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Abstract
We proposed hierarchical Poisson and binomial models for mapping multiple interacting
quantitative trait loci (QTL) for count traits in experimental crosses. We applied our methods to
two counted reproductive traits, live fetuses (LF) and dead fetuses (DF) at 17 days gestation, in a
F2 female mouse population. We treated observed number of corpora lutea (ovulation rate) as the
baseline and the total trials in our Poisson and binomial models, respectively. We detected more
than 10 QTL for LF and DF, most having epistatic and pleiotropic effects. The epistatic effects
were larger, involved more QTL, and explained a larger proportion of phenotypic variance than
the main effects. Our analyses revealed a complex network of multiple interacting QTL for the
reproductive traits, and increase our understanding of the genetic architecture of reproductive
characters. The proposed statistical models and methods provide valuable tools for detecting
multiple interacting QTL for complex count phenotypes.
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INTRODUCTION
Reproductive traits of animals determine the efficiency of food production, and hence are
economically important traits for genetic improvement in the livestock industry (Rocha et al.
2004b). However, since the reproductive traits usually have a low heritability, their
improvement has met with limited success (Hansen et al. 1983; Avalos and Smith 1987;
Bennett and Leymaster 1989; Lamberson 1990). Fortunately, along with the recent advances
of genomic technologies and the collective efforts of statistical genetics, methodologies have
been introduced to identify quantitative trait loci (QTL) regulating reproductive traits, and
ultimately enhance genetic processes by using QTL-complemented breeding and selection
strategies in animal food production (Rathje et al. 1997; Rohrer et al. 1999; Wilkie et al.
1999; Cassady et al. 2001; King et al. 2003; Holl et al. 2004; Rocha et al. 2004b).
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Most QTL mapping studies for counted reproductive traits have used interval mapping or
composite interval mapping, which focus on detecting marginal (main) effects of QTL
(Kirkpatrick et al. 1998; Spearow et al. 1999; Rocha et al. 2004c; Sato et al. 2006; Ren et al.
2009). Epistatic interaction effects (epistasis) have not been thoroughly examined, even
though the genetic architecture of most quantitative traits in organisms from plants to
animals including humans is quite complex, including inputs from multiple QTL and
epistasis (Doebley and Stec 1991; Cheverund and Routman 1995; Lynch and Walsh 1998;
Price and Courtois 1999; Sugiyama et al. 2001; Wade 2001; Kopp et al. 2003; Carlborg and
Haley 2004). Furthermore, some studies have shown that epistatically acting QTL play a
larger role than do the marginal effect QTL in genetic modulation and evolution of
quantitative traits (Yu et al. 1997; Yi et al. 2004a,b; Moore 2005; Valdar et al. 2006; Yi et
al. 2006). Therefore, to better understand the genetic architecture of counted reproductive
traits, statistical analyses are required to simultaneously identify main effects and epistatic
interactions of multiple QTL.

Yi and Banerjee (2009) proposed a unified methodology for mapping multiple interacting
QTL based upon the hierarchical generalized linear model framework. The key to the
approach is the use of a continuous prior distribution on coefficients that favors sparseness
in the fitted models and facilitates computation. The method of Yi and Banerjee (2009) can
analyze various continuous and discrete phenotypes, and can fit a large number of effects,
including covariates, main effects of numerous loci, and epistatic and gene-environment
interactions. Yi and Banerjee (2009) illustrated the hierarchical generalized linear model
framework with normal and probit models for continuous and binary traits. In this study, we
developed hierarchical Poisson and binomial models for mapping multiple interacting QTL
for complex count traits in experimental crosses based on the approach of Yi and Banerjee
(2009).

