
Functional Mixed Effects Models for Candidate Genetic Mapping 
in Imaging Genetic Studies

Ja-An Lina, Hongtu Zhua,c, Ahn Mihyea, Wei Suna,b, and Joseph G Ibrahima for the 
Alzheimer’s Neuroimaging Initiative
aDepartments of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 
27599, USA

bDepartments of Biostatistics Genetics, The University of North Carolina at Chapel Hill, Chapel 
Hill, NC 27599, USA

cBiomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel 
Hill, NC 27599, USA

Abstract

The aim of this paper is to develop a functional mixed effects modeling (FMEM) framework for 

the joint analysis of high-dimensional imaging data in a large number of locations (called voxels) 

of a three-dimensional volume with a set of genetic markers and clinical covariates. Our FMEM is 

extremely useful for effciently carrying out the candidate gene approaches in imaging genetic 

studies. FMEM consists of two novel components including a mixed effects model for modeling 

nonlinear genetic effects on imaging phenotypes by introducing the genetic random effects at each 

voxel and a jumping surface model for modeling the variance components of the genetic random 

effects and fixed effects as piecewise smooth functions of the voxels. Moreover, FMEM naturally 

accommodates the correlation structure of genetic markers at each voxel, while the jumping 

surface model explicitly incorporates the intrinsically spatial smoothness of the imaging data. We 

propose a novel two-stage adaptive smoothing procedure to spatially estimate the piecewise 

smooth functions, particularly the irregular functional genetic variance components, while 

preserving their edges among different piecewise-smooth regions. We develop weighted 

likelihood ratio tests and derive their exact approximations to test the effect of the genetic markers 

across voxels. Simulation studies show that FMEM significantly outperforms voxel-wise 

approaches in terms of higher sensitivity and specificity to identify regions of interest for carrying 

out candidate genetic mapping in imaging genetic studies. Finally, FMEM is used to identify brain 

regions affected by three candidate genes including CR1, CD2AP, and PICALM, thereby hoping 

to shed light on the pathological interactions between these candidate genes and brain structure 

and function.
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1 Introduction

Common mental and neurological disorders, such as autism and schizophrenia, are highly 

heritable and strongly associated with brain structure and function, but it has been diffcult to 

unravel the genetic factors of these complex illnesses in that many genetic factors may 

contribute to the susceptibility of the disease while the contribution of each factor is small. 

Since imaging data provide the most effective measures of brain function and structure, such 

data may serve as an important intermediate phenotype that ultimately can lead to 

discoveries of genes for these complex disorders. Imaging genetic studies, which collect 

both imaging and genetic data, have recently attracted extensive research interest for 

dissecting the genetic basis of neurological disorders [Gilmore and et al, 2010, Loth et al., 

2011, Savitz and Drevets, 2009]. The common and important themes of both the imaging 

and genetic data include ultra-high dimensionality and complex correlation structures 

determined by the physical location. However, most of the existing methods for genetic 

association studies focus on low dimensional phenotypes (e.g. case-control status) and thus 

cannot account for high-dimensional imaging phenotypes, while accounting for spatial 

smoothness of the imaging measurements. On the other hand, most existing association 

methods in the neuroimaging literature do not study the joint effects of multiple genetic 

markers, while accommodating their correlations due to linkage disequilibrium (LD).

There are two main genetic association approaches including i) the candidate gene 

approaches and ii) the genome-wide association studies (GWAS) for correlating imaging 

phenotype with genotype at one or more polymorphic markers in order to uncover genetic 

predispositions to disease [Zhu and Zhao, 2007, Amos et al., 2011]. Both approaches enjoy a 

combination of advantages and disadvantages. Candidate genes are commonly selected for 

study based on either a priori knowledge of their biological functional impact on the 

phenotype or disease in question or previous GWAS studies, such as the NHGRI GWAS 

catalog [Hindor et al., 2009]. The candidate gene approach tends to have rather high 

statistical power, but is incapable of discovering new genes or gene combinations. A 

standard statistical method for the candidate approach in imaging genetics is the voxel-wise 

analysis (VWA) framework. The voxel-wise analysis consists of Gaussian smoothing the 

imaging data and subsequently fitting a statistical model at each voxel. However, the voxel-

wise analysis is generally not optimal in power and the use of Gaussian smoothing may 

introduce a substantial bias in the statistical results [Jones et al., 2005, T. Ball et al., 2012, Li 

et al., 2011, 2013].

Most imaging genetic studies have used the candidate gene approach, although more 

recently, more studies are beginning to scan the entire genome for common genetic variation 

[Thompson et al., 2013, Zhang et al., 2014]. A standard statistical method for GWAS in 

imaging genetics is the massive univariate linear modelling (MULM) framework [Hibar and 
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et al, 2011, Shen et al., 2010]. This approach repeatedly fits a linear regression model for 

each pair of imaging voxels and genetic markers. MULM entails a large number of 

comparisons, and thus MULM can only detect extremely significant imaging-marker pairs. 

Moreover, MULM ignores both the spatial information of the imaging data and the 

correlation among genetic markers. See more detailed discussions in [Vounou et al., 2010, 

Ge et al., 2012, Thompson et al., 2013]. Recently, in Ge et al. [2012], a cluster-wide, marker 

set association framework was proposed by integrating cluster size inferences based on 

random field theory in order to utilize the spatial smoothness of the imaging data [Worsley 

et al., 2004] and a marker set analysis based on least-squares kernel machines in order to 

assess the joint association of potentially correlated and interacting loci [Liu et al., 2007].

