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Abstract

In the past few years, a plethora of methods for rare variant association with phenotype have been

proposed. These methods aggregate information from multiple rare variants across genomic

region(s), but there is little consensus as to which method is most effective. The weighting scheme

adopted when aggregating information across variants is one of the primary determinants of

effectiveness. Here we present a systematic evaluation of multiple weighting schemes through a

series of simulations intended to mimic large sequencing studies of a quantitative trait. We

evaluate existing phenotype-independent and -dependent methods, as well as weights estimated by

penalized regression approaches including Lasso, Elastic Net and SCAD. We find that the

difference in power between phenotype-dependent schemes is negligible when high quality

functional annotations are available. When functional annotations are unavailable or incomplete,

all methods suffer from power loss; however, the variable selection methods outperform the others

at the cost of increased computational time. Therefore, in the absence of good annotation, we

recommend variable selection methods (which can be viewed as “statistical annotation”) on top

regions implicated by a phenotype independent weighting scheme. Further, once a region is

implicated, variable selection can help to identify potential causal SNPs for biological validation.

These findings are supported by an analysis of a high coverage targeted sequencing study of 1898

individuals.
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Introduction

Recent studies have shown that rare variants may be important to the underlying etiology of

complex traits [Cohen et al., 2004; Dickson et al., 2010; Gorlov et al., 2008; Haase et al.,

2012; Nelson et al., 2012; Zawistowski et al., 2010] and that they may account for part of

the “missing heritability” [Eichler et al., 2010; Gibson 2010; Maher 2008; Manolio et al.

2009] left by Genome-wide Association Studies (GWAS). Conventional association analysis

methods, which evaluate each variant independently of all others, lack the statistical power

to evaluate rare variants given the sample size of sequencing data currently available.

However, there is increasing evidence that the combined effects of rare variants in the same

exon, gene, region or biological pathway can be used to elucidate complex phenotypes

[Cohen et al., 2004; Nejentsev et al., 2009; Sanna et al., 2011]. Where the effect size of a

single variant may not be large enough to detect with the sample sizes available, a collection

of variants with small effect size, taken together, may be detectable. In order to explore the

potential effects of rare variants in present-day genomic data, a large number of methods

[Bacanu et al., 2011; Cheung et al., 2012; Lee et al., 2012; Li and Leal 2008; Li et al.,

2010a; Madsen and Browning 2009; Mao et al., 2012; Neale et al., 2011; Price et al., 2010;

Tzeng et al., 2011; Wu et al., 2011; Xu et al., 2012; Yi et al., 2011] for aggregating

information across variants have emerged. However there is little consensus on which

method is most effective. The weighting scheme adopted when aggregating across variants

is an important consideration, as is the use of functional or bioinformatics information when

available.

We present an evaluation of multiple weighting schemes through a series of simulations. We

evaluate several existing phenotype-independent [Cohen et al., 2004; Madsen and Browning

2009; Morgenthaler and Thilly 2007] and -dependent weighting schemes [Wu et al., 2011;

Xu et al., 2012], as well as weighting schemes determined by linear regression, penalized

regression and variable selection methods, including Lasso [Tibshirani 1996], Elastic Net

[Zou and Hastie 2005] and SCAD [Xie and Huang 2009]. We conduct simulations under a

variety of scenarios with different numbers of true causal variants, mixtures of direction of

effect and availability of functional information, mimicking sequencing studies of a

quantitative trait. We then apply each of these methods to a set of high coverage targeted

sequencing data [Nelson et al., 2012] of 1898 individuals from the CoLaus population-based

cohort [Firmann et al., 2008].

Materials and Methods

Over the last few years, numerous sensible weighting schemes have been proposed. In most

of these methods a genomic region or variant set is assigned a weighted sum over the

variants meant to describe the burden of potentially influential variants carried by each

individual. We call this weighted sum Si. Further, we assume there are N individuals under

study, indexed by i, and for each individual we have M variants in the region or variant set,

indexed by j.
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Phenotype-Independent Weighting Schemes

First, we examine three approaches that are independent of the observed phenotype. The

first of these is a simple indicator of whether or not rare variants (minor allele frequency,

MAF < 0.01) are present in the region [Cohen et al., 2004]. That is,

where xij is the number of minor alleles observed for individual i at variant j.  is

the estimated MAF of variant j in the data with pseudo counts and Q is the MAF threshold.