We applied our methods to data collected from a QTL mapping study of female
reproductive traits in mice (Rocha et al. 2004a, b). The mouse sample was derived from
parental lines having undergone long-term selection for high and low body weight gain. The
previous analysis of these mouse data adopted the composite interval mapping method and
detected 15 QTL on five chromosomes for six reproductive traits. However, epistatic effects
on the traits were not evaluated. In addition, two discrete counted reproductive traits, live
fetuses (LF) and dead fetuses (DF), were treated as continuous traits. Improved models for
these two count phenotypes should be Poisson models with observed number of corpora
lutea (ovulation rate; OR) treated as the baseline or offset, or binomial models treating live
and dead fetuses as the numbers of ‘success’ out of the corresponding number of corpora
lutea (trials). The observed number of OR provides us the information about the upper
bound of LF and DF. Therefore, to comprehensively and properly explore the genetic
architecture of these reproductive traits in mice, we reanalyzed the data by using the
hierarchical Poisson and the binomial regression models. The aims of the present study were
to estimate the epistatic effects of interacting QTL on reproductive traits, and to detect
possible additional QTL for these traits.

MATERIALS AND METHODS
The mouse population, phenotypes and marker genotyping have been presented in detail in
Rocha et al. (2004a,b), but are briefly described here.

Mouse lines and crosses
A total of 439 F2 female mice were bred from two long-term selected lines, the high-growth
M16i line and the low-body-weight L6 line. The former was derived from an outbred ICR
population, whereas the latter was derived from a cross of four inbred lines. M16i females
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were intercrossed with L6 males, and the resulting F1 mice were inter se mated (no full-sib
pairings) in two consecutive replicates encompassing a total of 64 full-sib F2 families. These
mice were reared at 21°C in a 12:12h light:dark cycle and 55% relative humidity. Food and
water were supplied ad libitum. All the animals were handled according to the Institutional
Animal Care and Use Committee Guidelines.

Phenotypes and environmental effects
To measure the reproductive traits of female mice, ten-week-old F2 females were exposed to
unrelated F1 males (B6C3F1/J) until a copulatory plug was detected. Pregnant females were
subsequently euthanized at day 17 of gestation to obtain three counted reproductive
phenotypes: live fetuses (LF), dead fetuses (DF), and ovulation rate (OR) (also called
corpora lutea) (Figure 1). Body weights at 10 weeks of age (WK10) were also measured,
which are significantly correlated with the reproductive phenotypes (Rocha et al. 2004b).
Thus, our models adjusted for the covariates WK10 as well as the family indicator as
environmental factors.

Genotyping
A total of 63 fully informative microsatellite markers spanning the 19 autosomes were
genotyped (Rocha et al. 2004a, b). Marker genotypes were determined by PCR and agarose
gel electrophoresis protocols. Segregation distortion was evaluated by Chi-square test.
Detection and correction of genotyping errors were conducted with MAPMAKER. A
linkage map was generated with MAPMAKER/EXP and QTL analysis was carried out after
marker distances were estimated. The marker linkage map covered 1257.8 cM (Kosambi)
with an average spacing of 30 cM. A total of 21 (0.04%) marker genotypes were missing.

Statistical analyses
Hierarchical Poisson and binomial models—Poisson and binomial models were used
to detect QTL for the numbers of LF and DF. The Poisson model treated the number of LF
and DF as counted responses relative to the number of OR, and the binomial model treated
the number of LF and DF as the events of “success” out of the corresponding “trials” (the
number of OR). Under each of these models, two approaches were applied: the first
considering only main effects of QTL, and the second considering not only main effects but
also their epistatic effects. All the models included WK10 and the family indicator as
continuous and categorical covariates, respectively.

Denoting the number of LF or DF by yi and the number of OR by Ti, for mouse i = 1, ⋯, n,
the Poisson epistatic QTL model can be expressed as

(1)

and the binomial epistatic QTL model can take the form

(2)

where Poisson (Tiθi presents Poisson distribution with mean Tiθi, and Bin(Ti,pi) represents
binomial distribution with size Ti and probability pi; XE, XG, and XGG are design matrices
for the environmental effects, main effects (additive and dominance) and epistatic effects
(additive-additive, additive-dominance, dominance-additive, and dominance-dominance),
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respectively; β0 is the intercept, and βE,βG, and βGG are vectors of the environmental, main
and epistatic effects, respectively. In the Poisson model, θi is the underlying rate per unit of
OR for the i-th mouse, and the logarithm of θi is expressed as a linear predictor of the
environmental effects, main and epistatic effects of potential QTL. In the binomial model, pi
is the probability of each OR being live or dead for the i-th mouse, and the logit
transformation is used to relate pi to the environmental effects, main and epistatic effects of
potential QTL. The Poisson and binomial models are different but both reasonable for the
present data analyses. It would be expected that these two models may each enable us to
detect some different QTL.

