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Abstract
In genetic mapping of complex traits, scored haplotypes are likely to represent only a subset of all
causal polymorphisms. At the extreme of this scenario, observed polymorphisms are not themselves
functional, and only linked to causal ones via linkage disequilibrium (LD). We will demonstrate that
due to such incomplete knowledge regarding the underlying genetic mechanism, the variance of a
trait may become different between the scored haplotypes. Thus, unequal variances between
haplotypes may be indicative of additional functional polymorphisms affecting the trait. Methods
accounting for such haplotype-specific variance may also provide an increased power to detect
complex associations. We suggest ways to estimate and test these haplotypic variance contrasts, and
incorporate them into the haplotypic tests for association. We further extend this approach to data
with unknown gametic phase via likelihood-based simultaneous estimation of haplotypic effects and
their frequencies. We find our approach to provide additional power, especially under the following
types of models: (a) where scored and unobserved variants are epistatically interacting with each
other; and (b) under heterogeneity models, where multiple unobserved mutations are linked to
nonfunctional observed polymorphisms via LD. An illustrative example of usefulness of the method
is discussed, utilizing analysis of multilocus effects within the catechol-O-methyl transferase
(COMT) gene.
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Introduction
There is a substantial body of work on characterizing haplotype-trait associations using
unrelated individuals. Simple methods of dealing with the unknown haplotype phase in
association tests have been proposed [Schaid et al., 2002; Zaykin et al., 2002; Luo et al.,
2006]. Xie and Stram [2005] showed asymptotic equivalence of two common types of these
approaches. These methods have been found to provide adequate inference concerning both
hypothesis testing, and association parameter estimation, and have been recommended for
usage [Stram et al., 2003; Kraft et al., 2005; Xie and Stram, 2005; Kraft and Stram, 2007].
Tzeng et al. [2006] extended these approaches to incorporate evolutionary clustering of
haplotypes. Unbiased estimation of association parameters may require a simultaneous
estimation of haplotype frequencies and association parameters. The maximum-likelihood
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methods are theoretically preferable [Lin and Huang, 2007; Allen and Satten, 2008]. A variety
of such methods have been proposed [Tregouet et al., 2002; Epstein and Satten, 2003; Stram
et al., 2003; Zhao et al., 2003; Shibata et al., 2004; Lin et al., 2005; Lin and Zeng, 2006]. In
this article, we incorporate haplotype and diplotype-specific variances into the likelihood for
unphased data. The motivation for this extension comes from a scenario where haplotypes
under investigation are either linked via LD to causal variants, or represent only a part of all
causal variation. In both cases, the effect of an observed variant (i.e. haplotype) on the trait
(Y) is a weighted average of the effects that correspond to all relevant polymorphisms
considered jointly. The weights are given by the frequencies of these unobserved joint
polymorphisms. To simplify the exposition, we first assume that the observed variant is an
SNP “A” with alleles A1, A2. We denote haplotypes that include A1 by hA1, and assume no
dominance effects. Then the effect of A1, i.e. the expected value E(Y|A1) is

(1)

where j is indexing over all haplotypes hA1 that carry the allele A1, μj denotes E(Y|hj), and pj
is the population frequency of the j-th haplotype (hj). Unless A is the only polymorphism that
is relevant with regard to the trait under study, there is uncertainty associated with the
frequencies pj, because the haplotypes are partially typed. This leads to unpredictability of the
effect size, μA1. As the frequencies vary, the observed effect changes in value, and might even
change its sign [Lin et al., 2007; Zaykin and Shibata, 2008], thus the power to detect
associations can be greatly reduced. This is a consequence of “partial knowledge”: if the
causative haplotypes are completely typed, the effects are just μj, independent of the
frequencies.

Using a similar notation, the variance of a trait among individuals carrying A1 is

(2)

where VA1 ≡ Var(Y|A1), and Vj ≡ Var(Y|hj) - the variance among individuals carrying a
haplotype hj. We can assume that all Vj are equal to a common value, σ2, and even then the
allele-specific variance remains elevated compared to σ2, due to differences between the
underlying effects:

(3)

The contrast between the variances, VA1vs. VA2 can also be unequal, and this can be
incorporated into association methods. Models where A is either a functional locus, or a variant
in LD with nearby causative polymorphisms can produce situations where VA1 ≠ VA2, even
when the population frequencies pj are such that there is no effect at the observed locus, μA1
= μA2 [Zaykin and Shibata, 2008].
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The main idea of the approach that we develop here is to estimate and test the variance contrast,
VA1 vs. VA2, in addition to, or simultaneously with the usual inference about equality of the
genetic effects, μA1 vs. μA2. We extend this approach to the case where A is represented by
multi-SNP haplotypes, estimated from unphased, single-locus genotype data.

Our approach is based on random population samples, and we assume that there is no statistical
confounding, such as confounding due to population stratification. In the absence of
confounding, both mean and the variance contrasts are interpreted in a similar manner: μA1 ≠
μA2, or VA1 ≠ VA2 indicate either (a) a functional involvement of the observed polymorphisms,
or (b) association via LD with nearby, unobserved functional variants [Zaykin and Shibata,
2008]. In the first case, the unobserved factor, B (e.g. a factor with two levels, B1,B2) can be
non-genetic, such as an environmental factor that interacts with the observed variation.

