges to theLR(d) can be partitioned into the sum of the squares
limiting distribution of n�1/2U	(�̃; d). As a result, the distri-of two asymptotically independent Ornstein-Uhlenbeck
bution of W(d) can be approximated by that ofprocesses. This result is analogous to those of Lander

and Botstein (1989) and Dupuis and Siegmund (1999) Ŵ(d) � n�1ÛT(d)V̂�1(d)Û(d).
and implies that the analytical approximations of thresh-

To approximate the distribution of supdW(d), we gen-olds for normal traits can be applied to the case of
erate the normal random sample (Z1, . . . , Zn) a largecensored failure time observations. These analytical re-
number of times while holding the observed data fixed;sults assume that the markers are dense or equally
for each sample, we calculate Ŵ(d) and supdŴ(d). Thespaced with no missing data and thus may not work well
100(1 � �)th percentile of the simulated supdŴ(d) isin practice. Using results of Davies (1977, 1987), Rebai
the threshold value for the genome-wide significanceet al. (1994) provided approximate thresholds in back-
level of �. This resampling approach is computationallycross (BC) and F2, which are applicable in the intermedi-
much more efficient than the use of permutation (Chur-ate map density case. The calculations are formidable,
chill and Doerge 1994) and other simulation methodseven for F2, and do not accommodate missing marker
because it involves only simulation of normal randomdata.
variables and does not entail repeated analysis of simu-To overcome the limitations of the analytical approxi-
lated data sets.mations, we propose a novel resampling approach to

determining the thresholds for genome-wide statistical
significance. This approach allows arbitrary distribu-

SIMULATIONS
tions of the markers as well as arbitrary test positions. It
also accommodates missing marker data and dominant To investigate the operating characteristics of the pro-

posed methods in practical situations, we performedmarkers.
For evaluating the correlations of the test statistics extensive simulation studies. We generated the failure

times from the Weibull distributions with baseline haz-among different locations, it is more convenient to work
with the score statistic than the likelihood-ratio statistic. ard function �0(t) � �1�2t�2�1, where �1 � 0.01 and �2 �
Let U	(�̃; d) be the score function (based on the ob- 2. We reparameterized �1 and �2 according to �k �

e�k (k � 1, 2) so as to ensure that the estimates of �1served-data likelihood) for � at location d, which can
be approximated by the sum of n independent zero- and �2 are positive. The censoring times were generated

from the uniform (0, �) distribution, where � was chosenmean random vectors �n
i�1Ũi(�0 ; d), where �0 � (0, �0)

is the true parameter value under H0; see appendix b. to yield �30% censored observations. Assuming no
crossover interference, we generated the marker dataThus, n�1/2U	(�̃; d) is asymptotically zero-mean normal

with covariance matrix V(d) that is the limit of n�1 from the Markov chain. The interval-mapping step size
was set at 1 cM.�n

i�1Ũi(�0 ; d)ŨT
i (�0 ; d). We replace the unknown quan-

tities in Ũi(�0 ; d) by their sample estimators to yield We considered a chromosome with a total length of
100 cM. Genetic maps with different numbers of equallyÛi(d) shown in appendix b. The score statistic for test-

ing H0: � � 0 against H1: � � 0 takes the form spaced markers were simulated. Under H1, one QTL
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TABLE 1

Summary statistics for the estimator of the additive QTL effect at the true QTL location

H0: 	1 � 0, 	2 � 0 H1: 	1 � 0.35, 	2 � 0.30
No. of
markers Meana SEb SEEc CP d Meana SEb SEEc CP d

6 0.002 0.108 0.107 94.8 0.355 0.110 0.108 94.4
11 0.002 0.105 0.104 94.6 0.355 0.107 0.105 94.8
51 �0.001 0.101 0.099 94.4 0.353 0.103 0.101 94.6

101 0.000 0.099 0.098 94.9 0.354 0.100 0.100 94.8

a Mean is the mean of the parameter estimator.
b SE is the standard error of the parameter estimator.
c SEE is the mean of the standard error estimator.
d CP is the coverage probability of the 95% confidence interval.