The aim of this paper is to develop a functional mixed effects modeling (FMEM) framework 

for the joint analysis of high-dimensional imaging data with a set of genetic markers and 

clinical covariates. Our FMEM is extremely useful for effciently carrying out the candidate 

gene approaches in imaging genetic studies. FMEM consists of two novel components 

including a mixed effects model and a jumping surface model. Specifically, at each voxel, 

we use the mixed effects model with genetic random effects to assess the nonlinear 

association of potentially correlated and interacting loci with imaging phenotypes and the 

variance component (VC) of genetic random effects to detect the nonlinear effects of a 

marker set on imaging measures across voxels [Liu et al., 2007, Tzeng and Zhang, 2007, 

Wang and Chen, 2012]. To account for the spatial smoothness of the imaging data, we use 

the jumping surface model to explicitly model both the genetic variance component and 

fixed effects as piecewisel smooth functions of the voxels with unknown edges and possible 

jumps. We develop a novel two-stage adaptive smoothing procedure to spatially estimate the 

genetic variance component function, while preserving its edges among different piecewise-

smooth regions. We also develop weighted likelihood ratio tests and derive their exact 

approximations to test the effect of the genetic markers across the brain. Our numerical 

examples show that FMEM significantly outperforms voxel-wide approaches in terms of 

detection of meaningful effect regions.

The rest of the paper is organized as follows. In Section 2, we describe the proposed FMEM 

and its adaptive estimation procedure. Then, we develop our hypothesis testing procedure to 

assess the genetic effects as well as the effect of clinical variables on the imaging 

phenotypes. In Section 3, we evaluate the finite-sample performance of FMEM by using 

simulation studies and analyzing a real data set from the Alzheimer’s Disease Neuroimage 

Initiative (ADNI). A few concluding remarks are given in the Discussion section.

2 Methods

2.1 Functional Mixed Effects Model

Suppose that we observe imaging measures, clinical variables, and genetic markers from n 

unrelated subjects. Let  be the whole brain and v be a voxel in . For each individual i (i = 

1, …, n), an NV × 1 vector of imaging measures is observed and denoted by 

. For notational simplicity, we only consider univariate imaging 

measures and thus, NV equals the number of voxels in . Moreover, a K × 1 vector of 
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clinical covariates xi = (xi1, …xiK)T and a G × 1 vector gi = (gi1, …gig)T for genetic markers 

are also collected for each individual. For instance, imaging measures can be brain structural 

and functional data at each location [Friston, 2009, Ashburner and Friston, 2000], and 

genetic markers can be various polymorphism types, such as single nucleotide 

polymorphisms (SNPs), block substitutions, and copy number variants [Liu et al., 2007, 

Tzeng and Zhang, 2007, Wang and Chen, 2012]. The objective of this paper is to develop 

FMEM to quantify genetic contributions to high-dimensional imaging measures.

Our FMEM framework consists of two novel components including a mixed effects model 

(MEM) at each voxel and a jumping surface model (JSM) for varying coefficient functions 

across the brain. First, at each voxel v in , a mixed effects model is introduced as

(1)

where β(v) = (β1(v), …, βK(v))T is a K × 1 vector, , , 

and  are independent across subjects i and independent of γ(v) for all , 

in which IL is an identity matrix. Let Z = (z1, …,zn) be an L × n matrix and Y(v) = (y1(v), 

…, yn(v))T be an n × 1 vector. Thus, under model (1), we have

Model (1) can be regarded as an alternative representation of the variance component 

models used in the literature [Liu et al., 2007, Tzeng and Zhang, 2007, Kang et al., 2010, 

Wang and Chen, 2012]. For instance, when ZTZ equals a kernel matrix K = (K(gi, gi′)), 

model (1) reduces to the linear mixed model considered in [Liu et al., 2007, Ge et al., 2012], 

where K(·,·) is a kernel function, such as the polynomial kernel, identity-by-state (IBS) 

kernel, or the Gaussian kernel. For instance, the IBS kernel is used in [Ge et al., 2012].

Model (1) has a strong connection with a nonparametric fixed effects model given by

(2)

where h(·; v) is an unknown centered function corresponding to the genetic effects at voxel 

v. To estimate the unknown functions h(·; v) in model (2), a common approach is to express 

them as linear combinations of some pre-specified basis functions (e.g., splines or kernels), 

that is , where γ(v) = (γ1(v), …, γL(v))T is an L × 1 vector for genetic 

random effects and zi is a pre-specified L × 1 vector of functions of gi. The variation of h(gi; 

v) is then controlled by the variation of their basis coefficients in γ(v). Moreover, a penalty 

function (e.g., L2 or L1) coupled with a tuning parameter is usually introduced to impose 

certain constraints on γ(v) and such penalty function can be regarded as a prior distribution 

of random effects. Thus, this connection provides a simple way to connect the 

nonparametric fixed effects model (2) with model (1) [Liu et al., 2007, Tzeng and Zhang, 

2007, Kang et al., 2010, Wang and Chen, 2012]. We focus on model (1) from now on.

We also assume spatial correlation as follows. For v and v′ in , we assume
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where 1(·) is an indicator function and ρe(v, v′) characterizes the spatial correlation between 

the measurement errors. Therefore, the covariance structure of yi(v) is given by

(3)

Following Zhu et al. [2014], we propose a JSM for the genetic varying coefficient function 

 and the fixed effect varying coeffcient functions 

 for j = 1, …, K. For notational simplicity, we only introduce JSM 

for  as follows:

• (i) (Disjoint Partition) There is a finite and disjoint partition  of V 

such that .

• (ii) (Piecewise Smoothness)  is smooth within each  for l = 1, …, Lγ, but 

 is discontinuous on , where  is the boundary of  and the 

jumping surface of .

A similar JSM can be defined for each βj(·) for j = 1, …, K.

