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Abstract
A major challenge in genome-wide association studies (GWASs) is to derive the multiple testing
threshold when hypothesis tests are conducted using a large number of single nucleotide
polymorphisms. Permutation tests are considered the gold standard in multiple testing adjustment
in genetic association studies. However, it is computationally intensive, especially for GWASs,
and can be impractical if a large number of random shuffles are used to ensure accuracy. Many
researchers have developed approximation algorithms to relieve the computing burden imposed by
permutation. One particularly attractive alternative to permutation is to calculate the effective
number of independent tests, Meff, which has been shown to be promising in genetic association
studies. In this study, we compare recently developed Meff methods and validate them by the
permutation test with 10,000 random shuffles using two real GWAS data sets: an Illumina 1M
BeadChip and an Affymetrix GeneChip® Human Mapping 500K Array Set. Our results show that
the simpleM method produces the best approximation of the permutation threshold, and it does so
in the shortest amount of time. We also show that Meff is indeed valid on a genome-wide scale in
these data sets based on statistical theory and significance tests. The significance thresholds
derived can provide practical guidelines for other studies using similar population samples and
genotyping platforms.
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With the advent of high throughput genotyping technology, genome-wide association
studies (GWASs) are becoming more common. One of the major challenges in GWASs is to
derive the multiple testing correction threshold. There are two simple methods in practice:
Bonferroni and Šidák corrections[Šidák 1967]. These methods try to keep the experimental-
wise error rate (αe) at a nominal level, e.g. 0.05, by adjusting the point-wise error rate (αp).
Suppose that there are M independent tests, Šidák correction gives αp = 1−(1−αe)1/M and
Bonferroni correction gives αp = αe/M. These two methods are very closely related and lead
to similar results. Unfortunately, they can be conservative if the independence assumption

†Correspondence should be addressed to: Xiaoyi Gao, PhD, Division of Statistical Genomics, Washington University School of
Medicine, St. Louis, MO 63108, ray.x.gao@gmail.com, Phone (314) 362-3593.

NIH Public Access
Author Manuscript
Genet Epidemiol. Author manuscript; available in PMC 2011 January 1.

Published in final edited form as:
Genet Epidemiol. 2010 January ; 34(1): 100–105. doi:10.1002/gepi.20430.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/345208954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


does not hold, and this is usually the case for densely typed single nucleotide
polymorphisms (SNPs) in current genetic association studies.

In genetic association studies, researchers treat permutation tests as the gold standard for
multiple correction adjustment. For the permutation tests of population-based studies,
phenotypes are randomly shuffled while the SNP genotypes are kept the same [Churchill
and Doerge 1994]. Hence, the correlation structure among SNPs is preserved and the
phenotype is permuted to simulate the null hypothesis of no association. However,
permutation tests are hindered by the large number of random shuffles required, which take
considerable computing time and resources. If a large number of SNPs, e.g. 1M or 500K, are
involved in the genetic association study, permutation tests become impractical for GWASs
because it can take years to finish on a single modern PC if a substantial number of random
shuffles are carried out [Conneely and Boehnke 2007; Gao, et al. 2008]. Reducing the
number of random shuffles to make the computation feasible results in thresholds that suffer
from high levels of variation. If we increase the number of random shuffles, the computing
time increases tremendously. Therefore, less computationally demanding methods that can
approximate permutation tests with a large number of shuffles are desirable.

One particularly attractive alternative to permutation tests is to calculate the effective
number of independent tests, Meff [Cheverud 2001; Gao, et al. 2008; Li and Ji 2005;
Moskvina and Schmidt 2008; Nyholt 2004; Nyholt 2005]. Despite criticism from Salyakina
et al. [2005], the validity of Meff has been shown by many researchers. The idea of Meff-
based approaches is simple: “filter out” the correlation among tests, leaving only the
effective number of independent ones, Meff, and then use the Bonferroni or the Šidák
correction by replacing M with Meff in the corresponding formula.