Methods
We are concerned with haplotype and diplotype association methods that are capable of dealing
with unphased data. Nevertheless, we start with a single di-allelic (A1, A2) SNP, because this
allows us to succinctly describe the essence of the methods. We define the following three null
hypotheses (H0) of interest:

(4)

with the corresponding likelihood ratio test statistics. A rejection of the more general

hypothesis, , indicates that there are differences in either means or the variances of the
trait between the alleles A1 and A2. The other two hypotheses are formed specifically regarding
the allelic means or the variances. Genotypic rather than allelic-based hypotheses and tests are
similarly defined. For example, the H0 regarding the genotypic means is stated as : (μA1A1
= μA1A2 = μA2A2). The likelihoods are constructed assuming the normal distribution for the
trait. Log-likelihood contributions are added over individuals in the sample, which are assumed
to be independent. L0 in the following subsections refers to the log-likelihood under the
common mean and the variance for all alleles or genotypes; L1 allows for allele- or genotype-
specific means and variances, L2 allows for allele- or genotype-specific means and common
variance, and L3 allows for allele-or genotype-specific variances. The estimates μ̂, V̂ used in
the likelihoods are specific to alleles or genotypes at the scored locus, A: it appears difficult to
take advantage of incorporating mixture proportions pj given in equations (1, 2, 3), since these
depend on the unknown factor, B.

Allelic-based tests
The model that corresponds to allelic tests and estimates is also referred to as the additive
model. To construct allelic likelihood ratio test statistics (LRTs) that correspond to our

hypotheses, , we define the following log-likelihoods:

(5)
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where

(6)

where φ(y; μ, V) is the normal density, N(μ, V), evaluated at y, and nA1A1, nA1A2, nA2A2 are the
A1A1, A1A2, A2A2 genotype counts, nA1A1 + nA1A2 + nA2A2 = n.

Tests for the means as well as tests for the variances can be constructed while allowing for the
other parameter to be different between alleles. There is a concern that the test for the mean
with unequal variances (which we denote by Tμ*) might be less robust than the test based on
the common variance, Tμ. Thus, we investigate both versions of the LRTs. The LRT for the
variance is denoted by TV. The combined test for the both parameters, Tμ,V, is obtained in a
straightforward way as a difference of the likelihoods 2(L1 − L0). This difference is equal to
the sum, Tμ + TV. We also consider a different combined test, Tμ*,V, based on the sum, Tμ* +
TV. The LRTs are:

(7)

The notation indicates that, for example, Tμ,V, has an asymptotic chi-square distribution with
two degrees of freedom. The degrees of freedom are given by the difference in the number of
parameters between the likelihoods forming the LRT.
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Genotypic-based tests
Genotypic rather than allelic-based tests are constructed similarly. The mean and the variance
estimators for the homozygote A1A1 are obtained as

(8)

These are similarly defined for the genotypes A1A2 and A2A2. The log-likelihoods are

(9)

and the test statistics are

(10)

The dominant and the recessive models are defined in the same way as the full genotypic, but
without making distinctions between certain genotype classes. For example, in the dominant
model we estimate μ̂A1A1 + A1A2, V̂A1A1+A1A2, μ̂A2A2, V̂A2A2, and form the likelihoods according
to these four, rather than six parameters.

Haplotype and diplotype tests for unphased data
The LRT statistics for the situation with multiple SNPs and the unknown haplotype phase have
a form similar to the statistics just described. However, because of the phase uncertainty, the
form of a likelihood function is now
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(11)

where H are sample haplotype frequencies and Pr(hshr|H) is a per-subject probability of a
haplotype pair hs, hr, under the assumption of Hardy-Weinberg equilibrium (HWE). Haplotype
and diplotype means, variances as well as sample frequencies of haplotypes are estimated
simultaneously via an EM algorithm. An extension to multiple haplotypes tested all at once in
an overall test is straightforward. The likelihoods described above simply incorporate more
parameters, specific to means and variances of multiple haplotypes or diplotypes. When the
haplotype phase is known, the overall test statistics for the k haplotypic means can be shown
to take the form

(12)

(13)

where ni are haplotype counts. Under the normal model, the haplotypic overall tests for the
means are analogous to the “2N” ANOVA described in Zaykin et al. [2002], where asymptotic
comparisons were made with a corresponding trend test. The variance test has the form

(14)

This statistic is equivalent to the Bartlett test [Bartlett, 1937]. Under  and normality, it is
independent of the statistic that is based on the ratio of the mean difference and the pooled
variance. Thus, asymptotically equivalent forms of the LRTs for testing the means and the
LRTs for the variances are asymptotically independent. Frequencies of rare classes become
critical with regard to the properties of an overall test. In our comparisons, we used an
alternative overall test, the Simes test, based on p-values obtained from tests on individual
haplotypes. Simes [1986] described this combination test that allows for dependencies among
p-values. The Simes test rejects the overall H0 at the level α if p(i) ≤ iα/k for at least one i, where
k is the number of tested haplotypes, and p(i) are ordered p-values. Equivalently, the overall
p-value is given by min{kp(i)/i}. Thus, this approach is to take one haplotype (hi) at a time,
contrasted against the group of all other haplotypes, hī. As we will verify by simulations, this
test can be more powerful than a multi-parameter overall test when only a small proportion of
all haplotypes carry pronounced effects. Although the Simes test is an overall test with regard
to the family-wise error rate, it has the same form as the false discovery rate (FDR) controlling
procedure by Benjamini and Hochberg [1995] that can be used to make statements for a specific
set of haplotypes that clear the FDR threshold.

