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Abstract
Imputation in admixed populations is an important problem but challenging due to the complex
linkage disequilibrium (LD) pattern. The emergence of large reference panels such as that from
the 1,000 Genomes Project enables more accurate imputation in general, and in particular for
admixed populations and for uncommon variants. To efficiently benefit from these large reference
panels, one key issue to consider in modern genotype imputation framework is the selection of
effective reference panels. In this work, we consider a number of methods for effective reference
panel construction inside a hidden Markov model and specific to each target individual. These
methods fall into two categories: identity-by-state (IBS) based and ancestry-weighted approach.
We evaluated the performance on individuals from recently admixed populations. Our target
samples include 8,421 African Americans and 3,587 Hispanic Americans from the Women’s
Health Initiative, which allow assessment of imputation quality for uncommon variants. Our
experiments include both large and small reference panels; large, medium, and small target
samples; and in genome regions of varying levels of LD. We also include BEAGLE and
IMPUTE2 for comparison. Experiment results with large reference panel suggest that our novel
piecewise IBS method yields consistently higher imputation quality than other methods/software.
The advantage is particularly noteworthy among uncommon variants where we observe up to
5.1% information gain with the difference being highly significant (Wilcoxon signed rank test P-
value < 0.0001). Our work is the first that considers various sensible approaches for imputation in
admixed populations and presents a comprehensive comparison.
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INTRODUCTION
Imputation of untyped genetic markers has been routinely performed in genome-wide
association studies (GWAS) [Sanna et al., 2010; Scott et al., 2007; WTCCC, 2007] and
meta-analysis [Dupuis et al., 2010; Smith et al., 2010; Willer et al., 2008], and will continue
to play an important role in sequencing-based studies [Fridley et al., 2010; The 1000
Genomes Project Consortium, 2010]. We have previously developed a hidden Markov
model (HMM) based method for imputation [Li et al., 2010] and shown that it achieves high
imputation accuracy in a number of populations [Huang et al., 2009], particularly those with
high level of linkage disequilibrium (LD) or having closely matched reference population(s)
from the HapMap [The International HapMap Consortium, 2010] or the 1000 Genomes
Projects (1000G) [The 1000 Genomes Project Consortium, 2010]. However, little
methodological work exists for imputation in admixed populations, such as African
Americans and Hispanic Americans, which comprise more than 20% of the US population
(see Web Resources).

Admixed populations offer a unique opportunity for gene mapping because one could utilize
admixture LD to search for genes underlying diseases that differ strikingly in prevalence
across populations [Reich and Patterson, 2005; Rosenberg et al., 2010; Tang et al.,
2006;Winkler et al., 2010; Zhu et al., 2004]. Although useful for admixture mapping,
admixture LD also imposes challenges for imputation. Because an admixed individual’s
genome is a mosaic of ancestral chromosomal segments, to appropriately impute the
genotypes, it is imperative to incorporate the underlying ancestry information. Practically,
this is equivalent to selecting an appropriate reference panel that matches the corresponding
ancestral population(s).

We and others have evaluated a wide range of choices on the construction of a reference
panel prior to running the imputation engine. The recommendation is to use a predefined
panel that either combines all reference populations (a cosmopolitan panel) [Hao et al.,
2009; Li et al., 2009; Shriner et al., 2010] or a weighted combination panel [Egyud et al.,
2009; Huang et al., 2009; Pasaniuc et al., 2010; Pemberton et al., 2008]. The cosmopolitan
panel may include haplotypes from populations that are irrelevant, and fails to reflect the
underlying ancestry proportions and consequently the LD pattern for the target population.
The weighted combination panel is generated by duplicating haplotypes according to certain
weights, which substantially and unnecessarily increases computational costs [Egyud et al.,
2009].

An alternative approach, based on identity-by-state (IBS) sharing between the target
individual and haplotypes in the reference populations, can be embedded within existing
imputation models. This approach constructs individual-specific effective reference panels,
by selecting the most closely related haplotypes (according to IBS score) from the entire
reference pool. The IBS-based selection is intuitive and useful for reducing the size of the
effective reference panel and is tailored separately for each target individual. The selection
is usually conducted by finding pairwise Hamming distances, which is computationally very
appealing. A simple IBS-based method, which selects a subset of haplotypes into the
effective reference panel according to their Hamming distance with the haplotypes to be
inferred across the entire genomic region to be imputed (hereafter referred to as whole
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haplotype), has been adopted by IMPUTE2 [Howie et al., 2009]. Although some promising
results have been shown when compared with random selection, no work has examined
alternatives to this simple whole-haplotype based matching, partly due to the heavy
computational burden posed.

In this work, we evaluated two classes of reference selection methods: IBS-based and
ancestry-weighted approaches. Among the IBS-based approaches, we propose a novel
method based on IBS matching in a piecewise manner. The method breaks genomic region
under investigation into small pieces and finds reference haplotypes that best represent every
small piece, for each target individual separately. The method can be incorporated directly
into existing imputation algorithms and has identical computational complexity to that of the
existing whole-haplotype IBS-based method. Results from all real datasets evaluated suggest
that our piecewise IBS method is highly robust and stable even when a small number of
reference haplotypes are selected. Importantly, for uncommon variants, our piecewise IBS
selection method manifests more pronounced advantage with large reference panels.