We use JSM to explicitly delineate the fact that imaging data  can be 

regarded as a noisy version of a piecewise-smooth function of  with the possible 

existence of jumps or edges. In many neuroimaging datasets, those jumps or edges often 

reflect the functional and/or structural changes, such as white matter (WM) and grey matter 

(GM), across the brain. Therefore, the varying coefficient functions in model (1) may inherit 

the piecewise-smooth features from the imaging data. Furthermore, it is more reasonable to 

assume that different varying coefficient functions have different jumps or edges, since they 

may play different roles in characterizing the piecewise-smooth pattern of the imaging data.

Our FMEM consisting of model (1) and JSM can be regarded as a novel extension of the 

existing FMEMs and varying coefficient models in the literature [Zhu et al., 2011, Yuan et 

al., 2014, Morris and Carroll, 2006, Guo, 2002, Greven et al., 2010, Zhu et al., 2014, 2012], 

even though all of them are developed to model functional responses (of time or voxel) 

measured either cross-sectionally or longitudinally. However, at each voxel, the jumping 

surface model is introduced to spatially characterize the piecewise smoothness of the 

imaging data. In contrast, most existing FMEMs and varying coefficient models reduce to a 

parametric model at each voxel, while most FMEMs do not explicitly model the piecewise 

smoothness of the imaging data. Moreover, the primary interest of our FMEM is to estimate 

the genetic varying coefficient function , whereas that of other FMEMs and varying 

coefficient models is to estimate the fixed effects varying coefficient functions βj(·). 
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Estimating the function  is computationally and theoretically much harder than 

estimating the varying coefficient functions, since  satisfies a nonnegative constraint.

2.2 Two-stage Estimation Procedure

We propose a two-stage estimation procedure to estimate all varying coefficient functions 

and test their effects on imaging phenotypes. The key ideas of each stage are given as 

follows:

Stage I. Estimate , develop an adaptive smoothing method to estimate , and 

test the null hypothesis  across all voxels.

Stage II. Develop an adaptive smoothing method to spatially and adaptively estimate 

 and then test associated hypotheses.

Moreover, after calculating ,  and , we can estimate 

, where  and X = (x1, 

…,xn) is a p × n matrix. To approximate ρe(v, v′), we calculate the empirical correlation 

between  and  where 

. Since γ(v) and ρe(v, v′) are nuisance parameters, we do 

not focus on them throughout. Since our primary interest lies in the genetic effect, we focus 

on Stage I and only briefly discuss Stage II for the sake of space.

The key novelty of our estimation procedure is the adaptive smoothing method in Stage I for 

smoothing . Since the true variance components σγ(v) can be zero in some regions of 

interest and their estimates are always non-negative, directly applying standard smoothing 

methods, such as splines or kernel smoothing, to these nonnegative variance component 

estimates can introduce substantial bias in the estimation of functional genetic variance 

components. Thus, most existing smoothing methods cannot be successfully used in such 

smoothing problems [Zhu et al., 2011, Yuan et al., 2014, Morris and Carroll, 2006, Guo, 

2002, Greven et al., 2010, Zhu et al., 2014, 2012, Polzehl and Spokoiny, 2000, Polzehl et al., 

2010, Yue et al., 2010].

2.2.1 Stage I—The first stage consists of three major steps as follows:

Step I.1. Calculate the restricted maximum likelihood (REML) estimator of 

 across all voxels .

Step I.2. Spatially and adaptively re-estimate  by incorporating 

information from neighboring voxels.

Step I.3. Construct weighted likelihood ratio statistics and derive their approximate 

distributions to test the null hypothesis of  across all voxels.
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In Step I.1, we calculate the REML estimator of η(v) across voxels. There exists an (n – p) × 

n matrix Kx such that KxXT = 0 and rank(Kx) = n – p. A mixed effects model for Y* (v) = 

KxY(v) is given by

(4)

where E(v) = (e1(v), …, en (v))T. Based on the distributional assumptions in (1), we have Y* 

(v) ~ N(0, ΣY* (v)), where . Thus, at each voxel 

v, the REML estimate of η(v), denoted by , is to maximize the 

REML function given by

(5)

Since our primary interest lies on , we fix  as  from here on.

In Step I.2, we construct a weighted REML function to estimate  by incorporating the 

spatial information in a neighborhood B(v, h) for each voxel v with a specific radius h as 

follows:

(6)

where ωγ (v, v′; h) is a weight function of voxels v, v′, and the radius h. We maximize 

 in order to calculate the weighted REML estimator of , 

denoted by . The weight function ωγ (v, v′; h) measures the data similarity between 

the two voxels v and v′ such that Σv′∈B(v,h)ωγ(v,v′; h) = 1 and ωγ (v, v′; h) ≥ 0. A large value 

of ωγ (v, v′; h) means that the information contained in the voxels v and v′ is very similar, 

whereas ωγ (v, v′; h) ≈ 0 indicates that the data in voxel v′ do not have too much information 

for σv (v). The adaptive weight ωγ (v, v′; h) plays a critical role in preventing over-smoothing 

estimation of  and preserving the edges of significant regions of .

In Step I.3, to assess the genetic effects on imaging phenotypes across all voxels, we 

formulate it as testing the following null and alternative hypotheses:

(7)

We test (7) by using the weighted REML ratio statistic defined by

(8)

Since all the subjects share the same random effect γ(v), the standard asymptotic results in 

Stram and Lee [1994] are invalid and can perform very poorly even for the unweighted 
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REML ratio statistics for testing random effects in model (1). However, we provide an exact 

null distribution of  below.