A note should be made regarding the interpretation of results for the variance-specific tests.
When a haplotype hi is compared against a combined group that consists of all remaining
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haplotypes, hī, a possible heterogeneity of effects combined within hī may lead to an increase
of the variance associated with that group (Appendix 2). In addition, the variance-specific
haplotypic tests are sensitive to a variance contrast that can be induced by strong dominance
deviations. Thus, diplotypic, rather than haplotypic tests, especially when the diplotypes hi/
hi, hi/hī (compared to hī/hī) are found to be associated with an increased variance, provide a
more clear evidence for an additional unknown functional variation outside of the studied set
of SNPs.

The normality assumption can be relaxed in our implementation by utilizing a resampling
distribution of the test statistics for computing p-values of the tests. Asymptotic tests appear
to offer a reasonable performance, unless the expected count of a tested variant is low.
Nevertheless, it is a good strategy to verify low p-values with a permutational test. Trait
transformations to normality, such as the common Box-Cox transformation [Box and Cox,
1964] can also be considered. The common-variance test for the mean, Tμ appears to be robust
to deviations from normality (Results section). Similar tests contrasting means for the
dominant, recessive, and diplotype models were described in Shibata et al. [2004].

The two combined statistics considered here can be factored as sums, e.g. Tμ,V = Tμ+TV. That
is, these statistics are sums of two chi-square contributions, which are independent under the
hypothesis that all means and variances are the same, and assuming normality. At a reviewer’s
request we will describe the relation of the p-value for this test with p-values obtained via
combination methods, from p-values of the two other tests. Denote p-value for testing the
means by p1, and p-value for testing the variances by p2. Zaykin et al. [2007] described

properties of a method by which L p-values are combined as ,
where Gx is a cumulative Gamma distribution function with the shape parameter equal to x,
and an arbitrary rate parameter. Setting λ = 1 gives Fisher’s combined p-value, which in the
case of just two p-values simplifies to pc = p1p2 [1 − ln(p1p2)]. This p-value corresponds exactly
to the p-value for the genotypic/diplotypic test, Tμ,V, or Tμ*,V, because Fisher’s test is based on

a sum of two degree of freedom chi-squares. The allelic/haplotypic p-value for testing  is
equivalent to pc obtained with λ = 1/2, because in this case, single degree of freedom chi-squares
are being added. With only two p-values, the combined values are expected to be similar for
different values of λ. Thus, the above simplification for Fisher’s pc gives a straightforward way
to examine the expected behavior of the test for the combined hypothesis. In particular, the test
is expected to provide an additional power only when both of the individual null hypotheses
are false. Of note, the solution of p = p2[1 − ln(p2)] shows that when p1 = p2 < ≈ 0.285, the
combined value is smaller than the individual values; otherwise, it is larger. Elston [1991]
showed that as L becomes large, this “critical value” approaches 1/e.

Cohort description
To illustrate an application of the proposed association tests, we performed an analysis of the
data collected within a larger prospective study, concerned with the pain sensitivity as a risk
factor for the development of facial pain [Diatchenko et al., 2005].

Subject recruitment—One hundred ninety six healthy European American pain-free
females with an age range of 18 to 34 years were genotyped and phenotyped. Phenotypic
procedures and demographic characteristics of the cohort at the time of recruitment were
described previously [Diatchenko et al., 2005].

Pain phenotyping procedures—Subjects were phenotyped with respect to their
sensitivity to pressure pain, thermal pain, and ischemic pain. A summary measure of thermal
threshold was used in this study as it has been shown to be the most sensitive measure with
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respect to association with catechol-O-methyltransferase (COMT) genotypes, and has the
lowest measurement error [Diatchenko et al., 2006, 2005]. A summary measure was calculated
by summing centered and scaled individual measures of thermal pain threshold, collected as
subjective estimates of rating thermal stimuli that were applied to the skin overlaying the right
masseter muscle, right forearm, and dorsal surface of the right foot. Positive values imply
higher pain thresholds, and negative values imply lower pain thresholds.

Genotyping—Genomic DNA was purified using QIAampTM 96 DNA Blood Kit (Qiagen,
Valencia, CA, USA) and used for 5′ exonuclease assay [Shi et al., 1999]. The primer and probes
were ordered from ABI, Foster City, CA. The genotyping error rate was directly determined
and was <0.005. Genotype completion rate was 95%.

Results
We will first present results of theoretical models, followed by the analysis of association of
pain characteristics with the COMT polymorphisms. In the theoretical part of the section, we
will refer to a model where the observed and the unobserved loci are denoted by A and B,
correspondingly. We will study situations where A and B represent loci with multiple
haplotypes. When both A and B are either di-allelic, or when A2, for example, can be considered
as the “not-A1” group of haplotypes, we will denote the vector of four effects, μAiBj = E(Y|Ai,
Bj), by M, and the four population frequencies by P:

