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Abstract
Recent studies suggest that rare variants play an important role in the etiology of many traits.
Although a number of methods have been developed for genetic association analysis of rare
variants, they all assume a relatively homogeneous population under study. Such an assumption
may not be valid for samples collected from admixed populations such as African Americans and
Hispanic Americans as there is a great extent of local variation in ancestry in these populations. To
ensure valid and more powerful rare variant association tests performed in admixed populations,
we have developed a local ancestry-based weighted dosage test, which is able to take into account
local ancestry of rare alleles, uncertainties in rare variant imputation when imputed data are
included, and the direction of effect that rare variants exert on phenotypic outcome. We used
simulated sequence data to show that our proposed test has controlled type I error rates, whereas
naïve application of existing rare variants tests and tests that adjust for global ancestry lead to
inflated type I error rates. We showed that our test has higher power than tests without proper
adjustment of ancestry. We also applied the proposed method to a candidate gene study on low-
density lipoprotein cholesterol. Our results suggest that it is important to appropriately control for
potential population stratification induced by local ancestry difference in the analysis of rare
variants in admixed populations.
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INTRODUCTION
Common complex diseases have been widely studied in genome-wide association studies
(GWAS) involving millions of single nucleotide polymorphisms (SNPs). Although many
common variants have been identified for disease association, a large portion of the disease
heritability is still missing [Manolio et al., 2009]. Interest in rare variants naturally arises
when searching in common variants exhausts. Early studies and recent studies [Dickson et
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al., 2010; Hershberger et al., 2010; Wessel et al., 2010; Zawistowski et al., 2010] have
shown the benefits of studying rare variants in common disorders. Advances in next-
generation sequencing technologies and studies such as the 1000 Genomes Project
Consortium [2010] provide a platform for studying rare variants. However, due to their low
frequencies, rare variants do not fit well in the established genetic association regime,
especially not in a single marker test fashion. To achieve sufficient power, analysis of rare
variants often requires collapsing information across multiple markers in a genomic region.

In the past few years, various methods have been developed to analyze rare variants. Early
methods such as the Cohort Allelic Sums Test [Morgenthaler and Thilly, 2007] and the
Combined Multivariate and Collapsing approach [Li and Leal, 2008] compare the number of
rare variants between cases and controls and examine whether they have equal burden.
Madsen and Browning [2009] introduced a weighted sum statistic in which each variant is
weighted by a function of the allele heterozygosity. These earlier methods use an arbitrary
single minor allele frequency threshold to define rare variants. In contrast, Price et al. [2010]
proposed a variable threshold approach to optimize the inclusion threshold of rare variants.
However, none of the abovementioned methods differentiate rare variants that are associated
with the disease in different directions and thus may lose power when both risk and
protective variants exist. Recently, methods that explicitly model the risk and protective
variants have been developed. The Weighted Haplotype and Imputation-based tests
(WHaIT) [Li et al., 2010a] and the replication-based method [Ionita-Laza et al., 2011]
separate the effect of protective variants from the risk ones based on the data and then
combine their information into a single test statistic. The C-alpha method [Neale et al.,
2011] circumvents the association direction problem by directly modeling the variance of
allele counts. In contrast, the sequence kernel association test (SKAT) [Wu et al., 2011] uses
a logistic kernel machine model to allow for complex relationships between rare variants
and the phenotypic trait. The tests implemented in C-alpha and SKAT can both be
categorized as score tests. Recently, Bayesian-based methods have also been developed for
rare variants analysis. Yi and Zhi [2011] proposed a novel Bayesian generalized linear
model approach that allows for disparate effects and uses different weights to different
variants based on their contributions to phenotype. Yi et al. [2011] further extended this
approach to jointly estimate group and individual-variant effects for both common and rare
variants by utilizing a hierarchical generalized linear model framework.