located at 35 cM was simulated with 	1 � 0.35 and 	2 � of unevenly spaced markers, we placed m markers at
the following locations,0.30. We generated 10,000 replicates of 300 observations

from an F2 population. We evaluated the finite-sample
properties of the MLEs of the QTL effects at the true LOCj � �50( j � 1)/(m � 1), j � 1, . . . , [m/2],

100( j � 1)/(m � 1), otherwise,QTL location. The results for the estimator of the addi-
tive QTL effect are summarized in Table 1. The pro- where LOCj is the jth marker location and [m/2] is the
posed estimator appears to be virtually unbiased. The largest integer that is less than or equal to m/2. In these
standard error estimator reflects accurately the true vari- settings, the first half of the markers is denser than
ation. The confidence intervals have proper coverage the second half of the markers. We generated 10,000
probabilities. We obtained similar results for the estima- replicates of 300 observations from an F2 population.
tor of the dominant QTL effect (data not shown). We The dense-map and sparse-map approximations were
also examined the performance of the proposed inter- obtained from Equation C1 in appendix c . The thresh-
val-mapping methods for locating the QTL and estimat- olds for the resampling method were based on 10,000
ing the QTL effects at the location with the maximum normal samples. The results are summarized in Tables
LOD. The results are summarized in Table 2. There is 3 and 4.
little bias for the estimator of the QTL location or the The thresholds based on the resampling method are
estimators of the QTL effects. The mapping is more close to the empirical values, whether the data are gener-
precise for denser marker maps. ated under H0 or H1; consequently, the LR tests based

We conducted additional simulation studies to evalu- on these thresholds have proper type I error and power.
ate the performance of the analytical and resampling This is true of any genetic map, with or without missing
methods for determining genome-wide statistical sig- marker genotypes and dominant markers. The dense-
nificance. We generated both equally and unequally map approximations are too conservative and thus re-
spaced markers. We also simulated data with missing sult in power loss, while the sparse-map approximations
marker genotypes and dominant markers, which are tend to be too liberal. We also assessed the approxima-
more comparable with real data. We considered one tions by Rebai et al. (1994), which turn out to be conser-

vative when the genetic map is dense. For example, inchromosome with a total length of 100 cM. For the cases

TABLE 2

Sampling means of the estimators for the QTL location and for the QTL effects at the estimated
QTL location in the simulation studies

H0: 	1 � 0, 	2 � 0 H1: 	1 � 0.35, 	2 � 0.30

QTL effects QTL effects
No. of QTL QTL
markers location (cM) 	1 	2 location (cM) 	1 	2

6 49.6 (34.2) 0.001 (0.141) �0.012 (0.235) 36.6 (11.3) 0.359 (0.107) 0.304 (0.173)
11 49.9 (32.8) 0.000 (0.143) �0.007 (0.233) 35.8 (10.9) 0.359 (0.101) 0.300 (0.162)
51 50.2 (31.8) �0.001 (0.148) �0.008 (0.251) 35.7 (9.3) 0.362 (0.098) 0.314 (0.154)

101 50.3 (31.4) 0.001 (0.150) �0.009 (0.255) 35.5 (8.9) 0.365 (0.100) 0.319 (0.152)

Standard errors are shown in parentheses.
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TABLE 3

Analytical and resampling-based thresholds at the targeted genome-wide significance level of �

Resampling c Analytical

Empiricalb H0 H1
d Dense-map Sparse-map

No. of Marker
markers patterna � � 5% 1% � � 5% 1% � � 5% 1% � � 5% 1% � � 5% 1%

6 1 10.05 13.57 9.80 (0.16) 13.34 (0.25) 9.81 (0.16) 13.36 (0.25) 13.37 17.12 9.15 12.39
11 1 10.33 13.90 10.41 (0.17) 13.99 (0.25) 10.42 (0.16) 14.00 (0.25) 13.37 17.12 10.15 13.53
51 1 11.79 15.60 11.47 (0.19) 15.12 (0.27) 11.47 (0.18) 15.12 (0.27) 13.37 17.12 11.80 15.37