Haplotype P M

A1B1 pA1B1 μA1B1

A1B2 pA1B2 μA1B2

A2B1 pA2B1 μA2B1

A2B2 pA2B2 μA2B2

Non-interactive models
First, we consider models where both observed (A) and unobserved (B) loci are functional,
contributing additively, with no interaction between the loci. In the di-allelic case, the array of
effects takes the form M = {κA1 + κB1, κA1 + κB2, κA2 + κB1, κA2 + κB2}, where κ denote additive
contributions of respective alleles. Figure 1 shows logs of theoretical mean and variance
contrasts for this model: ln(μA1/μA2), and ln(VA1/VA2), as functions of the frequency of A2B1.
The frequency pA1 was set to the frequency of a common COMT haplotype, 0.3034 (Table 1).
We used pA1B1 = 0.3034; pA1B2 = 0 in the left graph, and pA1B1 = pA1B2 = 0.3034/2 in the right
graph. We assumed κA1 = 2, κA2 =3, κB1 =4, κB2 =1. The graphs show an extended region of
VA1 ≠ VA2. To evaluate the proposed statistical tests, we took random samples of n = 500 from
diploid, randomly mating populations, that represent various points along the A2B1 frequency
axis of the left graph of Figure 1. The phenotype for the subject i with the haplotype pair
AsBt/AuBv in these and the subsequent simulations was generated as Yi = μAsBt + μAuBv + ξi;
where ξi ~ N(0, σ2). The locus B was assumed to be unobserved. Unless stated otherwise, all
simulations used at least 10,000 samples of 500 individuals and the nominal 5% level for the
tests.

The left three columns of Table 2 show resulting power values for a single SNP. Because the
goal was to evaluate the relative performance of the tests, the σ2 values, as shown in the table,
were taken to be different for each setting, so that medium to high power values could be
obtained. The corresponding results for unphased data, with population haplotype frequencies,
modeled after the COMT, are given in the right columns of the table. In the case of multiple
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unphased haplotypes, the haplotype AGCG corresponds to the allele A1, while the group A2 is
composed of the seven remaining haplotypes, with their respective frequencies.

The results show a good correspondence of power values for the di-allelic case (Table 2, left
three columns), with the case of unphased haplotypes (right columns of Table 2), with some
loss of power due to phase ambiguity. There is also a cost of considering diplotype, rather than
haplotype associations in this case, because the underlying model consists of phenotypic
contributions of haplotypes, and lacks dominance deviations due to entire diplotypes. These
findings will be confirmed in the subsequent simulations as well. In these simulations, the
unequal variance test for the mean is slightly, but consistently more powerful than the test
based on the common variance. This power advantage appears to be confined to cases when
the minor allele (or a tested haplotype with frequency less than 0.5) is associated with a
decreased variance. There is a power advantage associated with the inclusion of the variance
parameter in the range of pA1B1 from 0.25 to 0.65. On the other hand, the variance contrast in
the right graph of Figure 1 gives a substantial power boost only at the left part of the graph
(results not shown). The difference between the two graphs is that the frequency of A1 in the
left graph is confined to one of the haplotypes. This results in the complete standardized LD,
D′ = 1. With interactive models, high LD is no longer a requirement for the variance contrast
to provide a power advantage, as will be illustrated next.

Interactive models
The previous model was modified to include an epistatic component ε, as M = {ε + κA1 +
κB1, κA1 + κB2, κA2 +κB1, κA2 + κB2}. Figure 2(a) is a such a modification of the model that was
used to produce Figure 1(b), now with ε = 2. The effect of it is that the variance contrast curve
is pushed upward, compared to the previous picture. This is prominently reffected in the power
values for the test that includes the haplotype-specific variance (Table 3). The advantage of
including the variance parameter now extends throughout the entire range of the haplotype
frequency. Moreover, this finding holds under linkage equilibrium (LE) as well (Figure 2(b),
Table 4). Under LE, the behavior of the ratio of the haplotypic means and variances depends
only on allele frequencies at the unknown locus [Zaykin and Shibata, 2008], thus the x-axis of
Figure 2(b) tracks the frequency of B1. Power of the the unequal variance test for the mean is
slightly worse than that for the test based on the common variance, however, its size is closer
to the nominal 5% level in the presence of variance heterogeneity.

Models of association via LD
Models of association via LD (proxy models) assume an unobserved functional locus B, while
the observed locus A associated via LD with the B has no functional involvement. In the di-
allelic case, the array of effects is M = {x, y, x, y}. Graphs for this model (Figure 3) bear
similarity to the graphs for the non-interactive model (Figure 1). The distinction is that the
behavior in this case is completely governed by LD: both the mean and the variance contrast
curves cross zero at the same point. Figure 3(a) shows the LD correlation instead of the D′,
because D′ is equal to one throughout this graph. The power gained from the inclusion of the
haplotype-specific variance extends through only a limited part of the graph (Table 5).
Nevertheless, in the remainder of the table, the association is so pronounced that it is easily

detected with high power by either of the tests (  or ), even though very large values of
σ2 were assumed. For Figure 3(b), where the LD is not complete, there is no advantage in
including the haplotype-specific variance into the test (results not shown) - unlike with
interactive models, high LD is required for proxy models to induce a substantial variance
contrast.

The LD proxy model can be extended to multiple mutations, B1, …, BK. In this case, the
resulting mixture distribution at the observed haplotypes linked via LD with the B may provide
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considerable power advantages for the test that includes the variance contrast. The trait
distribution at the scored haplotypes is a mixture with weights that depend on pBiA (Appendix
1). Table 6 lists power values for a model with ten mutations B1, …, B10. The type-I error
entries in this case correspond to a situation when we are examining a “wrong” SNP, i.e. an
SNP in LE with the mutations Bi. The distribution of the trait in this case is still a mixture,
although there is no contrast between the distributions at the scored haplotypes. The inclusion
of the variance parameter yields a moderate gain in power. The gain is highest with the allelic/
haplotypic test, because of the lack of dominance deviations attributable to diplotypes. The test
Tμ* is found to be slightly more powerful than Tμ in these simulations.