2.2.2 Step I.2 Adaptive Estimation of —Following the adaptive estimation 

(AET) procedure proposed in [Li et al., 2011], we adaptively determine 

 and then calculate  as h increases from h0 = 0 to a 

predetermined value hS = r0. The key novelty of AET is to build a sequence of 

 for h0 = 0 < h1 < … < hS = r0 at each voxel  and then 

sequentially determine ωγ (v, v′; hs) for all v′ ∈ B(v, hs) based on 

 for all  and s = 1, …, S. However, one cannot apply 

many existing smoothing methods, such as local kernel or the propagation-seperation 

method [Zhu et al., 2014, Polzehl and Spokoiny, 2000, Polzehl et al., 2010, Fan and Gijbels, 

1996], to directly smooth  in the non-activation region 

. Specifically, since  is always non-negative even in the 

voxels of , directly calculating the weighted means of  does not lead to the bias 

reduction in . A path diagram of AET is given as follows:

The three key steps of AET, including weight adaptation, estimation, and termination 

checking, are presented as follows.

• In the weight adaption step (i), we select a series  of radii with 

ch ∈ (1, 2), say ch = 1.125. We use a relatively small ch in order to increase 

estimation robustness and prevent oversmoothing. We then set s = 1 and h1 = ch. 

The adaptive weights in (6) are given by

(9)

where Kloc(u) = (1 – u)+ and Kst(u) = min(1, 2(1 – u2))+, and ∥·∥2 denotes the 

Euclidean norm of a vector (or a matrix). Moreover, Dγ (v, v′; hs−1) is set as 

 so that the difference between 

consecutive  is within the precision of , where 

 is estimated by using the inverse of the Fisher information matrix of 
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 from the likelihood function (5) with h = h0. We choose C = n1/3 

χ2(1)0.5 for Dγ (v, v′; hs−1) defined in (9), where χ2(1)0.5 is the 0.5-percentile of the 

χ2(1) distribution. These quantities are fixed for subsequent updates of hs.

The rationale for choosing different tuning parameters given above is given as follows. The 

weight Kst(Dγ (v, v′; hs−1)/Cn) downweights the role of a voxel v′ ∈ B(v, hs) in the REML 

functions if Dγ (v, v′; hs−1) is large. The weight Kloc(∥v – v′∥2/hs) gives less weight to the 

voxel v′ ∈ B(v, hs), whose location is far from the voxel v. The scale Cn is used to penalize 

the similarity between any two voxels v and v′ in a similar manner to bandwidth, and an 

appropriate choice of Cn is crucial for the behavior of the adaptive smoothing method in 

Stage I. As discussed in Zhu et al. [2014] and Li et al. [2011], Cn should satisfy Cn/n = o(1) 

and .

• In the estimation step (ii), for each  and for the radius hs given ωγ (v, v′; hs), 

we calculate  by maximizing  defined in 

equation (6).

• In the termination checking step (iii), after the S0–th iteration, we calculate a 

stopping criterion based on a distance between  and  given by

(10)

for s > S0. Then, we compare  with a benchmark, 

denoted by , for s > S0. If , then we set 

 and the estimation for this voxel v is terminated. If s = S and 

,  is set as  and the estimation 

process terminates. The algorithm stops when the estimation is finished for all v in 

V. If s ≤ S0 or  for s < S0 S – 1, then we go back 

to the weight adaptation step (i) with an increased radius . 

Throughout the paper, we set S0 = 2, , and S = 10. Note that 

 is a decreasing function in s which makes the stopping criteria more and more 

stringent when the radius increases in order to prevent over-smoothing.

2.2.3 Step I.3: Testing —We perform hypothesis testing in (7) by 

using the testing statistics  and their corresponding p-values. Let 

 be the spectral decomposition of such that D0 = diag(d1, …, dn-p) 

is the diagonal matrix of eigenvalues dk and U is an (n – p) × (n – p) orthonormal matrix. 

Without loss of generality, we choose Kx such that . We obtain the following 

theorem, whose proof is included in the supplementary document.

Theorem 1. Under model (1), RLRTn(v) can be written as
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(11)

where  and D(v′; t) is given by

(12)

Moreover, under the null hypothesis H0,γ, (v), we have

(13)

where  means equality in distribution and the δl(v)’s are i.i.d N(0, 1) random variables.

Although Theorem 1 provides an effcient way of approximating the null distribution of 

RLRTn(v), a complex issue arises from the complex spatial correlations among the 

across voxels v′ ∈ B(v, h). One approach for dealing with such an issue is to estimate the 

spatial correlation for any pair of voxels, which can be computationally intensive. To avoid 

calculating spatial correlations, we develop a wild bootstrap method to effciently simulate 

the null finite sample distribution of RLRTn(v). The detailed steps of this bootstrap method 

are presented in the supplementary document. After the p-values for all voxels  are 

computed, either a false discovery rate (FDR) method or random field theory (RFT) is 

applied to correct for multiple comparisons [Ge et al., 2012].