The genetic variables were coded by using a modified Cockerham genetic model (Yi and
Banerjee 2009). The dominance variable was coded as −0.5 and 0.5 for homozygotes and
heterozygote of each QTL, respectively. To achieve the same scale as that of the dominance
contrast, the additive variable was codes as −2−0.5, 0, and 2−0.5 for the three genotypes of F2
population, rather than the original Cockerham codes of −1, 0, and 1. The epistasis XGG was
constructed by multiplying two corresponding main-effect variables. For each
environmental variable, the raw values were transformed to have a mean of 0 and a standard
deviation of 0.5 (Gelman et al. 2008; Yi and Banerjee 2009). This transformation
standardized all the environmental effects to the scale of all the genetic main effects
described above. For loci with missing genotypic values, the codes of contrasts were
replaced by their conditional expectations given the observed marker data (Haley and Knott
1992). Although the proposed models can include loci between the observed markers, we
describe our methods by considering observed markers as potential QTL (e.g., Xu 2007; Yi
and Banerjee 2009).

A total of 63 observed markers lead to a total of 7938 effects, including 63 additive effects,
63 dominance effects, and 7812 epistatic effects. Most of these effects are expected to be
zero or at least negligible. To incorporate this notion into the model and to make the large-

scale model identifiable, an independent Student-t prior  was assumed on
coefficients βj for j = 1, …, J (Yi and Banerjee 2009). For the intercept β0, a weekly
informative prior with ν0 = 1 and s0 = 10 was used, and for main and epistatic effects, νj =
0.01 and sj = 10−4 were assigned. These shrinkage priors give each coefficient a high
probability of being near zero while still allowing for occasionally large effects (Yi and Xu
2008; Yi and Banerjee 2009). To facilitate the estimation of parameters, the t distribution

 was expressed as a mixture of normal distributions with mean 0 and variance
distributed as scaled inverse-χ2:

(3)

Model fit and search algorithm—The computational algorithm of Yi and Banerjee
(2009) as implemented in the freely available R package qtlbim (Yandell et al. 2007) was
used to fit the Poisson and binomial models by estimating the posterior modes of the
coefficients. Yi and Banerjee (2009) developed a procedure to fit generalized linear models
with the Student-t prior by incorporating an EM (expectation-maximum) algorithm into the
usual iteratively weighted least squares (IWLS). The IWLS algorithm approximates the
generalized linear model by a weighted normal linear regression (Gelman et al. 2003). At
each iteration, one calculates pseudo-datum zi and pseudo-variance  for each observation i
based on the current estimates of parameters, approximates the generalized linear model

likelihood p(yi | Xi β,φ) by the normal likelihood , and then updates the
parameters βj by a weighted linear regression. The EM algorithm of Yi and Banerjee (2009)
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treats variances  as missing data and replaces them by their posterior means at each E-step.

Given the variances , the parameters βj are estimated by including the priors of

 as additional “data points” in the normal likelihood . Briefly,

the algorithm starts with initial values for each  and βj, and then proceeds as follows: 1)
based on the current values of βj, calculate pseudo-datum zi and pseudo-variance ; 2) E-

step: replace each variance  by its conditional posterior expectation; 3) M-step: perform
the weighted least square regression based on the normal likelihood approximation to obtain
estimates β ̂j; 4) repeat steps 1-3 until convergence.