Although the above methods have shown promise in the analysis of rare variants, none of
them explicitly model population stratification, an issue that is well recognized in genetic
association studies. Population stratification emerges when there is a systematic difference
in allele frequencies among study subjects due to ancestry difference. Unrecognized
population stratification can lead to both false-positive and false-negative findings and can
obscure true association signals if not appropriately corrected. Population stratification is
often observed in genetic association studies of common variants and thus controlling
population stratification has become a routine in GWAS focusing on common variants
[Epstein et al., 2007; Li et al., 2010a; Price et al., 2006]. However, the impact of population
stratification on the analysis of rare variants has not been systematically evaluated,
especially not in admixed populations. Because rare variants arose more recently than
common variants, they are more likely to be population specific. This is supported by
findings from the 1000 Genomes Project Consortium [2010], which has shown that the
number of rare variants differs significantly among different populations. Additionally,
Mathieson and McVean [2012] showed that rare variants typically demonstrate different and
stronger stratification than common variants, and such stratification cannot be corrected by
exiting methods. These empirical findings have important implications for the analysis of
admixed populations, such as African Americans and Hispanic Americans, who are recently
admixed and have inherited ancestry from more than one continent. Due to the allelic
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spectrum differences among the original ancestral populations, it is possible that there is
unrecognized hidden population structure in certain genomic regions of admixed samples.

In this paper, we show that substantial differences in ancestry exist in certain regions of the
genome between cases and controls even when their overall ancestry proportions are
comparable. This suggests that local ancestry difference could lead to population
stratification that cannot be corrected by traditional methods such as EIGENSTRAT
[Mathieson and McVean, 2012; Price et al., 2006] because these methods aim to capture
global population structure using genetic markers across the entire genome, whereas subtle
differences in local ancestry might be diluted due to the inclusion of markers from other
genomic regions [Qin et al., 2010; Wang et al., 2011]. To correct for population
stratification induced by local ancestry difference, we develop an Ancestry-Based Weighted
Dosage Score (AWDS) for the analysis of rare variants. Our AWDS test shares similarity
with the weighted dosage score (WDS) test in WHaIT [Li et al., 2010a] in that both take into
account the direction of association to allow for risk and protective alleles. The key
difference is that AWDS is able to adjust the WDS by local ancestry of the test region, and
thus allowing the local ancestry difference among study subjects to be appropriately
controlled. Through simulations using whole-genome sequence data, we confirm that
AWDS has controlled type I er ror rates when population stratification is present, whereas
the naïve application of existing rare variants tests such as WDS and modified versions of
WDS that include either global principal components (PCs; obtained from markers
distributed across the genome) or local PCs (obtained from markers within a 20 Mb window
of the test region) as covariates all yield inflated type I error rates. We demonstrate that our
new test has greater power than tests without proper adjustment of ancestry. We also applied
our new test to a candidate gene study on low-density lipoprotein cholesterol (LDL-C). Our
results suggest that it is important to appropriately control for population stratification
induced by local ancestry difference in the analysis of rare variants in admixed populations.

METHODS
We will develop an ancestry-based weighted dosage test to examine the effect of multiple
rare variants in a region. Our test is able to take into account local ancestry of rare alleles,
uncertainties in rare variant imputation when imputed data are included, and the direction of
effect (risk or protective) that rare variants exert on phenotypic outcome.

NOTATION
We assume that admixture has occurred between two ancestral populations, denoted by X
and Y, in a recently admixed population. We assume a set of markers with known genetic
locations are available for ancestry estimation. The genotype of individual i across m
markers is denoted by Gi = (Gi1, . . . , Gim) where Gij = aij1/aij2 is the genotype of individual
i at marker j, and aij1 and aij2 are the alleles at marker j. The order of alleles in Gij may be

arbitrary because our test does not rely on phased haplotype information. We denote  to
be the probability of the kth (k = 1, 2) allele of SNP j of individual i being from ancestral
population s (=X, Y), given flanking marker genotypes. This probability can be estimated
using HapMix [Price et al., 2009], which has an option (DIPLOID for HAPMIX MODE)
that gives 16 probabilities of all 4 × 4 values of ancestry and genotype for each individual,
from which one can infer the corresponding local ancestry for each allele by calculating the
corresponding conditional probabilities. Let
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When imputed data are included,  can be a fractional number and its value can be
obtained based on allele-specific imputation dosage score, which incorporates imputation
uncertainty into account. We define the overall minor allele dosage from population s for
individual i at marker j as

where t is a threshold value used to filter out alleles that do not have accurately inferred
ancestry and we set the value of t at 0.9. For a sample of n individuals, the adjusted minor
allele frequency of population s ancestry at marker j can be calculated as

where the numerator approximates the total number of minor alleles, and the denominator
approximates the total number of alleles including both minor and major alleles, with
population s ancestry, across all study subjects.