2.3 Stage II

The second stage is to estimate β(v) and carry out statistical inference on β(v). At each voxel 

v, we consider model (1) given by

(14)

After calculating , we can calculate 

. Since all components of β(v) and ΣY (v) are statistically 

orthogonal to each other, we fix ΣY (v) at  from here on. Since the true β(v) is not on 

the boundary of parameter space, different adaptive smoothing methods can be used here 

[Zhu et al., 2014, Polzehl and Spokoiny, 2000, Polzehl et al., 2010]. For simplicity, we put 

the detailed steps of Stage II in the supplementary document.
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3 Results

3.1 Simulation Studies

We simulated data at all NV = 5, 808 voxels on a 44×44×3 phantom image. Each z-slice 

contains the same effect regions. At each voxel, we simulated the univariate imaging 

measures according to model (1) with β(v) = (β0(v), β1(v), β2(v), β3(v))T and xi = (1, xi1, xi2, 

xi3)T. Moreover, the covariates xi1, xi2, and xi3 were generated from a Gaussian distribution 

with mean 40 and standard deviation 10, a Bernoulli distribution with success probability 

0.5, and a Bernoulli distribution with success probability 0.3, respectively. These three 

covariates were designed to mimic the common clinical variables: age, gender, and disease 

status. For a slice of the phantom image, the effect areas for β0(v) were divided into 16 

regions with 4 different values ranging from 0.02 to 0.08, increasing by 0.02 (Figure 1(a)); 

for β1(v), the effect regions were divided into 25 regions ranging from 10−2.5 to 10−12.5, 

decreasing by a rate of 10−2.5 (Figure 1(b)); for β2(v), the whole space was separated into 3 

regions with values 0, 0.05, and 0.1 (Figure 1(c)); the effect area of β3(v) was divided into 9 

regions with values ranging from 0 to 0.1, increasing by differences of 0.025 (Figure 1(d)).

The genetic information was simulated according to the SNP data obtained from the public 

accessible data of the Alzheimer’s Disease Neuroimage Initiative (ADNI). It is an ongoing 

longitudinal study with the primary purpose of exploring the genetic and neuroimaing 

information associated with late-onset Alzheimer’s disease (LOAD). The study recruited 

elderly subjects older than 65 years of age consisting about 400 subjects with mild cognitive 

impairment (MCI), about 200 subjects with Alzheimer’s disease (AD), and around 200 

healthy controls. Each subject was followed for at least 3 years. During the study period, the 

subjects were assessed with magnetic resonance imaging (MRI) measures and psychiatric 

evaluation to determine the diagnosis status at each time point. Genetic information was also 

collected from each subject at baseline and is genotyped by the Illumina 610 Quad array 

with more than 620,000 single nucleotide polymorphisms (SNPs). More information on 

ADNI is provided in the real data analysis of Section 3.2. We simulated the genetic 

information based on the two following scenarios:

• Scenario I. To preserve the linkage disequilibrium among SNPs, we utilize all of 

the SNPs on chromosome 1 from 197 Caucasian controls to generate the genetic 

effects. After eliminating the SNPs with minor allele frequency (MAF) less than 

5%, there were 31554 out of 45627 SNPs left. Then, we randomly chose 20 SNPs 

and 100 subjects among the 197 healthy controls as the simulated genetic data zi in 

(1). In this case, n = 100. If any of these 20 SNPs have MAF less than 5%, then the 

genetic data was resampled until all of the 20 SNPs have MAF ≥ 5%.

• Scenario II. To evaluate the performance of FMEM in the case of high LD, we 

selected the SNPs from the same gene in the second scenario. Searching the SNPs 

on the gene PICALM, which has been found to be relevant for Alzheimer’s disease 

in many studies [Harold et al., 2009] using the gene list “glist-hg18” provided by 

PLINK, there were 23 SNPs on PICALM with MAF larger than 5%. After 

eliminating the missing values, there are 176 healthy controls with complete 

genotype data at these 23 SNPs. We randomly selected 7 SNPs from 75 healthy 
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controls to be zi in (1). Although there is strong LD among these 7 SNPs, no SNP 

has perfect correlation (1 or −1) with any other SNPs in these 75 subjects. In this 

case, n = 75.

In both scenarios, the SNP effects were assumed to be additive. The γ(v)’s were generated 

from a multivariate normal distribution with mean zero and covariance matrix . 

Different  values, which represent di erent signal-to-noise ratios, were chosen to 

examine the finite sample performance of our method at different signal-to-noise ratios and 

also to test whether FMEM can perform well for different shapes. See Figure 3 (b) and 

Figure 3 (e) for Scenarios I and II. Moreover, we overlay some of the effect areas of β3(v) 

and  in order to account for the fact that the brain phenotype is an intermediate 

expression of disease progression. The  of the effect regions in Scenario I 

ranged from 0.005 to 0.025, increasing by 0.0025, whereas the  of effect 

regions in Scenario II ranged from 0.005 to 0.045, increasing by 0.005. The random error 

ei(v) was independently distributed as a univariate normal distribution with mean 0 and 

standard deviation 3 for all voxels. We set the number of bootstrap samples M and the 

number of repetitions to be 200.

Tables 1 and 2 summarize the estimation results of  obtained from FMEM and the 

voxel-wise method for both scenarios. The tables include the average absolute value of the 

bias, the root mean square error (RMS), standard deviation (SD), and the ratio of RMS to 

SD. RMS is based on the empirical mean and the SD is based on the theoretical mean. As 

shown in both tables, FMEM produces smaller estimation bias, RMS, and SD compared 

with the voxel-wise method, which indicates that FMEM yields much more accurate 

estimation.

We tested the hypotheses H0 :  and H1 :  for all voxels in V based on 

FMEM and its corresponding voxel-wise method, and the score test based on the IBS kernel 

used in Ge et al. [2012]. Moreover, we evaluated their finite-sample performance in cluster-

based thresholding [Silver et al., 2011]. Specifically, we first thresholded the p-values for all 

voxels in V by using an initial p-value of 0.01 as suggested by Silver et al. [2011] in order to 

identify clusters of contiguous supra-threshold voxels. Then, the thresholded clusters were 

matched with the 9 true effect areas in Figure 3 (b) or (e). If a specific thresholded cluster 

overlaps with at least one voxel in any of the 9 true effect regions, we call such cluster as a 

“true positive”. In contrast, if a specific thresholded cluster does not overlap with any voxels 

of the 9 effect regions, we call a cluster a “false positive”. We summarized the hypothesis 

testing results by the average dice overlap ratio (DOR), the average number of false positive 

clusters, and the average size in the number of voxels of false positive clusters. DOR is the 

ratio between the number of true positive clusters over the true number of effect areas, 

which is 9 in this simulation setting. Thus, the higher DOR means the higher the probability 

of detecting the true effect regions.