The hierarchical model can simultaneously handle many correlated variables (Xu 2007;Yi
and Banerjee 2009). However, fitting a model with thousands of variables requires large
memory and intensive computation. Thus, the model search strategy proposed by Yi and
Banerjee (2009) was used to build a parsimonious model. The approach sets two threshold
values t1 (say 10−10) and t2 (say 0.005) to control the effect size and the p-values,
respectively, and then proceeds to identify significant effects as follows: 1) searching for
main effects: for each chromosome c (c = 1, 2, …, 19), simultaneously add all possible main
effects for markers on chromosome c into the current model, fit the model, and then delete
main effects satisfying | β ̂j | < t1; 2) searching for epistatic effects among the included main
effects: simultaneously add all possible interactions among the included main effects into
the current model, fit the model, and then delete epistatic effects satisfying | β ̂j | < t1; 3)
searching for epistatic effects between the excluded and the included main effects: for
chromosome c(c = 1, 2, …, 19), simultaneously add all possible interactions between the
remaining main effects (not included in the current model) on chromosome c and the
included main effects into the current model, fit the model, and then delete epistatic effects |
β ̂j | < t1; 4) removing main and epistatic effects with p-values larger than t2 from the current
model.

After these steps, a final model would be obtained with both the preset environmental effects
and the genetic effects that are associated with the phenotype. The estimates of these effects
and the corresponding p-values indicate how strongly they influence the phenotype. We
present estimate, standard error, and p-value for each effect included in the final model, and
calculated two measures of model fit and comparison, the deviance and the Akaike
information criterion (AIC).

RESULTS
Live Fetuses (LF)

Poisson models—Using the main-effect model, five main effects were detected (the left
panel of Figure 2). Among them, two additive effects were located on chromosomes 2 and
10, and three dominance effects on chromosomes 1, 2, and 10, respectively. The strongest
main effect on LF was on chromosome 2, at position 65.3 cM, and it accounted for the
highest proportion of phenotypic variance (about 3%). The p-values for the main effects
were all less than 0.05.

The Poisson epistatic model detected five main effects and seven epistatic effects (the right
panel of Figure 2). The five main effects were identical to those of the main effect model.
Among the seven epistatic effects, there were two additive-additive, three additive-
dominance, one dominance-additive, and one dominance-dominance effects on LF located
on some pairs of the seven chromosomes (2, 4, 10, 11, 14, 17, and 19). The epistatic effects
involved three QTL identified in the main effect model and seven novel QTL, suggesting
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that the epistasis model can identify QTL with weak main effects but strong epistasis. The
strongest epistatic effect on LF was observed between chromosome 10 and chromosome 14.
The absolute values of estimated epistatic effects ranged from 0.13 to 0.16, which were
about two times greater than those of the main effects, and the total proportion of phenotypic
variances explained by the epistatic effects was approximately 9%, which was higher than
that of the main effects. This revealed evidence that QTL affect LF mainly through their
epistatic effects and the epistasis plays a more important role than does the main effect in
controlling the genetic variation of LF. The p-values for the main and epistatic effects were
all less than 0.05.

For comparison purposes, the Poisson main-effect model for LF was refitted without model
search (i.e., always including all of 126 additive and dominance effects in the model). Figure
3 shows that the main effects detected in this saturated model coincided with those in the
parsimonious model (the left panel of Figure 2). The majority of genetic effects were shrunk
to zero, indicating that the proposed model with shrinkage prior can capture the notion that
most genetic effects influencing LF are very weak. We also tried to simultaneously fit all the
main effects and epistatic interactions, but the attempt failed because of requirement of large
memory. This demonstrated that a model search strategy is necessary to build a
parsimonious model by seeking significant genetic effects when the number of effects is
huge.

Binomial models—The binomial main-effect model identified seven main effects (the left
panel of Figure 4). Among these main effects, four additive effects were located on
chromosomes 2, 6, and 9, and three dominance effects on chromosomes 1, 2, and 10,
respectively. The strongest main effect on LF was on chromosome 9, at position 0 cM, and it
contributed the highest proportion (about 6%) to the phenotypic variance. The p-values for
the main effects were all less than 0.0005.