6 2 9.94 13.65 9.63 (0.16) 13.18 (0.25) 9.64 (0.17) 13.18 (0.25) 13.37 17.12 9.15 12.39
11 2 10.65 14.27 10.23 (0.17) 13.80 (0.25) 10.24 (0.17) 13.81 (0.26) 13.37 17.12 10.15 13.53
51 2 11.54 15.08 11.17 (0.19) 14.80 (0.27) 11.17 (0.18) 14.81 (0.26) 13.37 17.12 11.80 15.37

a Under pattern 1, markers are evenly spaced with no missing marker genotypes or dominant markers; under pattern 2, markers
are unevenly spaced with 20% missing marker genotypes and 5% dominant markers.

b Percentiles of the test statistic based on 10,000 simulated data sets.
c Average thresholds from 10,000 simulated data sets. The values in parentheses are the standard errors of the thresholds.
d QTL is located at 35 cM with 	1 � 0.35 and 	2 � 0.3.

the case of 51 markers with � � 0.05, the sizes are 2.66 In this approach, the censored observations are treated
and 2.26% for marker patterns 1 and 2, respectively. as the true failure times and an average rank is assigned

to those observations. In the two-part approach, Broman
considered a cure model in which the mice that are alive

APPLICATION at the end of the study are regarded as cured while the
survival times among the deaths follow a log-normalTo illustrate our methods, we consider the mice data
distribution.previously analyzed by Broman (2003). A total of 116

We applied the proposed methods to these data, as-female mice from an intercross between the BALB/cByJ
suming a Weibull baseline hazard, and the results areand C57BL/6ByJ strains were genotyped at 133 markers,
shown in Table 5 and Figures 1 and 2. The thresholdincluding 2 on the X chromosome. The phenotype of
for the LOD score at the 5% genome-wide significanceinterest is the time to death following infection with
level based on the resampling approach is 3.43, whichListeria monocytogenes. Approximately 30% of the survival
is close to 3.27, the threshold obtained by permutationtimes are censored.
for the NP approach of Broman (2003). Our resultsBroman (2003) proposed a nonparametric (NP) ap-
are fairly consistent with those of Broman (2003). Weproach and a two-part model. The NP approach is an
detect almost the same QTL on chromosomes 5, 13,extension of the Kruskal-Wallis statistic (Lehmann 1975,
and 15 except that we detect an additional QTL onSect. 5.2) by assigning a prior weight (�i,g) to the rank

of the ith observation for each QTL genotype group g. chromosome 6 rather than on chromosome 1. The QTL

TABLE 4

Sizes/powers (%) according to the analytical and resampling-based thresholds

Analytical

Resampling Dense-map Sparse-map

H0 H1
b H0 H1

b H0 H1
b

No. of Marker
markers patterna � � 5% 1% � � 5% 1% � � 5% 1% � � 5% 1% � � 5% 1% � � 5% 1%

6 1 5.6 1.1 91 80 1.1 0.2 79 63 7.5 1.8 93 83
11 1 4.8 1.0 93 82 1.2 0.2 84 69 5.4 1.2 93 83
51 1 5.5 1.1 94 85 2.6 0.6 90 78 5.0 1.1 94 84

6 2 5.6 1.2 77 57 1.1 0.2 56 36 7.1 1.8 80 62
11 2 5.9 1.2 82 65 1.5 0.3 67 47 6.3 1.4 83 66
51 2 5.8 1.2 85 68 2.1 0.5 75 56 4.4 0.9 82 65

a Under pattern 1, markers are evenly spaced with no missing marker genotypes or dominant markers; under pattern 2, markers
are unevenly spaced with 20% missing marker genotypes and 5% dominant markers.

b QTL is located at 35 cM with 	1 � 0.35 and 	2 � 0.3.
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TABLE 5

Estimates of the QTL positions and QTL effects along with the maximum LOD scores for the data
on survival time following infection with Listeria monocytogenes in 116 intercross mice

Proposed method Nonparametric Two-part model

Chromosome Pos (cM) LOD 	1 	2 Pos (cM) LOD Pos (cM) LOD

1 75 1.94 �0.456 �0.542 76 3.38 81 5.45
5 28 9.01 1.149 0.100 27 5.41 28 6.79
6 59 3.66 0.559 0.563 59 2.45 10 4.09

13 26 6.64 �0.614 �0.740 26 6.71 26 7.38
15 23 4.49 0.370 �0.935 23 3.49 16 4.61

Pos, position.

on chromosome 5 appears to have a strong additive locations because there are two more free parameters in
the two-part model than in the other two methods. Thiseffect and the hazard ratio of the survival time with

genotype QQ vs. qq is �9.95. Genotypes qq and Qq at will decrease the power to detect QTL since a larger
threshold (i.e., 4.91) is required. To evaluate differentthe QTL on chromosome 6 seem to have similar effects.