As shown in Tables 3 and 4, if we set the cluster size threshold as one voxel, FMEM has 

smaller DOR and a smaller number of false positive clusters compared with the voxel-wise 
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method. When the cluster size threshold increases to 10 voxels, FMEM has a similar DOR 

value as that of the no threshold case, whereas the DOR of the voxel-wise approach reduces 

by about 20%. The score test based on the IBS kernel has little power to detect the nine 

effect regions with subtle effects. It may be caused by both the relatively low sensitivity of 

the score test itself and the misspecified IBS kernel.

Table 5 summarizes the number of significant voxels identified by the three methods in each 

effect region of Scenarios I and II. In Table 5, FMEM identifies less voxels in the non-effect 

regions, while detecting more voxels in the effect regions in both scenarios. For FMEM, its 

computational time is around 30 minutes for the first scenario and 20 minutes for the second 

one. Table 5 also confirms that the score test based on the IBS kernel has little statistical 

power in detecting the nine effect regions. Therefore, FMEM significantly outperforms the 

voxel-wise method and the score test based on the IBS kernel [Ge et al., 2012] in terms of 

detecting the true effect regions and controlling the false positive error rate.

3.2 ADNI Data Analysis

The ADNI study began in 2004 and has three phases thus far, including ADNI-1, ADNI GO, 

and ADNI-2. The overall objective of the ADNI study is to determine the relationships 

among the clinical, cognitive, imaging, genetic and biochemical biomarker characteristics of 

the entire spectrum of AD as the pathology evolves from normal aging through early mild 

cognitive impairment, to mild cognitive impairment, to late mild cognitive impairment, to 

dementia or AD. The Principal Investigator of this initiative is Dr. Michael W. Weiner, MD, 

VA Medical Center and University of California San Francisco. For up-to-date information, 

see www.adni-info.org for details.

The aim of this ADNI data analysis is to use FMEM to identify brain regions affected by 

candidate genes, thereby hoping to shed light on the pathological interactions between these 

candidate genes and brain structure and function. The data we employed to evaluate the 

performance of FMEM was from ADNI-1. About 800 subjects with age older than 65 were 

recruited and followed at least 3 years. The 800 subjects included 200 healthy controls, 400 

subjects with different levels of mild cognitive impairment (MCI), and 200 subjects with 

Alzheimer’s disease (AD). Besides the SNPs and the T1 weighted MRI imaging 

measurements, the subjects were assessed with demographic information and psychiatric 

examination scores to determine the diagnosis status at each scheduled visit.

The raw magnetic resonance image (MRI) data was collected from a variety of 1.5 Tesla 

MRI scanners with protocols individualized for each scanner, including standard T1-

weighted images obtained using volumetric 3-dimensional sagittal MPRAGE or equivalent 

protocols with varying resolutions. The typical protocol included: repetition time (TR) = 

2400 ms, inversion time (TI) = 1000 ms, flip angle = 80, field of view (FOV) = 24 cm, with 

a 256 × 256 × 170 acquisition matrix in the x-,y-, and z-dimensions yielding a voxel size of 

1.25 × 1.26 × 1.2 mm3.

The T1-weighted MRI images were preprocessed by standard image processing steps 

including AC (anterior commissure) and -PC (posterior commissure) correction, bias field 

correction, skull-stripping, intensity inhomogeneity correction, cerebellum removal, 
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segmentation, and nonlinear registration [Wang et al., 2011]. After segmentation, the brain 

was segmented into four different tissues: grey matter (GM), white matter (WM), ventricle 

(VN), and cerebrospinal fluid (CSF). We quantified the local volumetric group differences 

by generating RAVENS maps [Davatzikos et al., 2001] for the whole brain and each of the 

segmented tissue type (GM, WM, VN, and CSF) respectively, using the deformation field 

which we obtained during registration. RAVENS methodology is based on a volume-

preserving spatial transformation, since this process changes an individual[prime]s brain 

morphology to conform it to the morphology of the Jacob template.

We are interested in detecting meaningful brain regions of interest that are associated with 

several candidate genes. We included only the subjects whose diagnostic status was healthy 

control or Alzheimer’s disease at baseline and had no status change during ADNI1. After 

screening, the total number of subjects we included was 372 (195 Healthy Controls (HCs) 

and 177 ADs). The clinical covariates of interest included gender, baseline age, square of 

baseline age, handedness, education, baseline intracranial volume, and the risk of 

Apolipoprotein E (ApoE). Specifically, handedness was treated as a binary variable, the 

education information was the self-reported years of education by the subjects, and the risk 

of APOE is assumed to be additive. Specifically, the risk of APOE for a subject was 3 if 

he/she carries ε4 at both alleles; it was 2 if he/she carries ε3 and ε4 in two alleles, the risk 

would be considered 0 if the two APOE alleles were the combination of ε2 and ε3, and other 

combinations of APOE alleles are assumed to have risk 1.