ANCESTRY-BASED WEIGHTED DOSAGE SCORE
The first step in our test is to partition the m markers in the test region into three categories

with respect to their effects on disease risk in population s. Let  represent the set of

markers whose rare alleles increase disease risk in population s,  represent the set of

markers whose rare alleles decrease disease risk in population s, and  represents the set of
markers having no effects in population s. We can partition the markers into different
categories based on a training set. For example, we can randomly choose 30% of the cases
and controls to form the CaSe TRaining set (CSTR) and the ConTrol TRaining set (CTTR),
and leave the rest of samples as the testing set. We assign the markers into three groups by
the following rules:

where  is the total number of alleles of population s
ancestry in CTTR at marker j, and μ is a constant that is determined by a prespecified type I
error rate. For example, μ = 1.28 (1.64) corresponds to a type I error of 0.2 (0.1). Following
Li et al. [2010a], we set μ at 1.28 and randomly selected 30% of the samples for training in
the analysis. Subsequently, we define the Ancestry-based Weighed Dosage Score (AWDS)
for population s for individual i as
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where  is the weight for marker j, and the denominator
standardizes the summation of the WDS by the total number of alleles that are inferred with
sufficient accuracy. Here, we adjust for the local ancestry of each SNP by counting the
number of rare alleles inherited from population s.

TEST OF GENETIC ASSOCIATION WITH RARE VARIANTS
Once the ancestry-based weighted dosage scores are calculated for the cases and controls,
we can then test for association with disease status either using a two-sample t-test, a
Wilcoxon rank sum test, or a logistic regression with the AWDS included as an independent
variable for each of the two ancestral populations. We choose to use logistic regression to
test for association due to its flexibility with covariate adjustment. For individual i, we
denote the disease status as Zi (0 = control; 1 = case). The logistic regression model for
ancestral population is

Covariates can be included in the above logit model if they are believed to be important

confounders. We are interested in testing . Significant result indicates that the test
region is associated with the disease in population s. The significance level can be assessed
by permutations in which the case-control labels are randomly shuffled. However, in this
procedure, the test statistic is obtained based on a single split of the data, and splitting

samples into training and testing sets may introduce large variation to . To reduce the
impact of such variation on significance estimation, we resort to use a strategy based on
bootstrap confidence interval. Bootstrap confidence interval [DiCiccio and Efron, 1996] has
been previously employed for hypothesis testing for survival analysis [Cordell and
Carpenter, 2000], for locating genes and recombination events [Dorman et al., 2002; Suthers
and Wilson, 1990], and for quantitative trait locus (QTL) and expression QTL (eQTL)
analyses [Bennewitz et al., 2002; McRae et al., 2005]. In the bootstrap procedure, we

generate many training/testing split datasets, and obtain a  based on each split of the data.

To approximate the distribution of , we perform 1,000 random split of the data and this

allows us to generate a (100 – α)% percentile interval of . If the interval does not cover

zero, we conclude that  is significantly different from zero at the α level in population s.

To improve the computation efficiency, we adopt an adaptive sampling scheme analogous to
sequential testing [Wald, 1947]. For a given dataset, we keep generating samples of different
splits of the data until a predefined stopping rule is met or until 1,000 splits are generated
and analyzed. Specifically, in the first 20 splits, if at least three positive and three negative

 are observed, we stop the procedure and conclude there is no disease association.
Otherwise, we keep resampling until the 100th split, and we stop the procedure if at least

seven positive and seven negative  are observed. If the stopping rule is not met at the
100th split, we continue the resampling procedure until a total of 1,000 splits are obtained
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and we then use the corresponding percentile confidence interval to assess the significance

 as aforementioned. The above-described sampling strategy is for significance level of
0.05. Similar strategies can be easily derived for other significance levels.