Association of COMT polymorphisms with the pain threshold
Table 7 shows an application of the LRT tests to data on five polymorphisms in the COMT
gene. COMT is an example of a gene where multiple interacting variants have been suggested
to influence variation in several complex phenotypes. COMT codes for an enzyme that
metabolizes catecholamines, such as dopamine (DA), norepinephrine (NE) and epinephrine
(Epi), and thus affects an array of cognitive-affective traits, including pain perception
[Diatchenko et al., 2005;Nackley et al., 2007;Egan et al., 2001;Enoch et al., 2003;Oroszi and
Goldman, 2004;Meyer-Lindenberg et al., 2006]. Common nonsynonymous variation
val158met (rs4680) has been shown to influence thermostability of the enzyme [Lotta et al.,
1995], however, the associations between the low-activity Met158 allele and numerous
complex phenotypes [Egan et al., 2001;Enoch et al., 2003;Karayiorgou et al., 1999;Zubieta et
al., 2003;Oroszi and Goldman, 2004] have been often modest, and occasionally inconsistent.
Repeated retesting of the val158met has been partially driven by numerous molecular and
biochemical studies confirming that Met at position 158 does lead to a 3–4 times lower
enzymatic activity of COMT at both cell culture and organismal levels [Lotta et al.,
1995;Mannisto and Kaakkola, 1999]. There is evidence that additional functional SNPs in the
COMT gene locus can modulate COMT activity, as supported by a number of recent positive
association studies and molecular work using cell-based assays [Oroszi and Goldman,
2004;Meyer-Lindenberg et al., 2006;Mannisto and Kaakkola, 1999]. The list of potential
functional sites includes the following SNPs: rs2097603 in the promoter region of brain-
expressed, membrane-bound (MB-) COMT form [Palmatier et al., 2004;Zhu et al., 2004;Chen
et al., 2004], rs737865 upstream in the intron 1, and rs165599 in the 3′ untranslated region
[Shifman et al., 2002;Bray et al., 2003]. Furthermore, in studying the association between
COMT genotypes and variability in human pain perception, it has been found that the
val158met polymorphism alone was not significantly associated with a derived measure of
global pain sensitivity [Diatchenko et al., 2005]. Instead, three common haplotypes of the
COMT gene, consisting of two synonymous (rs4633 and rs4818) and one nonsynonymous
val158met SNPs are coding for different levels of enzymatic activity. Corresponding
differences in pain sensitivity are associated with regulation of the translation efficiency
through haplotype-dependent secondary mRNA structure [Nackley et al., 2006]. Thus, COMT
contains at least five functional polymorphisms that potentially impact the index of pain
sensitivity. Interactions of functional alleles at COMT imply that the genetic effects may not
be easily inferred from the information on one SNP at a time, and that the SNP-specific effects
may in fact be misleading. In our application, we tested four SNPs which have been previously
independently associated with COMT-dependent phenotypes: rs2097603, rs737865, rs4680
and rs165599. An additional SNP rs4818 was chosen as a major contributor to functional
COMT haplotypes that together with SNP rs4680 defines three functional haplotypes and
influences pain sensitivity [Diatchenko et al., 2005]. All SNPs were found to conform to Hardy-
Weinberg expectations. As a functional measure of COMT activity we used sensitivity to
noxious stimuli. A summary measure of thermal threshold has been chosen for this study as it
has been shown to be the most sensitive measure with respect to association with COMT
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genotypes, and has a small associated measurement error [Diatchenko et al., 2005,2006,
2007].

Two SNPs, rs737865 and rs4818 with the corresponding LD correlation of r = 0.5, show a
significant mean effect as well as an indication that variability might be different between
individuals carrying different alleles. There is a good correspondence between the asymptotic
and the resampled p-values for the mean and the variance tests (based on 50,000 trait value
permutations). There is less correspondence for the combined multilocus tests, Tμ, V, which
could be attributed to insufficient closeness to normality, small sample size, and accumulation
of errors from Tμ and TV that constitute the combined statistic. The major alleles, A of rs737865,
and G of rs4818 are associated with the same direction of the effect, as well as with the variance
increase. Haplotypes and diplotypes that carry either AG or GC combinations of alleles show
significance associated with the variance parameter. The genotypic/diplotypic tests were
included in those cases where there was an indication of a contrast in variance at the allelic/
haplotypic test, to rule out a possible variance increase due to dominance effects. Consistent
with previous publications [Diatchenko et al., 2005, 2006, 2007], homozygotes for AG
haplotype display the highest pain thresholds and the lowest sensitivity to pain, while
homozygotes for GC haplotype display the lowest pain thresholds and the highest sensitivity
to pain. Among the four haplotypes with the frequency of at least 0.05 that include all five
markers and carry the opposite effect alleles at rs737865 and rs4818, one shows a significant
variance effect (haplotype AAGGA). Results found to be significant at the 5% level by the
Tμ, were also found to be significant by the test Tμ* (data not shown). However, there was less
correspondence between the asymptotic and the resampled values for the Tμ*. There is an issue
of multiple testing that should be accounted for in the interpretation of these results.
Nevertheless, prior findings and the significance of the overall linear model that includes
additive effects of all five SNPs (p=0.013) suggest the existence of an association in the region.
The haplotype AGCGA with the significant mean effect corresponds to a high pain sensitivity
(“HPS”) haplotype of COMT [Diatchenko et al., 2005] that codes for a low translation
efficiency of COMT. This leads to a 25-fold lower enzymatic activity when compared with
the low pain sensitivity haplotype, LPS [Nackley et al., 2006]. The LPS corresponds to the
haplotype AAGGA of the present study. A significant variance contrast at rs737865 and an
increased variance associated with diplotype classes that include the haplotype GC point to a
possibility of additional unobserved functional variants that have not been typed in this study.
In those cases where a haplotype (or a diplotype) of interest shows an associated decreased
variance relative to the group that includes several other haplotypes, a possibility should be
examined that the variance in the combined group is increased due to a mixture of effects
associated with heterogeneous haplotypes in that group.