We have implemented all methods evaluated, including our piecewise IBS selection method,
in our software package MaCH-Admix. Besides the new reference selection functionality,
our software also retains high flexibility in two major aspects. First, both regional and
whole-chromosome imputation can be accommodated. Second, both data-independent and
data-dependent model parameter estimation are supported. Thus, besides standard reference
panel with precalibrated parameters, we can elegantly handle study-specific reference panels
and target samples with unknown ethnic origin.

The rest of the paper is organized as follows. We first present the general framework of our
imputation algorithm, followed by the intuition and formulation of our piecewise IBS and
various other effective reference selection methods. Then we evaluate all these methods
implemented in MaCH-Admix, the whole-haplotype IBS method implemented in IMPUTE2
[Howie et al., 2009], and BEAGLE[Browning and Browning, 2009] using the following
datasets:

• 3,587 Hispanic American individuals from the Women’s Health Initiative (WHI),

• 8,421 African American individuals from the WHI,

• 49 HapMap III African American individuals,

• 50 HapMap III Mexican individuals.

All datasets are imputed with reference from the 1000 Genomes Project (2,188 haplotypes).
We also explored the performance with small/medium reference set from HapMap II/III.
Finally, we provide practical guidelines for imputation in admixed populations in the
Discussion section.

MATERIAL ANDMETHODS
Assume that we have n individuals in the target population that are genotyped at a set of
markers denoted by Mg. In addition, we have an independent set of H reference haplotypes,
for example, those from the International HapMap or the 1000 Genomes Projects,
encompassing a set of markers denoted by Mr. Without loss of generality, we assume that
the set of markers assayed in the target population, Mg, is a subset of Mr, the markers in the
reference population. The goal of genotype imputation is to fill in missing genotypes
including those missing by design (e.g., genotypes at markers in Mr but not Mg, commonly
referred to as untyped markers). As described earlier [Li et al., 2010], our HMM as
implemented in MaCH fulfills the goal by inferring the haplotypes encompassing Mr
markers for each target individual, from unphased genotypes at the directly assayed markers
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in Mg. Haplotype reconstruction is accomplished by building imperfect mosaics using some
of the H reference haplotypes.

GENERAL FRAMEWORK
Because admixed individuals have inherited genetic information from more than one
ancestral population, we start with a pooled panel: a panel with haplotypes from all relevant
populations, for example, CEU+YRI for African Americans and CEU+YRI+JPT+CHB for
Hispanic Americans, where CEU is an abbreviation for Utah residents (CEPH) with
Northern and Western European ancestry; YRI for Yoruba in Ibadan, Nigeria; JPT for
Japanese in Toyko, Japan; and CHB for Han Chinese in Beijing, China. Let = (g1, g2, g3,
…, gMr) denote the unphased genotypes at Mr markers for a target individual. Furthermore,
we define a series of variables Sm, m = 1, 2, …, Mr to denote the hidden state underlying
each unphased genotype gm. The hidden state Sm consists of an ordered pair of indices (xm,
ym) indicating that, at marker m, the first chromosome of this particular target individual
uses reference haplotype xm as the template and the second chromosome uses reference
haplotype yM as the template, where xm and ym both take values from {1, 2, …, H}.

We seek to infer the posterior probabilities of the sequence of hidden states = (S1, S2, …,
SMr) for each individual as the knowledge of will determine genotype at each of the Mr
markers. Define P(Sm |ℋ,  as the posterior probability for Sm, the hidden state at marker m
with ℋ denoting the pool of reference haplotypes and denoting the genotype vector of the
target individual. To infer these posterior probabilities, we run multiple Markov iterations.
Within each iteration, we calculate the conditional joint probabilities P(Sm, ℋ) at each
marker m via an adapted Baum’s forward and backward algorithm as previously described
[Li et al., 2010].

For admixed populations, as we tend to include more reference haplotypes in the pool under
the philosophy of erring on the safe side, and as we attempt not to duplicate haplotypes, one
key aspect of the modeling is on how to traverse the sample space harboring the most
probability mass with minimum computational efforts.

PIECEWISE IBS-BASED REFERENCE SELECTION
In piecewise IBS selection, we seek to construct a set of t effective reference haplotypes
from the pool of H haplotypes within each HMM iteration for each target individual
separately. Selected reference panels are therefore tailored for each target individual. For
presentation clarity, we consider a single target individual. Specifically, we calculate the
genetic similarity (measured by IBS, the Hamming distance between two haplotypes) in a
piecewise manner between the individual and each haplotype in the reference pool, ignoring
the subpopulations (e.g., CEU or YRI) within the reference.

Denote  as the current haplotype guess for the target individual. We break haplotype

 into a maximum of  pieces so that the typed markers are evenly placed across pieces.
Each piece has a minimum length of ν typed markers to ensure that the calculated Hamming
distance is informative. Denote the number of pieces by p. For each haplotype piece, we

calculated the piece-specific IBS score between  and each reference haplotype and selects

the top  reference haplotypes, resulting in a total of  selected for  across all p regions.