SIMULATION OF ADMIXED SAMPLES
Simulation of Genotypes—We simulated admixed individuals with African and
Caucasian ancestry by constructing their genotypes from AFR (78 YRI + 67 LWK + 24
ASW + 5 PUR) and EUR (90 CEU + 92 TSI + 43 GBR + 36 FIN + 17 MXL + 5 PUR)
phased haplotypes based on data released by the 1000 Genomes Project (http://
www.sph.umich.edu/csg/abecasis/MACH/download/1000G-2010-08.html). The 1000
Genomes data include 348 AFR-phased haplotypes and 566 EUR-phased haplotypes, and
the total number of overlapping SNPs between AFR and EUR is 8,952,982. We simulated
20,000 admixed haplotypes following the two-stage procedure described by Price et al.
[2009]. In the first stage, we obtained the ancestry state of each marker along the
chromosome. Because an admixed individual's genome resembles a mosaic of chromosomal
segments or ancestry blocks, and markers within the same block have the same ancestry
state, this suggests that we need to partition the chromosome into ancestry blocks and then
determine the ancestry state for each block. The breakpoints of the ancestry blocks were
determined by recombination events that are sampled from a Bernoulli distribution with
probability 1 – e–λg, where g is the genetic distance (in Morgans) between the previous SNP
and the current one and λ (=6) is the number of generations since admixture. The genetic
distance is approximated by assuming that 1 Mb ≈ 1 centi Morgan. For each block, we
sampled AFR ancestry with probability α and EUR ancestry with probability 1 – α and
markers within the same block were assigned with the same ancestry state. We determined
the value of α from a beta distribution with mean 0.80 and standard deviation 0.10 (typical
for African Americans [Smith et al. 2004]). In the second stage, we filled in the genotypes
for each admixed haplotype. For any given ancestry block, we randomly sampled a
haplotype from the haplotype pool of the same ancestry as the given block and assigned the
sequence of the sampled haplotype in that block to the admixed haplotype. We repeated this
procedure and generated a pool of 20,000 admixed haplotypes for each of the 22 autosomal
chromosomes. Pairs of admixed haplotypes were then merged to create 10,000 diploid
admixed individuals.

Assignment of Disease Status—We first partitioned the genome into 44,620
nonoverlapping segments with each segment containing 200 SNPs. We then randomly
selected c SNPs (minor allele freqencies (MAFs) between 0.001 and 0.05) as causal sites.
We denote the population attributable risks (PARs) for AFR and EUR as PARAFR and
PAREUR, respectively. For a given individual, the genotype relative risk (GRR) of
population s (AFR or EUR) descent at site j is defined as

where  indicates that the rare allele at marker j decreases disease risk in population s.
The values of GRR for noncausal sites were set as 1.

Our GRR calculation is similar to Madsen and Browning [2009] and Li et al. [2010a]. The
difference is that we differentiate the risk of rare variants based on their ancestry state. In
other words, two individuals carrying the same rare allele may have different risk if the
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alleles are from different ancestral populations. Let Iijk (1 = AFR; 0 = EUR) denote the
ancestry state for allele k of individual i at marker j. The disease status of individual i given

its population-specific dosages, , , and ancestry states was assigned according to

where b0 is the baseline penetrance and was fixed at 10%. Sampling was repeated until the
desired number of cases and controls was reached.

To evaluate type I error, we randomly selected 1,000 individuals from the pool as cases and
1,000 individuals as controls. Because there is no systematic difference among cases and
controls, these selected individuals have similar patterns in terms of their global ancestry.
This allows us to evaluate whether substantial local ancestry differences exist when the
global ancestry patterns are similar. To evaluate power, we considered two scenarios for
causal variants: (1) risk variants only, i.e., all variants increase disease risk, and (2) mixture
of risk and protective variants. We assumed the causal variants have different risks in EUR
and AFR, and for each ancestral population, the PARs for all causal variants are the same.
For the risk-only scenario, we consider both one-sided disease model and two-sided disease
model with respect to whether causal variants are from only one ancestral population or
both. For the one-sided model, we selected 20 causal variants and the PARs were set at
0.002, 0.003, 0.004, and 0.005 for AFR, and at 0.008, 0.012, 0.016, and 0.02 for EUR. Of
note, the power of detecting AFR-specific effect is higher in an 80% AFR and 20% EUR
admixed population. The reason is that, the effective sample size in AFR, defined as the
number of alleles of AFR descent, is greater than that in EUR. As such, we used a higher
PAR for EUR because of its smaller effective sample size. In the two-sided model, 20 causal
variants are selected from each ancestral population (a total of 40 causal variants) with
different PARs. Four scenarios were simulated, PARAFR = 0.003 with PAREUR = 0.004,
PARAFR = 0.003 with PAREUR = 0.008, PARAFR = 0.001 with PAREUR = 0.012, and
PARAFR = 0.002 with PAREUR = 0.012. For the mixture scenario, we assumed there are 20
causal variants in the region, and the number of protective variants range from 5 to 10 to 20.
Without loss of generality, we assume causal variants of one ancestral origin contribute to
disease risk.