The QTL on chromosome 13 appears to have both methods on a common scale, we converted the LOD
curves to the estimated pointwise P-values. Figure 2 dis-additive and dominant effects. The QTL on chromo-

some 15 appears to have a strong dominant effect. At plays the values of �log10P for chromosomes 1, 5, 6, 13,
and 15. Comparisons with the nonparametric methodmost detected QTL locations, our LOD scores are larger

than those of Broman’s NP approach. This suggests that and two-part model reveal that the proposed method
yields more significant results on the above chromo-our approach may be more efficient in detecting QTL.

Figure 1 shows the LOD curves from the three methods: somes except chromosome 1. Incidentally, the resam-
pling method is �100 times faster than the permutationproposed method, nonparametric method, and two-part

model. The LOD scores from the two-part model are method in this application.
To get some ideas about the adequacy of the Weibulllarger than those of the other two methods at some QTL

Figure 1.—The LOD scores from three QTL
mapping methods for the data on survival time
following infection with Listeria monocytogenes in
116 intercross mice. The threshold pertains to
the 5% genome-wide significance level under the
resampling method.
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Figure 2.—Plot of the �log10P-values for three
QTL mapping methods for the data on survival
time following infection with Listeria monocytogenes
in 116 intercross mice. The P-values for the pro-
posed method are based on 100,000 normal sam-
ples. In the region between 26 and 30 cM on
chromosome 5, the P-values are �10�5 and thus
are not displayed. The P-values for the NP and
two-part models are based on 11,000 permutation
replicates.

distribution in describing the Listeria data, we fitted combine IM with multiple regression analysis in map-
ping QTL by conditioning on markers outside a regionboth the semiparametric model and the Weibull model

at marker D5M357, which is close to the peak of the of interest to account for the effects of other QTL. To
extend the original CIM model to censored traits, weLOD score on chromosome 5. The estimated QTL ef-

fects from the two models are very similar. It would be consider the following proportional hazards model,
worthwhile to develop formal goodness-of-fit methods

�(t |Gi) � �0(t)exp�	1Gi 
 	2(1 � |Gi |)for assessing the adequacy of the parametric survival
model at the true QTL location.


 �
k�j,j
1

(	1kMik 
 	2k(1 � |Mik |))�,
(5)EXTENSIONS

where j and j 
 1 conform to two flanking markersIn this section, we extend the single-QTL model to
bordering the putative QTL, and Mik is the indicatormultiple QTL. The approach of interval mapping (IM)
variable for the marker genotype, which takes valuesconsiders one putative QTL at a time. The QTL located
�1, 0, and 1 for genotypes aa, Aa, and AA, respectively.elsewhere on the genome can have interfering effects,
We may further enhance the model by considering theso that the estimators for the locations and effects of
interaction effects between the putative QTL and con-QTL may be biased and the power of detecting QTL
trolling markers. Replacing �(t |Gi) in (2) and (3) withmay be compromised (Lander and Botstein 1989;
(5), we obtain the complete-data and observed-data like-Haley and Knott 1992; Zeng 1994). Boer et al. (2002)
lihood functions, respectively. As in the case of standardshowed that the IM method fails to detect three inter-
interval mapping, we can maximize the observed-dataacting QTL with no main effects through simulation
likelihood directly or apply the EM algorithm to obtainstudies. A variety of approaches have been proposed for
the MLEs. We can test H0: � � 0 at any position in themapping multiple QTL. These methods can increase
genome.the power to detect QTL and reduce biases in the estima-

The CIM approach requires that the sample size betors of the QTL effects and locations. In this section,
large relative to the number of markers included in thewe consider mainly composite-interval mapping (CIM;
model. In practice, the sample size is generally not veryJansen 1993; Zeng 1993, 1994) and multiple-interval
large. Thus, Zeng (1994) suggested including in themapping (MIM; Kao et al. 1999) for censored traits.