Parameter estimates, type-I error, and overall tests
When testing one haplotype at a time, a given haplotype hi is contrasted against the rest of the
haplotypes, collapsed into a combined group, hī. Population means and variances for additive,
recessive, dominant, and diplotypic models of analysis can be written in terms of the population
frequencies and effects of haplotypes. These theoretical values are given in Appendix 2, and
can be compared to the output of our EM algorithm for unphased data. The hypothesis tests
assume a normal distribution, however the test Tμ for comparison of haplotypic means is robust
to deviations from normality. The parameter estimates appear to be precise for non-normally
distributed traits. In this section, we assumed haplotype contributions to the phenotype to
follow either a normal or a Gamma distribution. For a haplotype hi in the Gamma model, its
contribution is represented by a random variable Xi ~ Gamma(αi, βi), with parameters given
in Table 1. Two haplotype contributions combine in an individual as Xi + Xj. A trait histogram
for a sample under this model would show a decidedly skewed distribution. The results (Table
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8) using samples of 300 individuals show good correspondence with theoretical values,
calculated according to Appendix 2.

Frequencies of the first five COMT haplotypes, as given in Table 1, cover the range from 0.064
to 0.3. These haplotypes were used to evaluate the type-I error rates as a function of frequency.
Results of the simulations, for different models of analysis, are shown in Table 9. Tests for the
haplotypic and the dominant models of analysis maintain the nominal 5% error rate even for
the rare haplotype (the last row in the table), and the error rate for the recessive model is the
worst, for the tests that incorporate the variance. The Tμ * was evaluated but not included into
the table for the dominant and the recessive models. This test maintained type-I error rate for
the dominant model. For the recessive model, it was approximately as liberal as that shown for
the diplotypic model. These results may be explained based on the expected number of
categories used in the comparisons. With N = 500, and the haplotype frequency p = 0.064, the
expected number of haplotypes is 2Np = 64. However, the diplotype and the recessive models
are both estimating the frequency of the homozygote, with the expected number (Np2) that is
equal to only about two. On the other hand, p = 0.3 gives the expected number of 45 individuals,
which appears to be sufficient. Based on these results, a permutational test is recommended to
verify small asymptotic p-values. Performance of the overall tests is summarized in Table 10.
The additive (haplotypic) model of analysis was used. We included results for the Haplotype
Trend Regression (HTR) method [Zaykin et al., 2002] for comparison. The first, “HTR”,
column gives power for the overall HTR test as described in Zaykin et al. [2002]. The second
column gives power for the Simes-based HTR, and these values are very similar to those for
the Simes-based Tμ (fifth column). Before the application of the Simes test, both of these
approaches compare the effect of each haplotype in turn with the weighted average for the rest
of the haplotypes. We note that HTR tests for individual haplotypes in these simulations gave
power that was nearly identical to the power of the haplotypic test Tμ (data not shown). For
non-normal data, such values are given in Table 11, again showing similarity between the two
tests. It is also expected that a multi-parameter haplotypic LRT (Tμ) would yield power values
that are similar to those given in the first column of Table 10, as based on the form of the test
(12) and on results from Appendix 1 of Zaykin et al. [2002]. Columns 2–7 of Table 10 give
values for the Simes-based tests, where p-values that correspond to the first five most frequent
haplotypes, listed in Table 1, are combined into the overall p-value. One exception is the last
row (Setting 8). For this row, we used the FUSION data frequencies of 5-SNP haplotypes, as
given in Table 1 of Lin [2004], and originally described in Valle et al. [1998]. Epstein and
Satten [2003] estimated susceptibility effects for these haplotypes and found two of the
haplotypes to be significantly associated (the first with an increased, the second with a
decreased susceptibility). Therefore, for these two haplotypes we allocated effects that are in
opposite directions from the baseline value.

The results can be summarized as follows. Predictably, the Simes-HTR gives power values
that are close to the values for the overall (Simes) Tμ. The Simes used as an overall test is more
powerful than a multi-parameter test when there are one or two haplotypes with effects that
are distinct from a baseline value. When all haplotypes have distinct mean effects, the multi-
parameter overall test is more powerful than the Simes, however power values for the two
methods are more similar when frequencies of haplotypes included into analysis are similar to
each other. The type-I error for the Simes test is well maintained. In the presence of multiple
haplotypic effects with the common variance (Settings 6,7,8), some increase in the type-I error
for the TV may be expected because of the mixture of effects associated with the combined
group (hī, Appendix 2). Since the combined group is expected to show an increased rather than
decreased variance, a possible modification of the test is to consider a one-tailed hypothesis
Vi > Vī.
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To investigate the effect of normality violation on the performance of the tests, we performed
additional simulations under the Gamma model, using tests for a single haplotype (h1 with the
frequency 0.3034). The power simulations (Table 11) indicate that only the tests Tμ and HTR
retain a proper type-I error. The other tests are sensitive to non-normality, however the Box-
Cox transformation remedies this problem. When the values αiβi are the same for all haplotypes,
the tests incorporating the haplotypic variance show a substantial gain in power, as expected,
based on the fact that . The relative performance of Tμ and Tμ* is
switched in settings 3 and 4: As we have noted, Tμ* tends to provide an increased power when
a tested haplotype (contrasted against the combined group) is associated with a smaller
variance, and when its frequency is smaller than the frequency of the combined group.