Under the epistatic model, five main effects and eleven epistatic effects were identified (the
left panel of Figure 4). Among the five main effects, four effects overlapped those in the
binomial main-effect model. The strongest main effect on LF was on chromosome 2, at
position 65.3 cM, and it explained the highest proportion (about 5%) of phenotypic variance.
Among the eleven epistatic effects, there were one additive-additive, two additive-
dominance, five dominance-additive, and three dominance-dominance effects. The epistatic
effects involved three main effects that were identified and sixteen effects that were not
identified in the main-effect model. This shows that the model can identify QTL which have
a weak main effect but a strong interaction with other QTL. The strongest epistatic effect
was observed between chromosome 13 and chromosome 16. The absolute values of
estimated epistatic effects ranged from 0.4 to 0.9, two times greater than those of main
effects, and the total proportion of phenotypic variance explained by the epistatic effects was
approximately 23%, about two times greater than that of main effects. All the p-values for
the main and epistatic effects in the model were less than 0.001.

Dead fetuses (DF)
Poisson models—The Poisson main-effect model detected nine main effects on DF (the
left panel of Figure 5). Among these main effects, six additive effects were on chromosomes
1, 3, 6, 8, 10, and 11, and three dominance effects on chromosomes 1, 5, and 14,
respectively. The strongest main effect on DF was on chromosome 6, at position 0 cM, and
it contributed the highest proportion (about 2%) to the overall phenotypic variance. The p-
values for the main effects were all less than 0.05.

Using the Poisson epistatic model, seven main effects and nine epistatic effects were
identified (the right panel of Figure 5). Among the seven main effects, five were identical to
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those identified in the main-effect model. The strongest main effect on DF was the same as
that in the main-effect model. Among the nine epistatic effects, there were three additive-
additive, two additive-dominance, three dominance-additive, and one dominance-dominance
effects. The epistatic effects involved only one main effect that was identified and fifteen
effects that were not identified in the main-effect model. The strongest epistatic effect on DF
was observed between chromosome 2 and chromosome 13, accounting for the highest
proportion of phenotypic variance (about 3%). The absolute values of estimated epistatic
effects ranged from 0.5 to 0.9, which were about three times greater than those of main
effects, and the total proportion of phenotypic variances explained by the epistatic effects
was approximately 15%, about two times greater than that of main effects. The p-values for
the main and epistatic effects were less than 0.001.

Binomial models—The binomial main-effect model identified nine main effects (the left
panel of Figure 6). Seven additive effects were located on chromosomes 1, 3, 6, 8, 9, 10, and
11, and two dominance effects on chromosomes 14 and 18, respectively. The strongest main
effect on DF was on chromosome 6, at position 0 cM, and it contributed the highest
proportion (about 2%) to the phenotypic variance. The p-values for the main effects were all
less than 0.01.

The epistatic model detected seven main effects and ten epistatic effects (the right panel of
Figure 6). Among the seven main effects, five coincided with those identified in the
binomial main-effect model. The strongest main effect on DF was located on chromosome
1, at position 26.1 cM, and it accounted for the highest proportion of phenotypic variance
(about 2%). There were three additive-additive, three additive-dominance, three dominance-
additive, and one dominance-dominance effects on DF Among these epistatic effects, six
were also identified by the preceding Poisson epistatic model for DF. The epistatic effects
involved three main effects that were identified and fifteen effects that were not identified in
the main-effect model. The strongest epistatic effect on DF was between chromosome 2 and
chromosome 6. The absolute values of estimated epistatic effects ranged from 0.6 to 1.0,
which were about two times greater than those of main effects, and the total proportion of
phenotypic variances explained by the epistatic effects was approximately 20%, two times
greater than that of main effects. All the p-values for the main and epistatic effects in the
model were less than 0.001.