In this work, we consider Q=0.05.

Second, we examine a count approach which assigns a higher score to individuals carrying a

larger number of rare alleles [Morgenthaler and Thilly 2007];

with xij being the count of rare alleles for individual i at variant j and q̂j being the estimated

MAF, as defined above.

We also consider the approach proposed by Madsen and Browning [Madsen and Browning

2009] where the weight for variant j is a function of the minor allele frequency (MAF):

with xij and q̂j as above. In the original Madsen and Browning framework for case-control

studies, MAFs are estimated using controls only. However, in this paper, the outcome of

interest is quantitative and we estimate MAF using the entire sample, which makes the

method phenotype-independent in this context.

Phenotype-Dependent Weighting Schemes

We also consider phenotype-dependent regression-based methods. First, we examine the

performance of marginal regression coefficients. That is, we fit the simple linear regression

model Y = xjβ+ε for each variant j separately and independently and then take the fitted

values β̄j to be our weights.

Byrnes et al. Page 3

Genet Epidemiol. Author manuscript; available in PMC 2014 July 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Though imperfect, this weighting scheme allows investigators to test for associations with

multiple rare variants in cases where N < M and begin to follow up on individual variants

that may potentially be of interest.

Second, we consider weights from ordinary multiple regression, modeling all of the M

variants simultaneously. That is, we fit the model Y = Xβ + ε, where the (i, j)th element of the

matrix X = xij, the minor allele count for individual i at variant j. We then take Si to be as

above, with the fitted values from this multiple regression, βĩ = ξj [Lin and Tang 2011; Xu et

al., 2012].

We also consider weights from several variable selection methods. Such methods are

appealing since we expect the majority of rare variants not to influence the quantitative trait

of interest. Use of penalized regression is therefore expected to reduce the number of non-

zero weights. Similar strategies were recently proposed in the context of rare variant

association testing [Turkmen & Lin, 2012; Zhou, Sehl, Sinsheimer, & Lange, 2010]. In

penalized regression, we solve for the β̃′s which best fit the data, subject to some

constraint(s) or penalty. That is, instead of minimizing the sum of squared error, (Y − βX)′(Y

− βX), we aim to minimize the sum of squared errors and an additional penalty term, (Y −

βX)′(Y − βX) + P(λ, β). In general, the greater the number of parameters included in the

model, the greater the penalty. A number of penalty functions have been proposed and

extensively studied in the recent statistical literature [Heckman and Ramsay 2000;

Hesterberg et al., 2008; Kyung et al., 2010; Wu and Lange 2008]. Of these, we chose three:

the Lasso which imposes a linear penalty [Tibshirani 1996], Elastic Net (EN) which imposes

a quadratic penalty [Zou and Hastie 2005] and SCAD which is designed to penalize smaller

coefficients more heavily than larger coefficients [Xie and Huang 2009].

For Lasso and SCAD, only one tuning parameter, λ, is required. We used the R packages

lars [Efron, Hastie, Johnstone, & Tibshirani, 2004] and ncvreg [Breheny & Huang, 2011]

with default parameter values, which is to choose the optimal λ among a grid of 100 possible

values equally spaced on the log-scale. For Elastic Net, there are two tuning parameters, one

for the linear component and one for the quadratic component. The linear term, λ1, is chosen

in the same way as the λ parameter for the Lasso and SCAD methods, discussed above. The

quadratic parameter, λ2, was set to 1 in all simulations and for the real data. We used the R

package elasticnet to fit the EN models [Zou & Hastie, 2005]. After model fitting, we then

use estimated coefficients from each of these variable selection methods as weights. The

number of non-zero coefficients included is upper-bounded by 100 for each of these

schemes throughout this work.