Composite-interval mapping: The idea of CIM is to model only those markers that are more or less evenly
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spaced in the genome or those preidentified markers plete-data partial-likelihood score function given the
that explain most of the genetic variation in the genome. observed data. The solution to this conditional expecta-
This suggestion also applies to our setting. tion is not a maximum partial-likelihood estimator, so
Multiple-interval mapping: The MIM approach pro- that the method is not statistically efficient. The Monte
posed by Kao et al. (1999) uses multiple marker intervals Carlo simulation is time-consuming. There is no formal
simultaneously to fit multiple putative QTL directly in justification for the method of Lipsitz and Ibrahim
the model. Consider K QTL, Q 1, . . . , QK , located at d1, (1998) or that of Symons et al. (2002). Our method is
. . . , dK in the genome. There are 3K possible QTL computationally much simpler than Monte Carlo simu-
genotypes. Some of the K QTL may exhibit epistasis. lation. It is based on the maximum-likelihood estimator
We formulate the effects of the K QTL on the failure and is thus statistically efficient. Furthermore, we have
time through a proportional hazards model, such that, established the theoretical properties of our method
conditional on the joint genotype Gi � (G1i , . . . , GKi), and assessed its empirical performance through simula-
the hazard function of Ti takes the form tion studies. The method of Symons et al. (2002) has

the advantage that the baseline hazard function is un-
specified.�(t |Gi) � �0(t)exp




�
K

j�1

�T
j xij 
 �

K

j�k
�jk(xT

ij Bj kxik)




, (6)
The proposed resampling approach to determining

genome-wide significance is applicable to arbitrary ge-
where xij � (Gij , 1 � |Gij |)T, �j k is an indicator variable netic maps and accommodates missing marker data and
for epistasis between Qj and Qk , and �j and Bj k pertain dominant markers. For the CIM and MIM models, no
to the main effects and epistatic effects, respectively. analytical thresholds are available and the permutation
The variable �j k indicates, by the values 1 vs. 0, whether method is extremely time-consuming. The proposed
or not Qj and Qk interact. Given the marker data Mi for resampling approach can be applied to the CIM and
the ith subject and assuming no crossover interference, MIM models since all the relevant formulas have been
we may calculate �i,g(g � 1, . . . , 3K), the conditional presented for an arbitrary likelihood. For the MIM
probabilities of the 3K possible genotypes of the K QTL. method, the resampling approach produces appro-
The complete-data likelihood takes the same form as priate thresholds for testing each putative QTL given
Equation 2 except that the summation of g is now over the others, with or without adjustment for the fact that
(1, . . . , 3K). To obtain the MLEs and LOD scores, we multiple QTL are tested simultaneously.
can again apply the EM algorithm. We have written a computer program in C to imple-

Since the true number and locations of the QTL are ment the proposed method. This program is available
unknown, model selection is a critical issue in the MIM from the authors upon request.
approach. Kao et al. (1999) suggested stepwise and
chunkwise selection with the likelihood-ratio test statis-
tic as a selection criterion to identify QTL, to separate
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APPENDIX A: COMPUTATIONS OF MLE AND COVARIANCE MATRIX

In this section, we present the formulas for the M-step of the EM algorithm under the Weibull model. In addition,
we provide the observed information matrix as well as a consistent estimator of the covariance matrix of MLE �̂. In
the M-step of the (k 
 1)th iteration, the first and second derivatives of the expected value of the log-likelihood
given the observed data and current estimate �̂(k) are given by

U (k
1)(�) � �
n

i�1
�

g��1,0,1

pi,g(�̂(k))Ui,g(�), (A1)

I(k
1)(�) � ��
n

i�1
�

g��1,0,1

pi,g(�̂(k))Ii,g(�), (A2)

where

Ui,g(�) � 	�ig � �i,gg
�i � �i,g

�i(1 
 e �2 log Yi) � �i,ge �2 log Yi

 ,

Ii,g(�) � 	��i,gggT ��i,gg ��i,g e�2 log Yig
��i,ggT ��i,g ��i,g e�2 log Yi

��i,g e �2 log YigT ��i,g e �2 log Yi e�2 log Yi {�i � �i,g(1 
 e�2 log Yi)}

 ,

g � (g, 1 � |g |)T, and �i,g � �Yi0 �(t |g)dt, which is the cumulative hazard function conditional on the QTL genotype
g. Then, we can apply the Newton-Raphson algorithm to update the current estimate with the new maximizer �̂(k
1).