Many genes have been reported to be causal in the progression of Alzheimer’s disease. We 

selected three candidate causal genes including CR1 on chromosome 1, CD2AP on 

chromosome 6, and PICALM on chromosome 11 due to their strong association with the 

progression of Alzheimer’s disease [Harold et al., 2009, Naj et al., 2011, Lambert et al., 

2009]. Specifically, PICALM encodes the protein phosphatidylinositol-binding clathrin 

assembly and is highly correlated with the emergence of late-on-set AD, which is possibly 

due to the perturbation at synapse triggering its function change [Harold et al., 2009]. The 

gene CD2AP encodes the CD2-asscociated protein and involves in the process of cell 

membrane, including endocytosis, that plays critical roles in neurodegeneration and Aβ 

clearance from the brain [Naj et al., 2011]. The gene CR1 encodes the complement 

component (3b/4b) receptor 1 and the pathways involving CR1 are involved in the AD 

process, specifically in clearance of Aβ peptides, which is the primary composition of 

amyloid plaques [Lambert et al., 2009].

We first matched the SNPs in ADNI with the gene list “glist-hg18” provided by PLINK 

[Purcell and et al, 2007] and were able to locate 16, 15, and 23 SNPs on the selected CR1, 

CD2AP, and PICALM genes, respectively. All these SNPs pass the quality control 

procedure with MAF > 5% and the Hardy Weinberg Equilibrium (HWE) test p-value> 0.01. 

The MAFs of the SNPs of the selected genes vary from 0.1 to 0.5. After deleting missing 

values, there are 335, 299 and 328 subjects corresponding to the CR1, CD2AP, and 

PICALM genes, respectively. The MAFs of all selected SNPs and demographic information 

are included in the supplementary document.

Lin et al. Page 14

Genet Epidemiol. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



For each selected gene, we fitted FMEM (1) with z coded as the number of minor alleles in 

order to detect its associated brain regions of interest (ROIs). For comparisons, we fitted the 

same model by using the classical voxel-wise method and Ge’s method to the same data 

sets. To formally detect significant ROIs, by following Ge et al. [2012], we used a cluster-

form of threshold of 0.1% with a minimum voxel clustering value of 50 voxels. The names 

of the brain regions were included in Tables 6-8 of the supplementary document. FMEM is 

able to to detect 45, 45, and 27 significant clusters for CR1, CD2AP, and PICALM, 

respectively, whereas the standard voxel-wise method can only identify 6, 14, and 2 

significant clusters, and none from Ge’s method for CR1, CD2AP, and PICALM, 

respectively. We also fitted FMEM on the same data but only with the HC and AD samples 

only to investigate white noise signal. For HC samples only, FMEM detected 15, 8 and 31 

significant clusters for CR1, CD2AP and PICALM, respectively. For AD samples only, 

FMEM detected 9, 8 and 41 significant clusters for CR1, CD2AP and PICALM, 

respectively. Although there are some discrepancies between the results based on the HC 

and AD samples only and those based on the combined sample, the results are highly similar 

to each other. The results obtained from the combined sample are generally more significant 

due to a larger sample size.

Finally, we overlapped these significant clusters with the 96 predefined ROIs in the Jacob 

template and were able to detect several predefined ROIs for CR1, CD2AP, and PICALM. 

For CD2AP, based on the combined sample, FMEM identified relatively large clusters with 

more than 150 voxels of right superior temporal gyrus, left and right inferior temporal gryus, 

left and right precentral gyrus, left and right middle frontal gyrus, right postcentral gyrus, 

right fusiform, left angular, left inferior frontal gyrus, left inferior occipital gyrus, left and 

right postcentral gyrus, left and right superior frontal gyrus, left anterior cingulate and 

paracingulate gyri, left median cingulate and paracingulate gyri, right calcarine fissure and 

surrounding cortex, right cuneus, right superior occipital gyrus, right middle occipital gyrus, 

right caudate, and right middle temporal gyrus.

For CR1, based on the combined sample, FMEM identified relatively large clusters with 

more than 150 voxels of right superior temporal gyrus, left and right putamen, left inferior 

temporal gyrus, left angular, left inferior occipital gyrus, right postcentral gyrus, right 

superior frontal gyrus, left anterior cingulate and paracingulate gyri, left median cingulate 

and paracingulate gyri, left cuneus, left middle occipital gyrus, and right caudate.

For PICALM, based on the combined sample, FMEM identified relatively large clusters 

with more than 150 voxels of right inferior frontal gyrus- triangular and orbital parts, right 

insula, right fusiform, right superior temporal gyrus, right temporal pole, right middle 

temporal gyrus, right inferior temporal gyrus, right precentral gyrus, right supramarginal 

gyrus, right middel occipital gyrus, right angular, right middle frontal gyrus, and right 

middle frontal gyrus.

As shown in the supplementary document, we were able to detect several major ROIs, such 

as superior temporal gyrus, inferior temporal gyrus, middle frontal gyrus, angular, anterior 

cingulate and paracingulate gyri, hippocampus, putamen, and fusiform. Our finding of these 

ROIs are highly similar to previous reports on brain morphology in Alzheimer’s disease in 
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the AD literature [Ohnishi et al., 2001, Convit et al., 2000, Jones et al., 2006, Fennema-

Notestine et al., 2009]. The superior temporal gyrus is an essential structure involved in 

auditory processing, in social cognition processes, as well as in the function of language. 

The inferior temporal gyrus is one of the higher levels of the ventral stream of visual 

processing. The middle frontal gyrus plays a role in sustaining attention and working 

memory. The angular gyrus is involved in a number of processes related to language, 

number processing and spatial cognition, memory retrieval, attention, and theory of mind. 

The anterior cingulate and paracingulate gyri in rational cognitive functions, such as reward 

anticipation, decision-making, empathy, impulse control, and emotion. The hippocampus is 

known to be associated with memory and cognition. The fusiform is associated with color 

recognition, word and body recognition and the putamen is associated with motor skills. 

Figure 4 shows the −log10(p) map of selected slices with significant clusters for testing the 

genetic effects of CD2AP on RAVEN images identified by FMEM.