RESULTS
COMPARISON OF TYPE I ERROR

We are interested in assessing the impact of local ancestry difference on type I errors of our
method along with existing methods. We generated 10,000 diploid admixed individuals as
previously described. We randomly selected 1,000 individuals as cases and 1,000
individuals as controls. For each selected individual, we partitioned the genome into 44,620
segments of 200 markers, and estimated the local ancestry of each segment as the average of
ancestry proportions across all markers within the segment. The 44,620 segments were then
ranked by the mean difference of local ancestry between cases and controls. Five hundred
segments were retained each from the bottom, the middle and the top of the ranked list. The
1,500 selected segments were then analyzed by both the WDS test [Li et al., 2010a] and the
AWDS test.

To make a fair comparison, in addition to the original WDS test, we also considered
modified versions of WDS by either adjusting for global PCs obtained from the linkage
disequilibrium (LD) pruned marker list across the entire genome or adjusting for local
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ancestry based on local PCs obtained from the pruned markers in the 10 Mb downstream
and 10 Mb upstream of the test region per Qin et al. [2010]. We used PLINK to perform
LD-based marker pruning with the pairwise option of window size 50, increment 5, and LD
threshold 0.1. The number of SNPs used for global PCs is 52,822. We denoted these two
modified versions of WDS test as WDSGPC and WDSLPC, respectively. We repeated the
simulation procedure 20 times and obtained a total of 10,000 segments for each of the three
local ancestry categories.

We assessed the type I error rates in terms of local ancestry disparity between cases and
controls. The histogram of local ancestry differences from one simulation run is summarized
in Figure 1. We considered three groups of 200-SNP segments: category I (local ancestry
difference 0.001 ~ 0.005), category II (0.01 ~ 0.02), and category III (0.03 ~ 0.05). In each
category, we analyzed 10,000 segments using AWDS, the original WDS, and WDS with
adjustment of either global ancestry or local ancestry. The type I error rates are summarized
in Table I. Of note, the type I error rates were evaluated for each ancestral population
separately. As expected, both AWDSAFR and AWDSEUR have controlled type I error rates
under all scenarios, whereas all WDS-type tests have inflated type I error rates when local
ancestry difference is large regardless whether PC adjustment was included or not. Our
results also indicate that the type I error rate of WDS was improved only marginally by
adjusting for global PCs (from 0.173 to 0.157), but improved noticeably by local PC
adjustment (from 0.173 to 0.069). These results strongly suggest that the commonly used
global adjustment procedures are ineffective when local ancestry differs from the global
ancestry proportion. Additionally, simple adjustment with local PCs cannot guarantee valid
association result despite its noticeable improvement. We note that our purpose of the
analysis is to show that for regions where local ancestry differs noticeably between cases
and controls (e.g., the top 500 segments), the type I error rates can be very high if local
ancestry is not appropriately adjusted, although the genome-wide type I error rate is still
close to the nominal level.

COMPARISON OF POWER
First, we present the risk-only one-sided disease model in Figure 2. We used larger PAR
values for EUR to make the EUR-side tests have comparable power with the AFR-side tests.
In the range of PARs we considered, for each ancestry population (AFR or EUR), the
corresponding AWDS test consistently has higher power than WDS-type tests including
WDS with adjustment for global PCs and local PCs. For example, when all causal variants
come from AFR, AWDSAFR is at least 10% more powerful than WDS-type tests. Similarly,
AWDSEUR is consistently more powerful than WDS-type tests when all causal variants are
from EUR. In addition to the one-sided disease model, we also simulated four two-sided
scenarios in which rare variants of both ancestral origins contributed to disease risk (Figure
3). In the two-sided model, WDS-type tests still have less power than AWDS for the side
with larger contribution to disease risk but have more power than AWDS for the other side.
This pattern is expected because WDS is designed for the collective effect of causal variants
ignoring their ancestry although AWDS devises separate tests for different ancestral
populations.