Model comparison
We used two summary measures, the deviance and the Akaike information criterion (AIC),
to compare different models. The deviance, defined as −2 times the log-likelihood, is a
statistical summary of model fit; lower deviance means better fit to data. The AIC, defined
as deviance + 2·(number of predictors), measures the predictive power; a model is estimated
to reduce out-of-sample prediction error if the AIC decreases. In all the analyses, the
epistatic model had lower deviance and AIC than the corresponding main-effect model
(Figures 2-6). This indicated that inclusion of the significant epistatic interactions improved
the fit of the model to data and reduced out-of-sample prediction error.

Treating discrete LF and DF as normally continuous traits
To investigate whether or not count phenotypes can be analyzed by methods for continuous
traits, we performed Bayesian methods by treating the count phenotypes LF and DF or the
ratios LF/OR and DF/OR as normally continuous traits. We also tried to use the Box-Cox
transformation to these traits and obtained similar results displayed here. Our analyses used
the same priors and the model search method as in the analyses of our Poisson and Binomial
models. Figure 7 displays the estimates, standard errors, and p-values for the effects detected
in the final models. Most of effects detected by the normal models were also detected in the
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Poisson and the binomial models. However, the normal models missed several strong effects
that were detected by both the Poisson and the Binomial models. The results indicated that
the proposed methods were more appropriate for analyzing the count phenotypes. This is
expected from the general framework of generalized linear models (e.g., Gelman et al.
2003).

DISCUSSION
We have developed hierarchical Poisson and binomial models for mapping multiple
interacting QTL for count phenotypes based upon the unified generalized linear model
framework of Yi and Banerjee (2009). Our method can fit a large number of effects,
including covariates, main effects of numerous loci, and epistatic and gene-environment
interactions, and can accommodate the correlation among the variables. Many complex
traits, including reproductive phenotypes in mice, were measured as Poisson or binomial
data. However, statistical methods for mapping multiple interacting QTL for such
phenotypes have not been fully developed previously.

To better characterize the genetic architecture of reproductive traits in mice, we applied our
methods to two counted reproductive traits, live fetuses (LF) and dead fetuses (DF), in a F2
female mouse population. Since the observed number of OR provides important information
about the variation of LF and DF, the numbers of LF and DF were modeled using the
Poisson model with OR as an offset, and as the events of “success” out of total “trials” (OR)
using the binomial model. As described earlier, the Poisson and binomial models capture
different properties of the trait, and allow us to detect some different QTL. In contrast, since
the Poisson distribution can be derived as a limiting case to the binomial distribution as the
number of trials goes to infinity and the expected number of successes remains fixed, the
two models can lead to similar results (Casella and Berger 2001). In the present study,
however, since the sample size (n = 439) is not large enough and the proportions of LF and
DF (0.75 and 0.10, respectively) are not small, it is not surprising that the QTL detected in
the Poisson models are not in full agreement with those detected in the binomial models.
Furthermore, since the proportion of DF is lower than that of LF, there is more coincidence
between two models for DF than that for LF.

More than 10 QTL involved in the main and epistatic effects were identified for LF and DF
respectively, which exhibit a complex pattern of genetic influence on LF and DF. Most QTL
show a very weak main effect but a strong epistatic effect on LF and DF. Compared to the
initial study (Rocha et al. 2004b), in which only 3 and 1 QTL were identified for LF and DF
respectively, and no epistasis was evaluated, the current study not only identified additional
QTL but also provided new information about the genetic architecture of LF and DF
through the epistasis. The results also demonstrated that the models incorporating analysis of
epistasis can identify QTL which might have a weak main effect but a strong epistatic effect
with other QTL. Moreover, based on the number of QTL involved in the epistatic effects,
the absolute values of estimated epistatic effects, and the total proportion of phenotypic
variances accounted for by the epistatic effects, one conclusion can be drawn that the
epistasis plays a more crucial role than does the main effect in regulating the genetic
variation of LF and DF. Given the importance of epistasis in the genetic architecture of
complex traits, appropriate statistical analyses should accommodate epistatic effects
(Manolio et al. 2009).