We repeat the same procedure for  and select a second set of  reference haplotypes. In
our implementation, we set ν = 32, which corresponds to an average length of <200 kb for
commonly used genome-wide genotyping platforms. To avoid creating spurious
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recombinations at piece boundary, we apply a random offset to the first piece in each

sampling so that the boundaries differ across iterations. In the case where  is not an

integer, we selects  (the ceiling integer) reference haplotypes in each piece for each
target haplotype. Then we sample randomly from the selected reference haplotypes. Note
that the piecewise selection is repeated for each individual in each sampling iteration. Thus,
the selection will change along with the intermediate sampling results.

We have also implemented two whole-haplotype IBS-based methods, IBS Single Queue
(IBS-SQ) and IBS Double Queue (IBS-DQ). The former defines IBS score with any

reference haplotype as the minimum Hamming distance to  , thus ordering the H
reference haplotypes in a single queue. The top t reference haplotypes will be selected

accordingly. The latter defines two separate IBS scores for  , thus ordering the H

reference haplotypes in two queues. The top t/2 reference haplotypes will be selected for 

according to IBS scores for  . Similarly, another t/2 reference haplotypes will be selected

for  .

Figure 1 explains the three IBS strategies under two simple scenarios. In both scenarios,
there are eight markers measured in both target and reference with color indicating the
allelic status where the same color at the same locus implies the same allele. In both Figure
1A and B, the first chromosome of the target individual shares all eight alleles with the dark-
colored reference haplotypes and zero alleles with the light-shaded reference haplotypes. In
Figure 1A, the second chromosome of the target individual shares two alleles with the dark-
colored reference haplotypes and the remaining six alleles with the light-shaded reference
haplotypes; whereas in Figure 1B, the second chromosome shares six alleles with the dark-
colored reference haplotypes and the remaining two alleles with the light-shaded reference
haplotypes.

Suppose  . Figure 1A illustrates a scenario where the whole-haplotype Single Queue
strategy is not optimal because only dark-colored haplotypes will be selected into the
effective reference panel. By combining two sets selected from two separate queues, the
whole-haplotype Double Queue strategy is advantageous in the scenario. On the other hand,
neither the whole-haplotype Single Queue nor the whole-haplotype Double Queue strategy
can handle the scenario in Figure 1B well because both strategies would only select the
dark-colored reference haplotypes. Ideally, the selected reference haplotypes should, when
possible, contain information to represent every part of both chromosomes carried by the
target individual. In the scenario presented in Figure 1B, because the target individual
carries segment of the light-shaded haplotype, it is desirable to have some representation of
the light-shaded haplotypes in the effective reference panel. Our piecewise IBS method
achieves this by breaking the whole region into pieces and selecting some reference
haplotypes according to genetic matching in each piece (illustrated in the bottom part of
Figure 1A and B). By conducting local IBS matching and choosing a few reference
haplotypes within each piece, it is able to have some representation of the light-shaded
reference haplotypes. As a result, all parts of the target chromosomes are well represented
by the selected reference haplotypes. In general, we believe that selecting a small number of
reference haplotypes for each piece locally performs better than selecting globally at the
whole-haplotype level. Note that the piecewise IBS method has the same computational
complexity as the two whole-haplotype IBS methods.
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ANCESTRY-WEIGHTED APPROACH
Besides IBS-based methods, we also evaluate an ancestry-weighted selection method, which
is motivated by the idea of weighted cosmopolitan panel discussed in the Introduction
section. This method concerns the scenario where the reference panel consists of haplotypes
from several populations, for instance CEU and YRI, such that the H reference haplotypes
are naturally decomposed into several groups. Let Q denote the number of populations
included and Hq denote the number of haplotypes from reference population q, q = 1, 2, …,
Q. We first consider the issue of weight determination for each contributing reference
population, that is, the fraction of reference haplotypes to be selected from that population.
Intuitively, the weights should depend on the proportions of ancestry from these reference
populations for the target admixed individual(s). The weights can be, on one extreme, the
same for all individuals in the target population (e.g., when the admixture makeup is similar
across all individuals), or different for subpopulations within the target population, or on the
other extreme, specific for each target individual. For presentation clarity, we suppress the
individual index i and denote w = (w1, w2, …, wQ) as the vector of weights, under the
constraint that w1 + w2 + ⋯ wQ = 1. In this work, we consider the same set of weights for all
target individuals. The weights are to represent the average contributions over the
imputation region and for all target individuals. We choose to use such average weights over
weights specific to each single individual because the average weights can be more stably
estimated.

There are several natural ways to estimate the weights. One could prespecify the weights
according to estimates of ancestry proportion. For example, it is reasonable to use a ~2:8
CEU:YRI weighting scheme for African Americans who are estimated to have about 20%
Caucasian and 80% African ancestries [Lind et al., 2007; Parra et al., 1998; Reiner et al.,
2007; Stefflova et al., 2011]. Alternatively, one can estimate the ancestry proportions for the
target individuals under investigation. We have implemented an imputation-based approach
within MaCH-Admix to infer ancestry proportions, according to the contributions of
reference haplotypes from each population to the constructed mosaics of the target
individuals so that the weights can be estimated by MaCH-Admix internally. We use the
software package structure [Pritchard et al., 2000], specifically its Admix+LocPrior model,
on LD-pruned set of single nucleotide polymorphisms (SNPs) to confirm our internal
ancestry inference.