When both risk variants and protective variants are present, we compared the power of
AWDS with WDS-type tests in a range of PAR values as well as with different number of
protective variants. For simplicity, we only chose moderate PARs for AFR (0.003, 0.004,
and 0.005) and for EUR (0.012, 0.016, 0.02). With the number of causal variants fixed at 20
and the number of protective variants ranging from 5 to 10 to 20, we considered three PAR
values for risk variants along with three PAR values for protective variants. We summarize
the power of AWDS and WDS-type tests for AFR (Figure 4A–C) and EUR (Figure 4D–F),
separately. Although the power of all tests is negatively correlated with the number of
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protective variants, for AFR, the corresponding AWDS test still outperforms all WDS-type
tests despite that the latter tests have inflated type I error rates.

UNCERTAINTY IN ANCESTRY PROBABILITY ESTIMATION
In the previous analyses, we have assumed that the ancestry states in the test regions are
known. In real studies, the ancestry states have to be estimated using genetic marker data.
To evaluate the impact of estimation uncertainty on our method, we assessed the
performance of the tests when ancestry states are estimated. We chose to use HAPMIX to
estimate local ancestries as this program represents one of the most accurate algorithms for
allele-specific ancestry estimation [Price et al., 2009]. We tested 200 individuals across
5,000 consecutive SNPs on chromosome 22 using all EUR and AFR haplotypes from the
1000 Genome Project as reference. As expected, HAPMIX yielded highly accurate ancestry
estimates with more than 98% of the inferred ancestry states being identical to the true
states. Ideally, we would like to use HAPMIX to estimate the local ancestry for all of the
10,000 simulated genomes. However, the computational time would be tremendous. For the
testing dataset we considered, it took about 55 hr on a four-core AMD Opteron™ Processor
6212 (AMD, Sunnyvale, CA) with 4G memory. It is computationally prohibitive to run
HAPMIX on a genome-wide scale in a large number of simulations. To evaluate the
performance of our tests when estimation uncertainty exist although being practical, we
considered an error model derived based on the empirical estimation results obtained from
HAPMIX. From the HAPMIX estimates on the testing data, we observed that (1) the local
ancestry states for genetic markers that are close to a recombination breakpoint between
different ancestral populations are often inferred with greater uncertainty than those far
away from such recombination breakpoints; (2) the uncertainty estimates in the local
ancestries of the two haplotypes from the same individual are nearly independent; (3) a
small percentage (~1%) of the haplotypes without recombinations between different
ancestral populations exhibit above-average uncertainty in their estimated local ancestries.
Based on these observations, we derived an error model for ancestry probability (Table II),
which induces similar patterns of uncertainties for local ancestry estimates as HAPMIX.

We introduced random errors in local ancestry estimates in the simulated datasets following
the error model in Table II, and reevaluated the type I error rates and power for two risk-
variant only one-sided disease models. As shown in Table III, the type I error rates of
AWDS are still under control when ancestry probabilities instead of the true ancestral states
were used. The power is decreased slightly for AFR (from 0.597 to 0.551 for PARAFR =
0.003) but moderately for EUR (from 0.791 to 0.702 for PAREUR = 0.012). The noticeable
power loss for EUR is due to the fact that the effective sample size for EUR is much smaller
than AFR and thus local ancestries for EUR haplotypes are generally estimated with greater
uncertainty than haplotypes with AFR ancestry. Because of the threshold value t we used in
computing the dosage scores, many haplotypes with EUR ancestries were excluded from the
analysis, leading to reduced sample size and thus loss of power.

APPLICATION TO THE LDL DATASET
We applied our approach to a combined dataset on LDL-C from Candidate-gene Association
Resource (CARe) and Women's Health Initiative (WHI) [Reiner et al., 2011]. All samples
from the two cohorts were genotyped using Affymetrix 6.0 SNP array (Affymetrix, Santa
Clara, CA). Previous GWAS analysis revealed strong association between LDL and a
common SNP rs1367117 in APOB [Teslovich et al., 2010; P-value = 4 × 10–114], a gene
located on chromosome 2. To evaluate the performance of AWDS in real data, we imputed
rare variants in this gene using haplotypes from the 1000 Genomes Project Consortium
[2010] as reference and then tested for association between APOB and LDL. We assigned
individuals with LDL > 160 mg/dL as cases (n = 1,319) and those with LDL < 129 mg/dL as
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controls (n = 3,532). We retained 66 SNPs with imputed dosage r2 > 0.9 in the analysis,
including 35 common SNPs (MAF > 0.05) and 31 less common SNPs (MAF < 0.05). The
allele-specific population ancestry in the APOB region was inferred using HAPMIX for all
cases and controls. The average African ancestries for cases and controls are 0.696 (SD =
0.098) and 0.712 (SD = 0.059), respectively. A total of 1,256 cases and 3,413 controls were