The observed information matrix is given by

I(�) � ��
n

i�1
�

g��1,0,1

pi,g(�)Ii,g(�) � �
n

i�1
�

g��1,0,1

pi,g(�){Ui,g(�)}
�2


 �
n

i�1





�
g��1,0,1

pi,g(�)Ui,g(�)




�2
,

where for a column vector a, a�2 denotes the matrix aaT. Thus, a consistent estimator of the covariance matrix of

�̂ is given by the inverse of the observed information matrix evaluated at �̂, i.e., Cov

�

(�̂) � I�1(�̂).

APPENDIX B: ASYMPTOTIC PROPERTIES OF SCORE AND LIKELIHOOD-RATIO STATISTICS

In this section, we show that LR(d) is asymptotically 
 2
2-distributed under H0 and provide the necessary ingredients

for deriving the thresholds. Let U(�; d) and I(�; d) be the observed-data score function and information matrix at
location d with the following partitions to conform with the partition (�, �) of �,
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U(�; d) � 	U	(�; d)
U�(�; d)
,

and

I(�; d) � 	I		(�; d) I	�(�; d)
I�	(�; d) I��(�; d)
.

Under H0, n�1I(�̃) converges to �(d). Denote

��1(d) � 	�
		(d) �	�(d)

��	(d) ���(d)
.
It can be shown that LR(d) � n�1UT

	(�̃; d)�		(d)U	(�̃; d) asymptotically (Cox and Hinkley 1974, Sect. 9.3). Through
Taylor series expansions, n�1/2U	(�̃; d) � n�1/2�n

i�1Ũi(�0 ; d) asymptotically, where Ũi(�0 ; d) � U	,i(�0; d) �
�	�(d)��1

��(d)U�,i(�0 ; d) and �0 � (0, �0). The replacements of the unknown quantities in Ũi(�0 ; d) with their sample
estimators yield Ûi(d) � U	,i(�̃; d) � I	�(�̃; d)I�1

��(�̃; d)U�,i(�̃; d).
Let z(d) � (�		(d))1/2(n�1/2U	(�0; d) � �	�(d)��1

��(d)n�1/2U�(�0; d)). Then z(d) converges to a normal distribution
with mean 0 and an identity 2 � 2 covariance matrix. Thus, LR(d) is asymptotically distributed as 
2

2 under H0.

APPENDIX C: ANALYTICAL APPROXIMATIONS OF THRESHOLDS

We show in this appendix that, for infinitely dense markers, the null distribution of LR(d) can be approximated
by an Ornstein-Uhlenbeck process. Under H0, �(d) does not depend on d. Let d1 and d2 denote two points on the
chromosome, and r be the recombination fraction corresponding to the genetic distance |d1 � d2|. Under the
assumption of no crossover interference, it is easy to show that the correlation between g(d1) and g(d2) is given by

Corr(g(d1), g(d2)) � 	1 � 2r 0
0 1 � 4r


provided that r is small. Since U	,i(�; d) � (�i � �0(Yi))gi(d) under H0, we have

Corr(z(d1), z(d2)) � Corr(g(d1), g(d2)) � 	1 � 2r 0
0 1 � 4r
.

The above result implies that z1(d) and z2(d), the first and second components of z(d), are approximately independent
Ornstein-Uhlenbeck processes with means zero and variances 1 � 2r and 1 � 4r, respectively. By the arguments of
Dupuis and Siegmund (1999), the tail distribution of supdLR(d) under H0 satisfies

P(sup
d

LR(d) � a 2) � 1 � exp{�(C 
 3va2L)exp(�a2/2)}, (C1)

where � is the average marker distance (in morgans), C is the number of chromosomes, L is the total length of
the genome (in morgans), and v � v(a(6�)1/2), the definition of which can be found in Siegmund (1985). When
� � 0, the above formula reduces to that of Lander and Botstein (1989). These results imply that all the analytical
thresholds for the normal trait can be applied to our case.