Having determined the weights, we are interested in constructing a set of t effective
reference haplotypes within each Markov iteration from the pool of H reference haplotypes
according to the ancestry proportions. We achieve this by sampling without replacement t ×
wq haplotypes from the Hq haplotypes in reference population q. For each target individual,
we sample a different reference panel under the same set of weights.

MACH-ADMIX
We have implemented the aforementioned methods (three IBS-based and one ancestry-
weighted) in our software package MaCH-Admix. MaCH-Admix breaks the one-step
imputation in MaCH into three steps: phasing, model parameter (including error rate and
recombination rate parameters) estimation, and haplotype-based imputation. The splitting
into phasing and haplotype-based imputation is similar to IMPUTE2. Our software can
accommodate both regional and whole-chromosome imputation and allows both data-
dependent and data-independent model parameter estimation. The flexibility regarding
model parameter estimation allows one to perform imputation with standard reference
panels such as those from the HapMap or the 1000 Genomes Projects with precalibrated
parameters in a data-independent fashion, similar to IMPUTE2, which uses recombination
rates estimated from the HapMap data and a constant mutation rate. Alternatively, if one
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works with study-specific reference panels, or suspects the model parameters differ from
those precalibrated (e.g., when target individuals are of unknown ethnicity or from an
isolated population), one has the option to simultaneously estimate these model parameters
while performing imputation.

DATASETS
We assessed the reference selection methods in the following six target sets:

• 3,587 WHI Hispanic Americans (WHI-HA),

• 8,421 WHI African Americans (WHI-AA),

• 200 randomly sampled WHI-HA individuals,

• 200 randomly sampled WHI-AA individuals,

• 49 HapMap III African Americans (ASW),

• 50 HapMap III Mexican individuals (MEX).

The WHI SHARe consortium offers one of the largest genetic studies in admixed
populations. WHI [Anderson et al., 2003; The WHI Study Group, 1998] recruited a total of
161, 808 women with 17% from minority groups (mostly African Americans and Hispanics)
from 1993 to 1998 at 40 clinical centers across the United States. The WHI SHARe
consortium genotyped all the WHI-AA and WHI-HA individuals using the Affymetrix 6.0
platform. Detailed demographic and recruitment information of these genotyped samples are
previously described [Qayyum et al., 2012]. Besides standard quality control (details
described previously in [Liu et al., 2012]), we removed SNPs with minor allele frequency
(MAF) below 0.5%. To evaluate the imputation performance on target sets of smaller size,
we randomly sampled 200 individuals from WHI-HA and WHI-AA separately.

For the two HapMapIII datasets, our target individuals are ASW (individuals of African
ancestry in Southwest USA) and MEX (individuals of Mexican ancestry in Los Angeles,
California) respectively from the phase III of the International HapMap Project [The
International HapMap Consortium, 2010]. These individuals (83 ASW and 77 MEX) were
all genotyped using two platforms: the Illumina Human1M and the Affymetrix 6.0. We
restricted our analysis to founders only: 49 ASW and 50 MEX.

The main focus of our work is imputation with large reference panel. Thus, we first
evaluated the imputation performance of all six target sets with reference from the 1000
Genomes Project (release 20101123, H = 2, 188 haplotypes). For the WHI datasets, the
number of markers overlapping between the target and reference, bounded by the number of
markers typed in target samples, is smaller than that in the HapMap individuals. Therefore,
we performed imputation 10 times, each time masking a different 5% of the Affymetrix 6.0
markers. This masking strategy allowed us to evaluate imputation quality at 50% of
Affymetrix 6.0 SNPs. For HapMap III ASW and MEX individuals, we randomly masked
50% of the overlapping markers and evaluated the performance at these markers. We used
two different masking schemes for the HapMap and WHI samples because we have ~1.5
million typed markers in the HapMap samples and thus can still achieve reasonable
imputation accuracy by masking 50% of the markers in a single trial. In the WHI samples,
masking 50% of the ~0.8 million markers in a single trial would substantially reduce
imputation accuracy and using one trial with a small percentage of markers masked would
lead to insufficient number of markers for evaluation. Therefore, we used multiple trials
with 5% masking for the WHI datasets.

Liu et al. Page 7

Genet Epidemiol. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To provide a comprehensive evaluation, we also conducted imputation on all six target sets
using HapMapII or HapMapIII haplotypes as reference. We used HapMap II CEU+YRI (H
= 240) for WHI-AA individuals and HapMapII CEU+YRI+JPT+CHB (H = 420) for WHI-
HA individuals. The evaluation is based on masking 50% of the overlapping markers. For
HapMap III ASW target set, we considered three different reference panels: HapMapII CEU
+YRI (H = 240), HapMapIII CEU+YRI (H = 464), and HapMapIII CEU+YRI+LWK+MKK
(H = 930), where LWK (Luhya in Webuye, Kenya) and MKK (Maasai in Kinyawa, Kenya)
are two African populations from Kenya. For HapMap III MEX target set, we considered
HapMapII CEU+YRI+JPT+CHB (H = 420), and HapMapIII CEU+YRI+JPT+CHB (H =
804). For the HapMap target sets with HapMap references, we used genotypes at SNPs on
the Illumina HumanHap650 BeadChip for imputation input and reserved other genotypes for
evaluation. We have posted the HapMap data and our command lines used in this work on
MaCH-Admix website (see Web Resources).