inferred with accurate ancestry (defined as  or  for at least one-third of the
heterozygous sites in an individual). We included age, gender, BMI, and study site as
covariates. We only considered those SNPs with MAF < 0.05 in our analysis. As shown in
Table IV, AWDS revealed marginal association for the African side of the test, suggesting
that there might be residual association explained by rare variants in APOB for the surveyed
samples.

DISCUSSION
We have shown that for samples collected from recently admixed populations, there exist
noticeable local ancestry differences among study subjects even when their global ancestry
patterns are similar. Such local ancestry difference can either lead to spurious association or
diminished power for the analysis of rare variants if population stratification is not
appropriately controlled. Through simulations with sequence data, we showed that adjusting
for global ancestry was only marginally better than a naïve test without ancestry adjustment,
and even a small disparity of local ancestry between cases and controls could lead to
severely inflated type I errors. The simulated situation we considered is an ideal admixture
scenario, where both the switch of ancestry states due to recombination and the assignment
of ancestral haplotypes are random. However, factors that are not yet modeled here, such as
demographic histories, subpopulations within a meta-population and natural selection on
particular gene regions, may lead to additional local ancestry disparity and thus the effect of
local ancestry difference induced population stratification may be even stronger in real
studies. Our findings underscore the importance of local ancestry adjustment [Qin et al.,
2010; Wang et al., 2011], and reinforce that population stratification in rare variants is not
necessarily corrected by existing methods [Mathieson and McVean, 2012]. When analyzing
a real dataset on LDL, we were able to confirm the original finding [Teslovich et al., 2010]
and identified the association signal mainly due to common variants of African ancestry.

To incorporate local ancestry in the analysis, we need to overcome a series of technical
challenges including but are not limited to how to efficiently estimate local ancestry, how to
construct test statistics using local ancestry and whether tests for different ancestral
populations should be combined. Our AWDS test relies on accurate estimation of local
ancestry, in particular, the ancestry state of each allele. As shown in our testing dataset, with
the coverage of whole genome sequencing data, programs such as HAPMIX can produce
highly accurate local ancestry estimates. However, we note that computational challenges
persist. If one uses a large number of haplotypes from the reference panel, computation may
take months or years. For sequence data, where the MAFs of many SNPs may be much
smaller, currently available reference panels may not contain some of the rare variants
observed in admixed populations. In light of these issues, one may carefully select a subset
of SNPs or ancestral informative markers covering the whole genome and estimate the
ancestry states of the preselected SNPs using HAPMIX. When there is a switch of ancestry
states between two preselected SNPs, one can analyze the original set of SNPs in that region
and pinpoint the switch point of ancestry states. For consecutive SNPs with no ancestry state
switch, one can interpolate these segments by the inferred ancestry states of the flanking
SNPs.

We included local ancestry information in AWDS to standardize ancestry-specific allele
dosages. Recall that we have filtered out low ancestry probability by the cutoff t in
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frequency calculation and dosage calculation. In practice, one can adjust t according to the
inferred ancestry probabilities. Extensive simulations with true ancestry states indicate that
using AWDS, we have improved power over the original WDS test, WDSGPC, and
WDSLPC. When there is uncertainty in ancestry probability estimation, the type I error rate
is roughly unchanged but the power decreases marginally for the AFR-side disease model
and decreases moderately for the EUR-side disease model. We interpret the decrease of
power as the result of introducing uncertainty in ancestry probability estimation.