Under each weighting scheme examined, we determine the significance of a genomic region

using a score test of the following form:
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 in which N is the number of individuals under study, and Yi is the quantitative

trait value for the ith individual. Si is the genetic score for the ith individual, a weighted sum

across multiple variants. Specifically, xij is the number of minor alleles observed for

individual i at variant j where xij are not normalized. M is the number of variants in the

region under study (discovered through sequencing in our context) and ξj is the weight of

variant j under one of the above weighting schemes. The analytical distribution for this

statistic is not generally known in this context, so significance must be assessed empirically

by permutation.

Additionally, we apply the similarity-based method SKAT [Wu et al., 2011] to each of our

simulated data sets and the real data set for comparison. We use weights based on the default

Beta distribution implemented in the SKAT package, version 0.79. We will comment in the

Discussion section on the conceptual differences between the weighting schemes we

consider in this work and the SKAT methodology.

Simulation Setup

We simulate 45,000 chromosomes for a series of 100 50Kb regions with a coalescent model

[Schaffner et al. 2005] that mimics linkage disequilibrium (LD) in real data, accounts for

variations in local recombination rates and models population history consistent with the

CEU samples. We then randomly select 2,000 simulated chromosomes (forming 1,000

diploid individuals) to mimic a large sequencing study. For each region, we simulate one

single pool of 45,000 chromosomes instead of multiple pools of 2,000 chromosomes so that

the causal variants in each region can be determined by population MAFs (MAFs calculated

using the entire population of 45,000 chromosomes) and thus retained across replicates from

the same region. We assume only rare variants (0.001< population MAF <0.05) influence

the value of the quantitative trait and we randomly select m variants that truly influence the

quantitative trait value. For each variant, we independently assign the direction of influence

according to r, the probability that a causal variant will increase the trait value. Following

Wu et al [Wu et al., 2011], we then simulate quantitative traits under the null model:

where E1i, E2i and εi are independent with E1i ∼ Bernoulli(0.5) to mimic a binary covariate,

E2i ∼ Normal(0,1) to mimic a continuous covariate, and εi ∼ Normal(0,1). We also simulate

quantitative traits under an alternative model:
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where βj = rj |k × F(MAFj)| and rj = 1 with probability r and rj = −1 with probability (1-r).

E1i, E2i and εi are as before, j indexes the truly causal variants and  is the number of

minor alleles individual i has at causal variant j. The link function F takes one of the

following forms:

where N is the number of individuals sequenced. We call the first link function log, the

second logit, and the third Madsen-Browning (MB). In addition, we also consider

Frandom(q), a random value chosen from the exponential(1) distribution, independent of q

and multiplied by k. The constant k is a scaling factor to control the magnitude of the change

in quantitative trait due to truly causal genetic variants. In our simulations k is set to 0.2,

which keeps the heritability h2, between 0.1% and 2.5%. Complex human quantitative traits

are thought to have heritability estimates in this range [Manolio et al., 2009]. In the Results

section, we report the results for the logit link function; results for all four link functions are

given in the Supplementary materials.

To assess significance in each simulated setting, score test statistic from each weighting

scheme is compared to the empirical distribution of the test statistic obtained under the null

simulations. We assess the significance of each test at the α=0.01 level using the empirical

null distribution, which we approximate using 100,000 data sets simulated under the null

hypothesis of no variant contributing to the quantitative trait.

Simulation of Data Sets under the Null Hypothesis—For each of the 100 regions

we simulate, we randomly select 100 samples of 2,000 chromosomes (forming 1,000 diploid

individuals). We then assign quantitative trait values under the null model specified above.

Using these 100 × 100=10,000 data sets simulated under the null hypothesis, we obtain the

empirical null distribution of the test statistics for each method.

Simulation of Data Sets under Different Alternative Hypotheses—For each

choice of r, m and F(.), we select 2,000 chromosomes from the population of 45,000

chromosomes again via simple random sampling. Again, we randomly pair these

chromosomes to form diploid individuals and replicate 100 times for each region. For each

replicate, we randomly select m rare variants to be causal. Each causal variant is assigned a

direction in which to exert its effect (positive with probability r and negative with

probability 1 − r).