We picked five 5 Mb regions across the genome to represent a wide spectrum of LD levels.
We first calculated median half life of r2, defined as the physical distance at which the
median r2 between pairs of SNPs is 0.5, for every 5 Mb region using a sliding window of 1
Mb, in CEU, YRI, and JPT+CHB, respectively. We used HapMapII phased haplotypes for
the calculation. The five regions we picked are: chromosome3: 80–85 Mb, chromosome1:
75–80 Mb, chromosome4: 57–62 Mb, chromosome14: 50–55 Mb, and chromosome8: 18–23
Mb in a decreasing order of LD level. The median half life of r2 is around 90th, 70th, 50th,
30th, and 10th percentile within each of the three HapMap populations, for the five regions,
respectively (Supplementary Table S1). Supplementary Figure S1 shows the LD levels for
the five residing chromosomes. For each region, we treat the middle 4 Mb as the core region
and the 500 kb on each end as flanking regions. Only SNPs imputed in the core region were
evaluated to gauge imputation accuracy.

METHODS COMPARED
We evaluated the following reference selection approaches implemented in MaCH-Admix:

• random selection (MaCH-Admix Random or original MaCH),

• IBS Piecewise selection (MaCH-Admix IBS-PW),

• IBS Single-Queue selection (MaCH-Admix IBS-SQ),

• IBS Double-Queue selection (MaCH-Admix IBS-DQ),

• Ancestry-weighted selection (MaCH-Admix AW) (for HapMapIII datasets).

We also included IMPUTE2 [Howie et al., 2009] and BEAGLE [Browning and Browning,
2009] for comparison. We used IMPUTE 2.1.2 and BEAGLE 3.3.1 with default settings (-
k_hap 500 -iter 30 for IMPUTE2; niterations = 10 nsamples = 4 for BEAGLE). As
aforementioned, MaCH-Admix can conduct imputation with precalibrated parameters
(similar to IMPUTE2); alternatively, MaCH-Admix can perform imputation together with
data-dependent parameter estimation in an integrated mode. The integrated mode generates
slightly better results at the cost of increased computing time. Here, we report results from
the precalibrated mode.

MEASURE OF IMPUTATION QUALITY
We and others have proposed multiple statistics to measure imputation quality [Browning
and Browning, 2009; Li et al., 2009; Lin et al., 2010; Marchini and Howie, 2010],
measuring either the concordance rate, correlation, or agreement between the imputed
genotypes or estimated allele dosages (the fractional counts of an arbitrary allele at each
SNP for each individual, ranging continuously from 0 to 2) and their experimental
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counterpart. We opt to report the dosage r2 values, which are the squared Pearson correlation
between the estimated allele dosages and the true experimental genotypes (recoded as 0, 1,
and 2 corresponding to the number of minor alleles), because it is a better measure for
uncommon variants by taking allele frequency into account and directly related to the
effective sample size for downstream association analysis [Pritchard and Przeworski, 2001].
For the remainder of the work, with no special note, average dosage r2 values will be plotted
as a function of approximation level (measured by the effective reference panel size, i.e., t
described in Methods section, corresponding to MaCH-Admix’s –states option and
IMPUTE2’ s -k option). Hereafter, we use approximation level, effective reference size, t,
and #states/-k interchangeably. We note that for standard haplotypes-to-genotype imputation
(i.e., using reference haplotypes to imputed target individuals with genotypes),
computational costs increase quadratically with the approximation level. MaCH-Admix and
IMPUTE2 both also have an approximation parameter at the haplotype-based imputation
step, MaCH-Admix’s –imputeStates and IMPUTE2’s -k_hap, which increases the
computation time linearly and is by default set at a large value (500). We kept both at the
default value because increasing beyond the default has rather negligible effects on
imputation quality and that total computing time attributable to the haplotype-based
imputation step is typically much smaller compared to –states and -k.

RESULTS
WHI-AA AND WHI-HAWITH THE 1000G REFERENCE

Figures 2 and 3 show results for full WHI-HA and WHIAA sets using 2,188 haplotypes
from 20101123 release of the 1000 Genomes Project as the reference (selected three out of
the five 5 Mb regions: the first, third, and fifth regions according to level of LD). The
remaining results under the default or middle settings are presented in Tables I and II (all
five regions for WHI-HA and WHI-AA, respectively). Note that BEAGLE’s performance
remains constant because it does not have a parameter analogous to MaCH-Admix’s –states
or IMPUTE2’s -k.

Generally, we observe higher imputation accuracy in regions with higher level of LD for all
approaches evaluated. In addition, in regions with higher LD, imputation accuracy reaches a
plateau with smaller effective reference sizes. This is because the LD pattern can be
captured fairly well by a smaller number of reference haplotypes in regions with higher level
of LD. In regions with lower level of LD, accuracy plateau is reached with larger effective
reference sizes. But generally an effective reference size of 80–120 is good for MaCH-
Admix to perform well at all LD levels.