Caution is needed regarding the interpretation of results obtained for the transformed data.
Even under normality, the mean and the variance-specific tests are independent only under the
complete null. There might be some inflation of the type-I error for these tests when the second
parameter is heterogeneous between the haplotypes, and problem is likely to be exaggerated
by both non-normality as well as by the transformation. Summarizing results across different
simulations, we conclude that when variances are unequal, size of the test Tμ* is closer to the
nominal level than that of the Tμ. However, Tμ* is more sensitive to small expected counts, and
we recommend that its asymptotic p-values need to be verified by a follow-up with a
permutational test. Size of the variance-specific test in the presence of heterogeneity between
the means is close to the nominal level (e.g. pB1 = 0 and pB1 = 1 rows of Table 4). Interpretation

of results from testing the combined hypothesis ( ) is most straightforward. We note that
the HTR method [Zaykin et al., 2002] and a similar diplotype-based method (DTR) [Luo et
al., 2006] can be recommended for testing hypotheses concerning specifically the haplotypic
or diplotypic means. These methods are robust against deviations from normality, and they
retain proper size regardless of whether the haplotypic variances are unequal. In these
simulations, the HTR showed power values that are almost identical to the haplotypic Tμ (Table
11).

Discussion
The association models that we considered here assume that some relevant variation is
unknown to investigators. Although this incomplete knowledge impairs power to detect
haplotypic effects, it also induces differences in trait variances between the scored haplotypes.
We exploit this phenomenon in the proposed approach. Inclusion of the variance parameters
into haplotype association methods for unphased data is useful for two reasons. Firstly, this
adds power to detect associations under certain models, especially under models where known
and unknown variants interact with each other. Secondly, a variance increase at a haplotype
serves as an indication that the variant under study is either correlated, or epistatically interacts
with additional unobserved polymorphisms. We conclude that tests that account for the
haplotype- or diplotype-specific variance are useful for discovering complex associations with
quantitative traits. Power can be gained while examining only a subset of SNPs that are either
directly involved in joint multilocus genetic effects, or linked with functional variants via LD.
Our approach is not a replacement for the conventional way of comparing haplotypic means.
The number of tests is an issue, therefore at a hypothesis-generating stage, for example in a
whole genome association analysis, a routine utilization of the conventional approach is more
suitable. Testing additional hypotheses that involve haplotypic and diplotypic variances is more
relevant in a smaller, or a follow-up study, concerned with a number of preselected loci.

The unknown factor influencing the trait can be non-genetic. Both, the usual type of an
associations test for comparison of the haplotypic effects, as well as a test that incorporates
haplotype-specific variances are sensitive to confounding. However, in the absence of
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confounding, differences between either the haplotypic means, or the variances in this scenario
would indicate a partial functional involvement of the scored polymorphisms in the association
with the trait, as well as an interaction with the unknown factor.

The approach outlined here is applicable to random samples from homogeneous populations,
and thus, it is subject to the usual concerns about possibilities of confounding and stratification.
Recently, Epstein et al. [2007] described a simple and effective method to correct for population
stratification that can be used in conjunction with our approach. Further extensions are possible
that will incorporate family-based samples.

A priori, untyped polymorphisms that reside within the same gene might be considered to be
the first candidates that may account for a variance contrast between haplotypes. This is because
models without the LD are “less general”, in that they require a particular form of epistasis (or,
equivalently, a particular form of interaction with an environmental factor) in order to induce
a haplotypic variance contrast [Zaykin and Shibata, 2008]. A gain in power for the proposed
method is higher under models that involve some degree of interaction with or without LD.
Considering that compensatory changes that follow functional mutations are likely to be a
ubiquitous force in the genome evolution [Kern and Kondrashov, 2004; Kirby et al., 1995;
Kondrashov et al., 2002], multiple interacting functional SNPs within a gene locus could be
relatively common in the haplotypic organization of human genome. How easily these
interactions and the corresponding genetic variants might be identified remains an open
question, given statistical difficulties related to detection and characterization of complex
multilocus effects.

Software availability
Software implementing statistical approaches described here is available from the authors upon
request. Simulation scripts used in this study are available upon request from DVZ.
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Appendix 1. Effects at the scored locus under the heterogeneity model
Following Nielsen and Weir [1999], the effect of a scored allele, A1, can be written as

(15)

The second equality holds because A is now only a marker for nearby functional variants. The
probability Pr(Bi | A1) is a function of LD, i.e. Pr(B | A1) = pB +D/pA1, where D is the LD
coefficient, pA1Bi − pA1 pBi. Consider the effect difference

The difference is zero under linkage equilibrium. Otherwise, the sign of the effect difference
depends on the haplotype frequencies, pBiA1, pBiA2. The association effects and the LD
coefficients can effectively cancel each other at the observed “proxy” locus, yet the variance
contrast may remain substantial.