Simulation of “Good” Functional Annotation—In each simulated data set, we

annotate variants as “functional” or “non-functional”. We assume that we have a reasonably
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good bioinformatics tool such that a true causal variant has 90% probability to be annotated

as “functional”. Even a perfect bioinformatics tool can only predict functionality, not

causality or association with a particular trait of interest. Because of this, we annotate an

additional random number of W non-causal variants as “functional”. Kryukov and

colleagues [Kryukov et al., 2009] have estimated that approximately one third of de novo

missense mutations (that would be predicted as functional by a sensible bioinformatics tool)

have no effect on phenotypic traits. We therefore used 1/3 as the lower bound for the

fraction of non-causal variants annotated and simulated W ∼ N(25,5) , rounded to the

nearest integer. We evaluate the performance of each of these weighting schemes both using

all variants without the help of the bioinformatics tool, and using only the “functional”

variants annotated. Under the null distribution, W variants are selected at random.

Simulation of GWAS Data Sets—We use the same choice of causal variants in each

region as in the simulated sequencing data. Consequently, the direction of association and

true effect size of each of these are unchanged. In order to simulate GWAS SNPs, we select

1000 chromosomes from the total 45,000 to mimic the 1000 Genomes [Abecasis et al.,

2012] sample. The simulated 1000 Genomes sample is used to define LD, based on which

GWAS SNPs are selected. For each region, we choose 75 GWAS SNPs consisting of the

first 70 tagSNPs (SNPs with the highest number of LD buddies where an LD buddy is a

SNP with which the r2 >0.8) and 5 SNPs at random from the remaining set of SNPs,

mimicking the Illumina Omni5 or Affymetrix Axiom high-density SNP genotyping

platforms.

Results

In the Absence of a Bioinformatics Tool

Throughout our simulations, we observe several consistent patterns. First, when we apply

these methods in the absence of a Bioinformatics tool (thus, all variants are included in

analysis), variable selection schemes (most noticeably Lasso and EN) outperform other

methods, including SKAT, in nearly all situations (notable exceptions are discussed below).

For example, under the simulated setting of 10 causal variants, among which we expect to

five increase quantitative trait value, the power is 80.0% and 83.7% for Lasso and EN, and

is 0.4%, 7.3%, 7.6%, 43.2%, 25.3%, 60.5%, 41.3%, and 46.6% for Indicator, Count,

Madsen-Browning, Marginal Regression, Multiple Regression, SCAD, SKAT (all variants),

and SKAT (rare variants only) respectively (Figure 1a). Under the simulated setting of 50

causal variants among which 40 are expected to increase quantitative trait value, power is

100% for both Lasso and EN, and is 0.03%, 0.19%, 0.07%, 99.63%, 100%, 100%, 96.9%,

and 98.5% for Indicator, Count, Madsen-Browning, Marginal Regression, Multiple

Regression, SCAD, SKAT (all variants), and SKAT (rare variants only) respectively (Figure

1b).

In the Presence of a Good Bioinformatics Tool

In the presence of a good bioinformatics tool (as introduced in the Methods section) the

power increases for each of the methods previously discussed. Most notably, the phenotype-

independent methods show a substantial gain in power once the bioinformatics tool is
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applied. For example, under the simulated setting of 10 causal variants, among which five

are expected to increase the quantitative trait value, the power is 99.83% and 99.80% for

Lasso and EN, and is 23.91%, 17.15%, %, 18.85%, 97.87%, 99.73%, 99.76%, 98.49%, and

98.34% for Indicator, Count, Madsen-Browning, Marginal Regression, Multiple Regression,

SCAD, SKAT (all variants), and SKAT (rare variants only) respectively (Figure 2a). Under

the simulated setting of 50 causal variants, among which 40 increase quantitative trait value,

power is 100% for both Lasso and EN, and is 99.38%, 98.89%, 96.51%, 100%, 100%,

100%, 100%, and 100% for Indicator, Count, Madsen-Browning, Marginal Regression,

Multiple Regression, SCAD, SKAT (all variants), and SKAT (rare variants only)

respectively (Figure 2b). Although power increases for all methods, the relative performance

of the methods changes little from that under the absence of a bioinformatics tool.