Meff-based corrections have been shown to be effective and fast. The Meff approach was
first proposed in genetic studies by Cheverud [2001] and later refined by Nyholt [2004].
Later, it was found that Nyholt’s approach can be conservative when haplotype block
structure exists [Salyakina, et al. 2005]. Salyakina et al. [2005] also reported some anti-
conservative behavior for Nyholt’s approach for data with strong linkage disequilibrium
(LD) though these observations have not been seen by the other investigators. Li and Ji
[2005] proposed another Meff estimation formula and showed an improvement in power
over Nyholt’s approach but at the expense of the type I error rate. Cheverud’s, Nyholt’s and
Li and Ji’s Meff methods, however, were validated using only a small number of SNPs, and
it remained to be seen how well they performed using a large number of correlated SNPs.
Recently, Gao et al. [2008] proposed to a principal component approach to derive Meff,
named simpleM, and showed that it provided a better estimate than Li and Ji’s method in the
presence of a large number of SNPs. Moskvina and Schmidt [2008] derived a new Meff
estimation formula, calling it Keff, and validated it using a GWAS data set.

Gao et al’s simpleM method performed accurately and efficiently when a large number of
SNPs were involved, even under different LD situations and showed potential for GWASs
[Gao, et al. 2008]. It uses composite LD among SNPs to capture the correlation and derives
the Meff using the number of principal components that contribute to 99.5% of variation.
When a large number of SNPs are used, they need to be partitioned into smaller blocks in
order to calculate eigenvalues effectively [Gao, et al. 2008]. The authors tested two partition
methods, fixed length and haplotype blocks inferred from HaploView software [Barrett, et
al. 2005]. Partitions based on haplotype blocks gave slightly better Meff estimations than
fixed length partitions. However, computing haplotype blocks is slow and impractical on the
genome-wide scale. Moskvina and Schmidt’s Keff algorithm estimates the overall type I
error probability using pair-wise correlations among SNPs[Moskvina and Schmidt 2008].
However, it can be very time consuming to derive the full correlation matrix among SNPs
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and the authors developed an approximation method by using only small window sizes, e.g.
20, for the correlation matrix. The Keff approach was shown to be able to give a relatively
accurate though slightly conservative estimation when tested using a GWAS data set.

In this study, we evaluate the simpleM (available at https://dsgweb.wustl.edu/rgao/) as tested
in the original paper [Gao, et al. 2008], and the Keff algorithm (available at
http://x001.psycm.uwcm.ac.uk/) as tested in the original paper [Moskvina and Schmidt
2008], using two real GWAS data sets: an Illumina 1M BeadChip and an Affymetrix
GeneChip® Human Mapping 500K SNP data set. We also show that Meff is indeed valid on
a genome-wide scale in these data sets based on statistical theory and significance tests.

In our evaluation of the permutation approximation algorithm, we first used the Illumina 1M
BeadChip data, from our genetic study of aspirin responsiveness (GeneSTAR) project
(https://dsgweb.wustl.edu/genestar/). In total, 1,004,037 SNPs were genotyped. For the
multiple testing evaluations, we only used common SNPs with a minor allele frequency
greater than or equal to 0.05, reducing the set to 778,629 SNPs. 656 unrelated white
individuals were used. The missing value rate among these common SNPs was about 0.26%.
We used the K-nearest neighbor (KNN) approach [Hastie, et al. 2001] to fill in missing
genotypes. Other imputation algorithms, e.g. Mach [Li and Abecasis 2006], IMPUTE
[Marchini, et al. 2007], Beagle [Browning and Browning 2007] and BimBam [Servin and
Stephens 2007], should work well too, but can take more computing time. For the second
data set, we used the Affymetrix GeneChip® Human Mapping 500K Array Set, from the
Framingham Heart Study [Splansky, et al. 2007]
(http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gap). In total, there are 485,424 SNPs in the
database. We also only used common SNPs, reducing the set to 383,213 SNPs. 698
unrelated white individuals were used. The missing value rate was about 1.4% among these
common SNPs and we used the KNN approach to fill in missing genotypes.