We calculated separate AWDS for EUR and AFR to provide population-specific tests. Such
separate tests allow us to differentiate the effect of rare variants based on their ancestry
origin so that signals of true risk effect from one ancestral population background will not be
diluted by the other ancestral population. Moreover, these tests allow a cross-ethnicity
replication because evidence of disease association in the two ancestry populations can be
directly compared [Risch and Tang, 2006]. Additionally, by computing separate test statistic
for each ancestral population, we can easily accommodate admixed populations with more
than two-way admixture. For example, for Hispanic Americans, who have ancestry from
Africans, Native Americans, and Caucasians, we can include three ancestral populations in
our procedure and test for association in each of the three populations separately. We
recognize that AWDS tests for different ancestral populations may be combined by using
methods such as Fisher's combined probability test. However, we note that conducting such
an test requires accurate estimation of P-values and the adaptive P-value estimation scheme
employed in the AWDS procedure may not be suitable for this purpose. Further work is
warranted to find heuristics for fast calculation of P-values and combining them for
inference.

Our method was developed for the analysis of sequence data, but we showed that the
proposed framework could incorporate imputed data as well. For example, widely used
genotype imputation methods can be readily modified to generate allele-specific imputation
dosage scores (i.e., expected number of the minor or major allele). Although by default the
allele dosages are aggregated over all ancestral/reference populations, most of the methods,
relying on copying alleles from similar haplotypes, can easily generate population-specific
allele dosages by recording the population label of the copied haplotypes, as implemented in
our MaCH-Admix [Liu et al., 2012]. AWDS tests can then be performed based on these
population-specific allele dosages.

In summary, we have proposed a local ancestry-based rare variant association test for
admixed populations. Our method can be applied to both whole-genome sequencing data as
well as imputed data obtained from GWAS. Our test adjusts local ancestry in burden-based
rare variant tests and is able to differentiate risk variants and protective variants. Simulations
demonstrate the proposed test is protected against population stratification induced by local
ancestry difference and is more powerful than available methods.
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Fig. 1.
Local ancestry differences between randomly chosen cases and controls in 44,620 200-SNP
bins across the genome based on one simulation run. The highest 500 values range between
0.0325 to 0.0421.
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Fig. 2.
Comparison of power under the risk-variant only one-sided disease model. (A) Power of
AWDSAFR, AWDSEUR, WDS, WDSGPC, and WDSLPC under risk-variant only model
assuming all causal variants come from AFR. Note that the bars for AWDSEUR are in fact
the type I errors for AWDSEUR under AFR-side disease model. (B) Power of AWDSAFR,
AWDSEUR, WDS, WDSGPC, and WDSLPC under risk-variant only model assuming all
causal variants come from EUR. Note that the bars for AWDSAFR are in fact the type I
errors for AWDSAFR under EUR-side disease model.
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Fig. 3.
Comparison of power under the risk-variant only two-sided disease model. Power of
AWDSAFR, AWDSEUR, WDS, WDSGPC, and WDSLPC under risk-variant only model
assuming a total of 40 causal variants coming from both AFR and EUR with 20 causal
variants each.
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Fig. 4.
Comparison of power under the mixture of risk and protective variants model. The number
of causal variants is fixed at 20 for each scenario and we assume causal variants are all from
AFR ancestry background (A–C) and all from EUR (D–F). So the bars in (A–C) for
AWDS_EUR are in fact type I errors; the bars in (D–F) for AWDSAFR are in fact type I
errors.
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TABLE II

Uncertainty model for ancestry probability estimation

True ancestry probability Probability with uncertainty

An adjacent recombination event between different ancestral populations or 1%
randomly chosen haplotypes without such events

P(I = AFR) = 0 ε 2

P(I = EUR) = 1 1 – ε2

P(I = AFR) = 1 1 – ε2

P(I = EUR) = 0 ε 2

99% of the haplotypes without nearby recombination events between ancestral
populations

P(I = AFR) = 0 ε 1

P(I = EUR) = 1 1 – ε1

P(I = AFR) = 1 1 – ε1

P(I = EUR) = 0 ε 1

ε1 is the uncertainty parameter when there is no recombination between different ancestral populations and is generated from uniform(0,0.01). ε2
is the uncertainty parameter when there is an adjacent recombination event between different ancestral populations or the admixed haplotype is
chosen as 1% of the haplotypes having high uncertainty in ancestry probability. ε2 is generated from uniform(0.3, 0.7). I is the ancestry state of an

allele.
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