Several main and epistatic effects are shared by LF and DF, which suggests that the
pleiotropy plays an important role in the reproductive traits in this particular context of F2
mice. Among all of the chromosomes on which some QTL were detected for LF and DF in
the present study, the most active one is chromosome 2, on which about 7 QTL involved in

Li et al. Page 8

Genet Res (Camb). Author manuscript; available in PMC 2010 September 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the main and epistatic effects were detected. Furthermore, the QTL on chromosome 2 has
the strongest main or epistatic effects and contribute the highest proportion to the overall
phenotypic variance in some fitted models, which suggests that chromosome 2 has
potentially biological relevance to LF and DF. The result is consistent with that in the initial
study (Rocha et al. 2004b). Other frequently involved chromosomes include chromosomes
1, 6, 9, and 10.
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Figure 1.
Histograms of numbers of live fetuses (LF), dead fetuses (DF), and ovulation rate (OR) (also
called corpora lutea).
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Figure 2.
Poisson main-effect (left) and epistatic (right) models for live fetuses (LF): estimated effects
with ± 1 standard errors (dots and short lines), p-values (rescaled as −log10 p/10) (triangles),
and deviance and AIC. The notation for additive effect (C@h)a dominance effect (C@h)d,
indicates chromosome C and position h cM. The term X1:X2 represents interaction between
X1 and X2. The two gray lines indicate the p-values of 0.05 and 0.001, respectively.
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Figure 3.
Poisson main-effect model without model search for live fetuses (LF): estimated effects with
± 1 standard errors (dots and short lines), and p-values (rescaled as −log10 p/10) (triangles).
The notation for additive effect (C@h)a dominance effect (C@h)d, indicates chromosome C
and position h cM. The term X1:X2 represents interaction between X1 and X2. The two gray
lines indicate the p-values of 0.05 and 0.001, respectively.

Li et al. Page 13

Genet Res (Camb). Author manuscript; available in PMC 2010 September 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Binomial main-effect (left) and epistatic (right) models for live fetuses (LF): estimated
effects with ± 1 standard errors (dots and short lines), p-values (rescaled as −log10 p/10)
(triangles), and deviance and AIC. The notation for additive effect (C@h)a dominance effect
(C@h)d, indicates chromosome C and position h cM. The term X1:X2 represents interaction
between X1 and X2. The two gray lines indicate the p-values of 0.05 and 0.001, respectively.
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Figure 5.
Poisson main-effect (left) and epistatic (right) models for dead fetuses (DF): estimated
effects with ± 1 standard errors (dots and short lines), p-values (rescaled as −log10 p/10)
(triangles), and deviance and AIC. The notation for additive effect (C@h)a dominance effect
(C@h)d, indicates chromosome C and position h cM. The term X1:X2 represents interaction
between X1 and X2. The two gray lines indicate the p-values of 0.05 and 0.001, respectively.
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Figure 6.
Binomial main-effect (left) and epistatic (right) models for dead fetuses (DF): estimated
effects with ± 1 standard errors (dots and short lines), p-values (rescaled as −log10 p/10)
(triangles), and deviance and AIC. The notation for additive effect (C@h)a dominance effect
(C@h)d, indicates chromosome C and position h cM. The term X1:X2 represents interaction
between X1 and X2. The two gray lines indicate the p-values of 0.05 and 0.001, respectively.
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Figure 7.
Treating discrete live fetuses (LF) and dead fetuses (DF) as normally continuous traits. a.
main-effect model for LF; b. epistatic model for LF; c. main-effect model for DF; d.
epistatic model for DF; estimated effects with ± 1 standard errors (dots and short lines), p-
values (rescaled as −log10 p/10) (triangles), and deviance and AIC. The notation for additive
effect (C@h)a dominance effect (C@h)d, indicates chromosome C and position h cM. The
term X1:X2 represents interaction between X1 and X2. The two gray lines indicate the p-
values of 0.05 and 0.001, respectively.
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