Effect of m (the Number of Causal Variants) and r (% of Positive Causal Variants)

As the number of true causal variants (m) increases, so does power for all methods. This is

to be expected since adding more causal variants increases the signal-to-noise ratio. When

the number of true causal variants is very small, none of the methods have adequate power.

Interestingly, it is in these situations where m is very small that SKAT manifests its

advantage over other methods examined. As r gets smaller (that is, the probability that a

causal variant will contribute positively to the quantitative trait values gets smaller), the

power of the phenotype-independent methods decreases. For example, the phenotype-

independent methods have close to 0 power when r=0.05; while the phenotype-dependent

methods are relatively unaffected by changing values of r (Figure 1a and Figure 2a). We

also observe a slight dip in power in all of the phenotype-dependent schemes when r=0.5

and no bioinformatics information is used (Figure 1a), which is to be expected since the

signals from different directions are canceling one another. Similar trends are seen in all

simulations with all four link functions (shown in supplementary materials).

Weight Estimation Accuracy for Individual Variants

Table 1 shows the correlation between the true and estimated values of the weights for each

method under the simulation settings in which the number of truly causal variants, m, is 10

and the proportion of variants contributing in the positive direction, r, is 80%. Of note, the

correlation between true and estimated weights increases for all methods with the addition of

bioinformatics filtering. The Elastic Net and Lasso yield the highest correlations between

estimated and true weights, both in situations where we restrict to variants that are likely to

be functional (Pearson correlations of 0.285 and 0.355), and when we do not (Pearson

correlations of 0.744 and 778).

Identification of Individual Causal Variants

When using variable selection schemes, we have the opportunity to identify individual

causal variants within the region or variant set under study. Figure 3 illustrates the accuracy

with which the causal variant(s) can be identified by each weighting scheme. Note that the

causal variant(s) are not always 100% identified, but in many cases, the causal variant, or a

variant in high LD (r2 > 0.8), have estimated non-zero weights. For example, if we fix

m=10, r=0.8 and the logit link function, without considering LD buddies, we need to
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consider the top 696 (109 and 12) variants in order to detect 90% (60%, 30%) of the causal

variants using EN (Figure 3a); taking LD buddies into consideration, the numbers decrease

to 378 (14 and 4) (Figure 3b). When we also consider functional information we consider

fewer variants and narrow the field to include a higher proportion of truly causal variants. In

this case, we need to consider the top 408 (16 and 4) variants in order to detect 90% (60%,

30%) of the causal variants (Figure 3c) without considering LD buddies; with LD buddies

taken into consideration, the numbers decrease to 374 (13 and 3) (Figure 3d).

Results with GWAS Data Sets

Studies that sequence a portion or the entirety of the genome are becoming increasingly

common, but still much more GWAS data exist than sequencing data. Imputation has been

shown to accurately predict genotypes at untyped variants from GWAS data in a variety of

circumstances [Auer et al., 2012; de Bakker et al., 2008; Li et al., 2010a; Li et al., 2009b;

Liu et al., 2012; Marchini and Howie 2010]. Using our simulated GWAS data and simulated

reference, we observe that variable selection can improve power for GWAS data as well.

However, the power is consistently lower than that under the sequencing setting due to the

imperfect rescue of information through imputation (comparing Figure 1 with

Supplementary Figure 3). In our simulations, the imputation accuracy is 99.66% for all

variants and 99.98% for rare variants, but most of the inaccuracies are due to missed rare

variants. In fact, among variants with MAF < 0.001 nearly all inaccuracies are due failure to

identify the minor allele. Specifically, the squared Pearson correlation between the imputed

genotypes (continuous, ranging from 0 to 2) and the true underlying genotypes (coded as 0,

1 and 2) is only 0.2397 for variants with MAF < 0.001. Supplementary Figure 3 shows the

relative power of these weighting schemes over a range of r (Supplementary Figure 3a) and

m (Supplementary Figure 3b).