We found that the piecewise IBS selection approach (IBS-PW) is clearly the best among the
three IBS-based methods implemented in MaCH-Admix. Its performance is stable even with
a small #states value. For the other two IBS-based reference selection approaches
implemented in MaCH-Admix, we observed IBS-DQ performs better than IBS-SQ. The
performance order of the three MaCH-Admix IBS-based methods is expected based on our
reasoning in the Material and Methods section. In addition, all three IBS-based methods
show clear advantage over random selection, particularly when the effective reference size is
small. IMPUTE2 has similar performance to that of IBS-DQ when the effective reference
size is small. Interestingly, IMPUTE2’ s accuracy curve tends to stay relatively flat while
those for MaCH-Admix’s IBS-based methods increase with the effective reference size.

Across all five regions evaluated, with effective reference size at 120, IBS-PW has
consistent performance gain over other evaluated methods. Importantly, IBS-PW and IBS-
DQ, particularly IBS-PW, manifest more pronounced advantage for uncommon variants
(MAF < 5%) in WHI-HA. For these uncommon variants, average dosage r2 is 0.818, 0.782,
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and 0.794 (0.808, 0.805, and 0.756) for WHI-HA (WHI-AA) using our IBS-PW, IMPUTE2,
and BEAGLE, respectively. The advantage of IBS-PW in uncommon SNPs is however
smaller in WHI-AA largely because of the much smaller number of uncommon variants in
WHI-AA (Supplementary Figure S2). However, the difference is highly significant (P-value
≤5.02 × 10−5) in both WHI samples. Our observation is consistent in both the full set and the
subset of 200 individuals (Tables I and II).

HAPMAP ASW AND MEX WITH THE 1000G REFERENCE
In this setting, we use a large reference panel to impute two small target sets. Supplementary
Figure S3 shows the imputation quality of three regions for both ASW and MEX. The
complete results are presented in Supplementary Table S2. Similar to previous experiments,
we found that IBS-PW is very effective in finding the most relevant reference from a large
panel (1000G) and clearly outperforms the other methods. IMPUTE2 again shows a flatter
curve in most regions. Random selection and BEAGLE tend to perform worse than the IBS-
based methods. This again proves that IBS-based selections are very effective in working
with large reference panels.

IMPUTATION PERFORMANCE WITH HAPMAP REFERENCES
First, consistent with what has been reported that imputation quality improves with reference
panel size, imputation quality is indeed lower with HapMap references than with the 1000G
reference. For example, average dosage r2 is 90.0–91.3% with the 1000G reference (Table I)
for WHI-HA individuals in the chromosome4: 57–62 Mb region but drops to 84.4–86.2%
with HapMapII references (Supplementary Table S3). Second, difference among various
methods is much smaller with these smaller HapMap reference sets (H = 240 ~ 930),which
is consistent with our intuition that, given fixed computational costs, reference selection
makes more pronounced difference with large reference panel because only a small portion
of reference can be selected.

WHI-HA and WHI-AA With HapMap References—The complete results are presented
in Supplementary Tables S3 and S4. In WHI-HA (Supplementary Table S3, H = 420), IBS-
PW outperforms IBS-SQ and IBS-DQ slightly and the advantage disappears in WHI-AA
(Supplementary Table S4, H = 240).MaCH-Admix and IMPUTE2 yield similar imputation
accuracy, and both outperform BEAGLE slightly.

HapMap ASW and MEX With HapMap References—For ASW, we experimented
with three reference panels: HapMapII CEU+YRI, HapMapIII CEU+YRI, and HapMapIII
CEU+YRI+LWK+MKK; for MEX two reference panels: HapMapII CEU+YRI+JPT+CHB
and HapMapIII CEU+YRI+JPT+CHB. Results for ASW with HapMapIII CEU+YRI+LWK
+MKK as the reference are shown in Supplementary Figure S4 (the same three selected
regions). The remaining results are presented in Supplementary Tables S5A–C. Again,
MaCH-Admix and IMPUTE2 yield similar imputation accuracy, both outperform BEAGLE
slightly. IBS-PW is still an obvious winner in most regions and settings. But the relative
difference among different methods diminishes when H is small.

We also included ancestry-weighted selection in evaluation in this setting because weights
can be estimated stably given the relatively simple population structure in reference.
Interestingly, we did not observe noticeable advantage of the ancestry-weighted selection
method despite the obvious population structure within the reference panel and the target
being admixed individuals. It however outperforms random selection slightly in most ASW
experiments.
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RUNNING TIME
Methods implemented in MaCH-Admix have comparable running time to that of IMPUTE2.
BEAGLE has similar running time in experiments with HapMap references. It however
needs significantly more computing time than MaCH-Admix and IMPUTE2 when imputing
with the 1000G reference, which we believe has to do with how consecutive untyped
variants are modeled. Note that, due to the large number of experiments, we conducted all
experiments on a big Linux cluster with more than 1000 CPUs. This leads to moderate
fluctuations in running time over short regions due to I/O competition. But we obtain largely
consistent conclusions across different experimental settings.