4 Discussion

We have developed FMEM to carry out an association analysis between neuroimaging 

phenotypes and a group of genetic markers, while adjusting for the clinical variables of 

interest. We have proposed a multiscale adaptive procedure with three features: spatial, 

hierarchical, and adaptive. Our simulation results have shown substantial gains in parameter 

estimation precision and statistical power in detecting the true effect of ROIs compared to 

the voxel-wise method. More research is needed for optimizing the choice of the tuning 

parameters in FMEM. We will borrow some key ideas of FMEM to develop a fast procedure 

to carry out GWAS for imaging genetic studies. We will also develop fast FMEM for the 

joint analysis of neuroimaging and genetic data with rare or common variants [Fan et al., 

2013, 2012].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Simulation setting: (a) True image of β0; (b) true image of β1, in which the colors represent 

the values of β1(v) × 104; (c) true image of β2; and (d) true image of β3.
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Fig. 2. 

Simulation results for estimation accuracy: Scenario I: (a) estimated  by using voxel-

wise approach; (b) true  image; and (c) estimated  by using FMEM. Scenario II: 

(d) estimated  by using voxel-wise approach; (e) true  image; (f) estimated 

by using FMEM.
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Fig. 3. 
Simulation results for testing the genetic effects: Scenario I: the rejection rate image at a 

selected slice by using (a) voxel-wise approach and (b) FMEM; Scenario II: the rejection 

rate image by using (c) voxel-wise approach and (d) FMEM.
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Fig. 4. 
ADNI data analysis: the −log10(p) maps for testing the genetic effect of CD2AP on RAVEN 

images by using FMEM from 14 selected slices.
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Table 1

Simulation results: the estimation results of  in Scenario I using FMEM and the voxel-wise method in 

terms of average absolute value of bias (BIAS), root mean square error (RMS), standard deviation (SD), and 

the ratio between RMS and SD (RE).

FMEM Voxel-wise

σγ
2(v) |BIAS| RMS SD RE |BIAS| RMS SD RE

0 0.001 0.002 0.002 1 0.007 0.005 0.005 1

0.005 2.36e-06 0.003 0.003 1 0.005 0.005 0.005 1

0.0075 0.0005 0.003 0.003 1 0.005 0.006 0.006 1

0.01 0.001 0.004 0.004 1 0.006 0.008 0.008 1

0.0125 0.001 0.004 0.004 1 0.006 0.008 0.008 1

0.015 0.002 0.005 0.005 1 0.008 0.010 0.010 1

0.0175 0.003 0.005 0.005 1 0.008 0.010 0.010 1

0.020 0.002 0.006 0.006 1 0.010 0.012 0.012 1

0.0225 0.003 0.006 0.006 1 0.010 0.013 0.013 1

0.025 0.004 0.006 0.006 1 0.010 0.014 0.014 1
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Table 2

Simulation results: the estimation results of  in Scenario II by using FMEM and the voxel-wise method 

in terms of average absolute value of bias (BIAS), root mean square error (RMS), standard deviation (SD), 

and the ratio between RMS and SD (RE).

FMEM Voxel-wise

σγ
2(v) |BIAS| RMS SD RE |BIAS| RMS SD RE

0 0.002 0.003 0.003 1 0.003 0.008 0.008 1

0.005 0.0001 0.004 0.004 1 0.007 0.126 0.126 1

0.010 0.001 0.006 0.006 1 0.011 0.016 0.016 1

0.015 0.002 0.008 0.008 1 0.014 0.020 0.02 1

0.020 0.002 0.010 0.010 1 0.024 0.017 0.017 1

0.025 0.003 0.020 0.020 1 0.020 0.029 0.029 1

0.030 0.005 0.013 0.013 1 0.023 0.032 0.032 1

0.035 0.004 0.014 0.014 1 0.026 0.035 0.035 1

0.040 0.015 0.006 0.006 1 0.028 0.040 0.040 1

0.045 0.007 0.016 0.016 1 0.031 0.040 0.040 1
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Table 3

Simulation results: comparisons of FMEM, voxel-wise method, and the score test based on the IBS kernel 

(Score) for Scenario I: the dice overlap ratio (DOR), average number of false positive clusters, and average 

size of false positive clusters with different cluster size thresholds.

FMEM Voxel-wise Score

Threshold Mean SD Mean SD Mean SD

Scenario I

DOR 0.94 0.05 0.99 0.02 0 0

Voxel Size = 1 False Positive Cluster Number 1.88 6.12 21.30 12.29 0 0

False Positive Cluster Size 1.03 0.04 1.06 0.06 NA NA

DOR 0.91 0.04 0.83 0.10 0 0

Voxel Size = 10 False Positive Cluster Number 0 0 0 0 0 0

False Positive Cluster Size NA NA NA NA NA NA
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Table 4

Simulation results: comparisons of FMEM, voxel-wise method, and the score test based on the IBS kernel 

(Score) for Scenario II: the dice overlap ratio (DOR), average number of false positive clusters, and average 

size of false positive clusters for Scenario II with different cluster size thresholds.

FMEM Voxel-wise Score

Threshold Mean SD Mean SD Mean SD

Scenario II

DOR 0.86 0.06 0.996 0.02 0.49 0.21

Voxel Size = 1 False Positive Cluster Number 1.35 4.85 15.45 12.92 0 0

False Positive Cluster Size 1.07 0.08 1.05 0.07 NA NA

DOR 0.85 0.07 0.78 0.11 0.01 0.03

Voxel Size = 10 False Positive Cluster Number 0 0 0 0 0 0

False Positive Cluster Size NA NA NA NA NA NA
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