Results with Real Data Set

Of the over 6,000 individuals in the CoLaus cohort [Firmann et al., 2008], 1,898 had

recorded total cholesterol and targeted sequence data in 202 drug target genes [Nelson et al.,

2012]. Sequencing was done at moderately high coverage (with median coverage 27X) and

genotype calls were obtained using SOAP-SNP [Li et al., 2009a]. Sporadic missing

genotypes were imputed with MaCH [Li et al., 2010b]. One gene previously known to be

associated with total cholesterol in these data is used as a positive control. We test each of

the 172 autosomal genes with and without removing nonfunctional variants using

ANNOVAR [Wang et al., 2010]. For each method, we estimate weights in association with

total cholesterol and, for the methods that accommodate covariates, we adjust for age, age2,

sex and the first five principal components. For the phenotype-independent methods, no

covariate adjustment is performed and significance is assessed by permutation of the Yi's.

For methods allowing covariates (marginal and multiple regression, Lasso, EN and SCAD),

permutation of outcomes alone is not appropriate. For these methods, we fit a regression

model, Yi ∼ Zi, where Z is the matrix of covariates and then obtain residuals, εi. The εi's are

then randomly permuted to obtain a set of ε*i's, the permuted residuals. For each

permutation, we fit the model ε*i ∼ Xi in order to re-estimate the weights ξj and scores Si as

in [Davidson and Hinkley 1997]. We do 10,000 such permutations and, from these, obtain a

null distribution of statistics with which to assess significance. Since SKAT produces
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analytical p-values shown to preserve type I error [Wu et al., 2011], we use the SKAT

analytical p-values without permutation.

When all variants regardless of bioinformatics prediction are included, the variable selection

methods Lasso and EN yield the smallest p-values compared to other methods for the

previously implicated gene. However, the previously implicated gene is not the most

significant among the 172 genes tested. Using ANNOVAR annotations [Wang et al., 2010],

we restrict to non-synonymous variants in coding regions of the genome only. When

considering only these functional variants, most weighting schemes identify the correct gene

with highly significant p-values (Table 2 and Supplementary Figure 4).

Discussion

In summary, through extensive simulation studies with varying number, model, and

direction of causal variant(s) contributing to a quantitative trait, we find that functional

annotations derived from good set of bioinformatics tools can substantially boost power for

rare variant association testing. In the absence of good bioinformatics tools, “statistical”

annotation based on phenotype-dependent weighting of the variants, particularly through

variable selection based methods to both select potentially causal/associated variants and

estimate their effect sizes, manifests advantages. This observation holds for both

sequencing-based studies or studies based on a combination of genotyping, sequencing, and

imputation. We also find supporting evidence from application to a real sequencing-based

data set.

The price one has to pay for adopting phenotype-dependent methods is the necessity of

permutation, which can be easily performed through permuting of residuals for the analysis

of quantitative traits [Davidson and Hinkley 1997; Lin 2005] or using the BiasedUrn method

[Epstein et al., 2012] recently proposed for binary traits. This, in turn, increases

computational costs. Therefore, we recommend primarily using phenotype-dependent

weighting for refining the level of significance. That is, we recommend applying phenotype-

dependent weighting only to genomic regions or variant sets that have strong evidence of

association (but not necessarily reaching genome-wide significance) from methods that do

not require permutation (for example, SKAT [Wu et al., 2011]).

We note that testing over a region by aggregating information across variants is a different

task from estimating effect sizes of individual variant (as measured by the variant weights in

our work). Perfection in the latter (that is, being able to estimate weights for each individual

variants accurately) leads to perfection in the former (that is, maximal testing power over the

region harboring those variants); but not vice versa. Based on our simulations where we

know the true contribution (effect size) of each individual variant, we find that individual

effect sizes cannot be well estimated (Pearson correlation between true and estimated effect

sizes < 0.5 even for the best variable selection based methods). However, these methods can

still increase power of region or variant set association analysis without accurate estimation

of individual variant effect sizes. In addition, these methods are able to identify the vast

majority of the causal variants, particularly when LD buddies are considered.
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In this paper, we mainly consider aggregation of information at the genotype level (where

we first obtain a regional genotype score via a weighted sum of genotype scores for

individual variants and then assess the association between the regional genotype score and

the phenotype of interest), which underlies the largest number of rare variant association

methods published. In contrast, there are methods that aggregate information at the effect

size level (for example, SKAT [Wu et al., 2011] where the final regional score test statistic

is a weighted sum of the test statistics for individual variants) or at the p-value level, for

example in [Cheung et al., 2012]. Our comparisons with SKAT suggest that the same

conclusions apply to aggregation methods at levels other than genotype.