DISCUSSION
In summary, the emergence of large reference panels calls for more efficient methods to
utilize the rich resource. we have implemented two classes of reference-selection methods,
namely IBS-based and ancestry-weighted approaches, to construct effective reference panels
within our previously described HMM and implemented them in software package MaCH-
Admix for genetic imputation in admixed populations. We have performed systematic
evaluations on large (WHI-AA and WHI-HA full sample with 8,421 and 3,587 individuals),
medium (subset of 200 individuals from each of the two WHI admixed cohorts), and small
(HapMap ASW and MEX with 49 and 50 founders, respectively) target samples; using large
(the latest 1000G with H = 2,188) and small (HapMap with H = 240–930) reference panels;
and in five regions with different levels of LD. Compared with popular existing methods,
MaCH-Admix demonstrates its advantage mostly because its piecewise algorithm takes
potential changes in haplotype pattern sharing across regions into direct account (vs.
IMPUTE2, which adopts a whole-haplotype IBS matching approach) and because it does
not reduce local haplotype complexity (vs. BEAGLE, which does so to gain computational
efficiency). Based on our evaluations, we recommend our proposed piecewise IBS-based
method, which demonstrates the best trade-off between quality and computing time.

As the reference panel continues to grow rapidly (e.g., the 1000 Genomes Project will
generate ~5,000 haplotypes within 2 years), approaches that can rapidly explore the entire
reference pool will become increasingly appreciated. IBS-based approaches show such
potential. As manifested by results from both WHI individuals and the HapMapIII
individuals, IBS-based approaches can generate accurately imputed genotypes by
preferentially selecting a small but different subset of ~100 (corresponding to ~5% for the
current 1000G case where H = 2, 188) haplotypes from the entire reference pool in each
iteration. As computational costs increase quadratically with the effective number of
haplotypes used in each iteration, such ~95% reduction in the effective number of reference
haplotypes corresponds to >99.5% reduction in computational investment.

Previous studies [Hao et al., 2009; Li et al., 2009; Seldin et al., 2011; Shriner et al., 2010;
Zhang et al., 2011] have recommended the use of a combined reference panel, which pools
haplotypes from all available reference populations (e.g., from the HapMap or the 1000
Genomes Projects), especially for populations that do not have a single best match reference
population for increased imputation accuracy. Two forces working in opposite directions are
introduced by including reference haplotypes from populations different from those in target
samples in such a cosmopolitan panel: shared haplotype stretches (likely even shorter) that
would increase imputation quality while noise added by including population-specific local
haplotypes would harm imputation quality. Therefore, the recommendation of using a
cosmopolitan panel to enhance imputation quality also applies to MaCH-Admix,
conceptually more applicable because MaCH-Admix reduces the noise force by choosing
local haplotypes that are most relevant into effective reference.
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One key question concerns the optimal region size for imputation. From the perspective of
including more LD information, particularly the long-range LD information that would be
particularly critical for the imputation of uncommon variants, imputation over longer
regions is desired. However, approaches that select reference haplotypes according to
genetic matching between reference haplotypes and genotypes of target individuals across
the entire region like whole-haplotype IBS-based methods will likely suffer from the change
in genetic matching over a long region. For example, for both scenarios presented in Figure
1, there are two distinct subregions according to the matching pattern. Lumping them
naively together, particularly using a single queue, may well lead to inferior performance as
discussed earlier. We attempt to solve the problem by breaking the entire region into smaller
pieces and within each piece selecting some reference haplotypes according to local genetic
matching. This conceptually shares similarity with local ancestry adjustment in analysis of
admixed populations [Wang et al., 2011a]. Pasaniuc et al. [2011] also found local ancestry
increases imputation accuracy. The proposed piecewise IBS-based selection method is
robust to imputation region size. We have evaluated the performance on whole
chromosomes using ASW/MEX with HapMap references and found that both piecewise IBS
and ancestry-weighted selection perform much better than whole-haplotype IBS based
methods (data not shown). Between piecewise IBS and ancestry-weighted selections, the
piecewise IBS method has advantage in most whole chromosome experiments and is very
close to ancestry-weighted selection in the rest.

Ancestry-weighted approaches have been previously utilized to construct reference panels in
admixed populations for tag SNP selection or imputation [Egyud et al., 2009; Pasaniuc et
al., 2010; Pemberton et al., 2008]. However, such reference panels created a priori induce
two problems for imputation. First, haplotypes from contributing reference populations are
literally duplicated, thus substantially increasing computational burden. Second, the same
fixed preconstructed reference haplotypes are to be used for all Markov iterations,
preventing imputation algorithms from taking into account the uncertainty in creating the
reference panel. Our ancestry-weighted approach selects reference haplotypes
probabilistically according to the estimated ancestry proportions and creates a different
reference panel in each Markov iteration. This strategy ensures that all reference haplotypes
to be selected when we run the Markov iterations long enough, thus avoiding both problems
mentioned above. An attractive feature that we have added to MaCH-Admix is a
functionality to estimate ancestry proportions so that it can internally generate weights for
ancestry-weighted approach without the need to install and call external programs. Although
there exist many methods to infer ancestry including, for example, structure [Pritchard et al.,
2000], HAPMIX [Price et al., 2009], and GEDI-ADMX [Pasaniuc et al., 2009], we believe
that researchers will find this build-in feature convenient. We found our estimates
reasonably close to estimates from structure and working well for imputation purpose.