In the simulation experiments, the joint frequencies pBiAj were modeled assuming a Dirichlet
distribution. This distribution of population haplotype frequencies is justified under certain
population genetic models, such as models of drift-mutation equilibrium, as well as under some
non-equilibrium models [Wright, 1951; Balding, 2003]. Ten randomly chosen Dirichlet
parameters were set to 50, while the remaining 10 parameters were set to 1/20. By rejection
sampling, the frequency pA1 was ensured to be in the interval [0.27, 0.33], to approximate the
frequency of the common COMT haplotype. This model allocates an expected frequency of
around 0.09 to ten of the haplotypes, while generating a tail of rare haplotypes. The average
LD correlation across simulations was rBiA1 = 0.2, and the 95% quantile for the correlation
was 0.55. Common variance of the trait was assumed for all functional variants, σ2 = 1.
Assuming the underlying normal distribution and additivity of allelic effects, the effect means
were taken to be 1/2, 1,…,5. To conclude a single simulation experiment, a random sample of
500 diploid individuals was taken from the population constructed as just described. The
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advantage of generating new population haplotype frequencies for each simulation run is in
that it allows us to examine the expected behavior of statistical tests over a range of different
haplotype frequency configurations.

Appendix 2. Population parameter values
Here we consider theoretical parameter values for the mean and the standard deviation given
additive, diplotype, dominant and recessive models of analysis. We assume the population
HWE. For the purpose of evaluating the estimation techniques, we assume that the two
haplotypic contributions, represented by random variables Xi,.Xj, combine in a diplotype as
Xi + Xj, discarding dominance deviations. We denote the mean and the variance of Xi by θi and

, correspondingly. Thus, such model assumes additivity of haplotypic effects θi, θj in a
diplotype, θij = θi + θj. This allows to simplify the formulas, however more general expressions
that keep notation in terms of the diplotype effects and their frequencies are obtained similarly.
The population mean value and the trait variance in this model are

where pi is the frequency of the haplotype hi, {i = 1,…,k}.

Additive (haplotypic) model
Additive effect of the haplotype hi is defined as the effect of a diplotype that contains the hi,
while the second haplotype is randomly drawn from the same population. The variance is
defined similarly. From this definition, the additive mean and the variance for the haplotype
hi are

For the rest of the haplotypes, collapsed into a composite group, hī, the values are

where
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Diplotype model
The diplotype model distinguishes between the three diplotype classes, hi/hi, hi/hī, hī/hī. The
means and the variances are

Recessive model
The recessive model distinguishes between the two diplotype classes, hi/hi, and (hi/hī or hī/
hī). The means and the variances are

where I(·) is the indicator function.

Dominant model
The dominant model distinguishes between the two diplotype classes, (hi/hi or hi/hī), and hī/
hī. The means and the variances are
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Figure 1.
Values for ln(μA1/μA2) (*) and ln(VA1/VA2) (●) for the non-interactive model; σ2 = 1. Left graph,
(a): pA1B1 = 0.3034; pA1B2 = 0. Right graph, (b): pA1B1 = pA1B2 = 0.3034/2.
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Figure 2.
Values for ln(μA1/μA2) (*) and ln(VA1/VA2) (●) for the interactive model; σ2 = 1. Left graph,
(a): pA1B1 = pA1B2 = 0.3034/2; “D” denotes the standardized LD (D′). Right graph, (b): Linkage
equilibrium.
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Figure 3.
Values for ln(μA1/μA2) (*) and ln(VA1/VA2) (●) for the LD proxy model; σ2 = 1. Left graph, (a):
pA1B1 = 0.3034; pA1B2 = 0; “R” denotes the LD correlation. Right graph, (b): pA1B1 = pA1B2 =
0.3034/2; “D” denotes the standardized LD (D′).
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Table 1
COMT Haplotype frequencies and parameters used in simulation experiments

Haplotype Frequency Shape† Scale†

h1 ( AGCG) 0.3034 1 1.0

h2 ( AATC) 0.2909 2 1.2

h3 ( GATC) 0.2264 3 1.4

h4 ( GGCG) 0.0967 4 1.5

h5 ( AACC) 0.0637 5 1.6

h6 ( GACC) 0.0138 6 1.7

h7( AGTC) 0.0029 7 1.8

h8 ( AACG) 0.0022 8 2.0

†
Shape (α) and scale (β) refer to parameters of the gamma distribution used for the haplotypic effect and variance estimation simulations.

Haplotypes consist of the following COMT SNPs: rs2075507, rs6269, rs4633, and rs4818 with the pairwise LD correlations [Weir, 1996] equal to 0.271,
−0.335, −0.270, −0.844, and −0.989.
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Table 8
Parameter estimation results

Model Mean Standard deviation

diplotypic theoretical estimate theoretical estimate

h+/h+ 2.00 2.00 ± 0.27 1.41 1.36 ± 0.28

h+/h− 5.24 5.80 ± 0.32 3.41 3.75 ± 0.34

h−/h− 8.47 7.98 ± 0.36 4.61 4.62 ± 0.39

haplotypic theoretical estimate theoretical estimate

h+ 4.25 4.65 ± 0.29 3.31 3.66 ± 0.29

h− 7.49 7.32 ± 0.28 4.54 4.50 ± 0.32

dominant theoretical estimate theoretical estimate

h+/h+; h+/h− 4.66 5.12 ± 0.29 3.38 3.74 ± 0.31

h−/h− 8.47 7.99 ± 0.36 4.61 4.63 ± 0.39

recessive theoretical estimate theoretical estimate

h+/h+ 2.00 2.00 ± 0.27 1.41 1.36 ± 0.28

h+/h−; h−/h− 6.97 6.96 ± 0.27 4.40 4.39 ± 0.28
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