Lastly, although one could potentially argue that the phenotype-dependent methods require

an undesirable computing-power trade-off in the presence of good bioinformatics tools, in

practice, we rarely (if ever) get perfect bioinformatics tools. In addition, even perfect

bioinformatics tools can only predict functionality but NOT causality or association with

particular phenotypic trait(s) of interest. Therefore, we view that the application of

“statistical annotation” through phenotype-dependent weighting, particularly using variable

selection based methods, to top regions or variant sets implicated by computationally

efficient phenotype-independent methods, is valuable.
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Figure 1. Power Comparison in the Absence of a Bioinformatics Tool
Figure 1 shows the power (Y-axis) of the different methods across a wide spectrum of m

(the number of true causal variants) and r (the proportion of variants that contribute to our

quantitative trait in a positive direction) in the absence of a bioinformatics tool. In Figure 1a,

we fix m at 10 and show power comparisons across the entire spectrum of r (X-axis). Figure

1b shows how power changes as a function of m (X-axis) with r fixed at 0.8. Here we use

the logit link function.

Byrnes et al. Page 15

Genet Epidemiol. Author manuscript; available in PMC 2014 July 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. Power Comparison in the Presence of the Good Bioinformatics Tool
Figure 2 shows the power (Y-axis) of the different methods across a wide spectrum of m

(the number of true causal variants) and r (the proportion of variants that contribute to our

quantitative trait in a positive direction) in the presence of the good bioinformatics tool

described in the Method section. Like in Figure 1a, we fix m at 10 and show power

comparisons across the entire spectrum of r (X-axis) in Figure 2a. Similarly, Figure 2b how

power of the methods changes as a function of m (X-axis) with r fixed at 0.8. Again the logit

link function is used.
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Figure 3. How Far Down the Ranked List are the Truly Causal Variants when All Variants are
Included?
Figure 3a shows the number of variants that must be considered (Y-axis) in order to catch

the top 10%, 20% … 100% of truly causal variants (X-axis) in simulation when all variants

are considered. We assume that the variants are ranked in order of significance. These plots

aggregate true and estimated weights from all 10,000 replicates of the experiment and once

again, we fix r at 0.8, m at 10 and use the logit link function. Figure 3b. takes LD buddies

(variants with r2 > 0.8 with causal variant) into consideration. Figure 3c. restricts the results

from 3a. to functional variants only using a good bioinformatics tool. Figure 3d. is restricted

to functional variants only and takes LD buddies into account.
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Table 1
Average Pearson Correlation of True and Estimated Weights (m=10 and r=0.8)

Method All markers Limited to functional markers

Indicator - -

Count 0.0126 0.2386

Madsen-Browning 0.0591 0.1225

Marginal Regression 0.1588 0.6490

Multiple Regression 0.0883 0.6537

Lasso 0.2852 0.7436

EN 0.3555 0.7787

SCAD 0.2301 0.7344

SKAT (all) - -

SKAT (rare only) - -
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Table 2

Permuted P-values1 on the Positive Control Gene in the Real Data Set

Method All variants (491) Limited to functional variants (13)

Indicator 0.208 0.00057

Count 0.068 0.00017***

Madsen-Browning 0.090 0.00041**

Marginal Regression 0.166 0.00420

Multiple Regression 0.136 0.00395

Lasso 0.017** 0.00053

EN 0.008*** 0.00059

SCAD 0.111 0.00078

SKAT (all) 0.329 0.00142

SKAT (rare only) 0.348 0.00142

1
Except for SKAT(all) and SKAT(rare only)

***
: Most significant p-value under each column is in bold, italicized and flagged with ***.

**
: Second most significant p-value under each column is in bold and flagged with **.
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