In this study, we have examined the performance of our proposed and other imputation
methods in both Hispanics and African Americans. Between the two, Hispanics are known
to have more complex LD structure because of three ancestral populations involved as
opposed to two for African Americans. The more complex LD in Hispanics indeed makes it
essential to more explicitly account for the larger variability in local ancestry (e.g., using our
proposed piecewise approach). The more complex LD and population substructure in
Hispanics have prevented a lot of investigators from even attempting imputation. However,
we observe similar if not slightly better imputation quality in the five regions examined,
with an average dosage r2 of 92.5% (81.8%) vs. 92.1% (81.4%) for all (uncommon) SNPs in
WHI-HA and WHI-AA respectively using our piecewise IBS approach. That imputation
performance for Hispanics is comparable with that for African Americans is expected due to
on average less African ancestry (where LD is the lowest and thus most challenging for
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imputation) in Hispanics compared to African Americans. Therefore, we highly encourage
investigators working with Hispanics perform imputation as well.

Although in this work we propose the reference selection methods for imputation of
admixed individuals, the methods can be directly applied to imputation in general for
nonadmixed populations by finding the best genetic match for each target individual. For the
same reason, IBS-based methods tend to work better than ancestry-weighted approaches
when between-individual variation among the target individuals is large (data not shown).
This is not surprising because IBS-based approaches select a different effective reference
panel tailored for each target individual, rather than one uniform reference sampling setting
for all target individuals as in the ancestry-weighted approach.

We have also attempted to examine common and uncommon genetic variants separately,
using MAF 5% as cutoff. We observe more pronounced differences among the attempted
methods with uncommon variants, suggesting that choice of reference selection methods
matters more for uncommon variants. Due to the nature of the SNPs evaluated (either typed
Affymetrix 6.0 markers for the WHI individuals, or HapMap markers) and the target sample
size (49–50 for HapMapIII ASW and MEX), there are few really rare (MAF<1%) variants.
Although several attempts have been made [Howie et al., 2011; Liu et al., 2012; The
International HapMap Consortium, 2010;Wang et al., 2011b], imputation quality for
uncommon variants is far from being fully assessed and needs to be further evaluated when
data from large scale sequencing efforts become available.

Last but clearly not the least point concerns computational efficiency. MaCH-Admix is very
flexible in terms of the effective number of haplotypes used in each iteration and the number
of iterations. Imputation accuracy depends on both parameters. Because computational cost
increases quadratically with –states and linearly with –rounds, for practical purpose, we
recommend using –states 100–120 and –rounds ≥20. We also have an option analogous to
IMPUTE2’s -k_hap, which increases computational costs linearly and even defaulting at a
large value (500) contributes to only a small proportion of computing time. Between the two
categories of approaches proposed, the ancestry-weighted approach requires only one-time
upfront costs for the estimation of ancestry proportions. The IBS-based methods, on the
other hand, require overhead costs at each iteration for calculating genetic similarities
between individuals in the target population and the reference haplotypes. For both, the costs
increase with the reference panel size. Finally, computational costs would increase only
linearly with –states if we start with haplotypes of the target individuals, that is, for
haplotype-to-haplotype (both reference and target are in haplotypes) imputation as
performed by software minimac. We plan to extend our proposed methods to minimac in the
future.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
A cartoon illustration of two scenarios where the three IBS-based selection methods perform
differently. The two lines on the top panel represent the two chromosomes of a target
individual and the lines on the bottom panel represent the pool of H = 16 reference
haplotypes. Color determines the allelic status such that the same color at the same locus
implies the same allele. The bottom parts show how our piecewise selection method breaks

the imputation region into four pieces with  . Here we assume no constraint on the
minimum piece size (i.e., ν = 0).
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Fig. 2.
Imputation of 3,587 WHI-HA with the 1000G reference panel. Imputation quality (measured
by dosage r2) is plotted as a function of the effective reference panel size (i.e., #states), for
WHI-HA individuals in three selected 5 Mb regions (ordered by LD from high to low). (A)
Imputation quality of WHI-HA with the 1000G reference panel. (B) Uncommon SNP
imputation quality of WHI-HA with the 1000G reference panel. We set the maximum
plotting range on y-axis to be 5%. IMPUTE2 in (c) is lower than the lower bound of the
plotting range.
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Fig. 3.
Imputation of 8,421 WHI-AA with the 1000G reference panel. Imputation quality (measured
by dosage r2) is plotted as a function of the effective reference panel size (i.e., #states), for
WHI-AA individuals in three selected 5 Mb regions (ordered by LD from high to low). (A)
Imputation quality of WHI-AA with the 1000G reference panel. (B) Uncommon SNP
imputation quality of WHI-AA with the 1000G reference panel. Note that WHI-AA has
significantly less number of SNPs in this category than WHI-HA does. Also, we set the
maximum plotting range on y-axis to be 5%. MaCH-Admix Random in (b),(c) and
BEAGLE in (a),(b),(c) are lower than the lower bound of the plotting range.
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