We compared the simpleM and the Keff methods to permutation and Bonferroni corrections.
We conducted permutation tests with 10,000 random shuffles using the Cochran-Armitage
trend test[Armitage 1955; Cochran 1954]. We set experiment-wise error rates to be 0.05.
Details of permutation tests have been described previously[Gao, et al. 2008]. Results for
each chromosome (chromosome-wide αe = 0.05) and genome-wide (genome-wide αe =
0.05) are shown in Table 1 for the Illumina 1M data and Table 2 for the Affymetrix 500K
data. For each chromosome, we calculated the permutation threshold and derived the αps for
the simpleM, Keff and Bonferroni methods by setting chromosome-wide αes to 0.05. For the
simpleM and Keff methods, we inferred the effective number of independent tests first and
then applied the Šidák formula to derive the corresponding αps (see the Table 1 and 2). The
simpleM method gives the best approximation (the smallest distance) to the permutation
thresholds, while the Keff method gives more conservative estimations, and Bonferroni gives
the most conservative results. We also derived the thresholds for the whole genome by
setting genome-wide αes to 0.05. In Table 1 (the Illumina 1M data), the genome-wide
permutation threshold is 1.36e–7 and the corresponding estimated Meff is log(1-0.05)/log(1–
1.355645e–7) = 378368. The simpleM, Keff and Bonferroni methods give the thresholds as
1.24e–7, 9.70e–8 and 6.42e–8, respectively. Again, we see that Bonferroni is very
conservative, Keff is better and simpleM gives the best approximation. For the genome-wide
estimation of the Meff, the simpleM and Keff estimate 34992 and 150656 more tests than the
permutation, respectively. The Keff estimates 115664 more tests than the simpleM method,
and hence is more conservative. In Table 2 (the Affymetrix 500K data), the permutation
threshold is 2.46e–7 and the corresponding estimated Meff is log(1-0.05)/log(1–2.46119e–7)
= 208408. The simpleM, Keff and Bonferroni methods give the thresholds as 2.23e–7,
1.95e–7 and 1.30e–7, respectively. In order to see their difference clearly, we can treat the
permutation threshold as the “true” baseline. The simpleM, Keff and Bonferroni thresholds
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are 91%, 79% and 53% of the “true” value. Therefore, we continue to see that Bonferroni is
conservative, Keff is better and simpleM gives the best approximation. For the genome-wide
estimation of the Meff, the simpleM and Keff estimate 21352 and 54306 more tests than the
permutation, respectively. The Keff estimates 32954 more tests than the simpleM method,
and thus is more conservative.

With the empirical distribution from permutation available, we can also derive the
corresponding type I error rate for each correction threshold. For the Illumina 1M BeadChip,
the type I error rate is 0.05 for the genome wide permutation threshold, 1.36e–7, since we
set αe = 0.05. The genome-wide type I error rate for the simpleM method is 0.045 because
450 permutation tests out of 10,000 have p-values less than the derived threshold, 1.24e–7.
Similarly, the Keff and Bonferroni genome-wide thresholds, 9.70e-8 and 6.42e–8,
correspond to type I error rates of 0.035 and 0.022, respectively. Again, we see that the
simpleM method gives the best approximation to the desirable type I error rate, 0.05. For the
Affymetrix 500K data set, the type I error rate is 0.05 for the genome-wide permutation
threshold, 2.46e–7. Similarly, the simpleM, Keff and Bonferroni genome-wide thresholds,
2.23e–7, 1.95e–7 and 1.30e–7, correspond to type I error rates of 0.046, 0.040 and 0.026,
respectively. Again, we see that the simpleM method gives the best approximation to the
desirable type I error rate, 0.05. We also see that the Bonferroni correction produces a more
conservative type I error rate, 0.026 (the 500K data) vs. 0.022 (the 1M data), when the LD
among SNP increases, while the simpleM method gives consistent type I error. As the SNP
density goes higher and higher, e.g. some imputed datasets can contain up to 2.5M SNPs,
the advantage of simpleM over Bonferroni would be more apparent.

To demonstrate the computing time required for each method, we will use the Illumina 1M
BeadChip chromosome 1 data as an example. There were 63560 common SNPs in
chromosome 1. Permutation tests with 10,000 random shuffles took more than 200 hours on
a personal computer (PC) (Intel® Core™2 Duo 2.6G CPU with 3GB memory). Calculating
Keff, with a window size of 20 (w = 20), took about 18 minutes. We also calculated Keff
using different window sizes, because bigger window sizes should result in better
estimations [Moskvina and Schmidt 2008]. It took about 48 minutes to calculate Keff when
we used a window size of 50. The Keff = 41155 (w = 50) estimation did not significantly
improve over Keff = 41438 (w = 20) even though the computing time more than doubled.
Therefore, we did not try larger window sizes for Keff. In comparison, it took less than one
minute for the simpleM method to infer Meff for the chromosome 1 data. If we extended
these calculations on a single PC for the entire genome for the Illumina 1M BeadChip, it
would take about 15 weeks for the permutation method with 10K shuffles, about 221
minutes for the Keff and only about 13 minutes for the simpleM.

It is known that the minimum P value in each permutation should follow a beta(1, M)
distribution if the M markers are statistically independent [Casella and Berger, 2001]. This
allows us to verify the consistency between observed minimum p-values with their
theoretical distribution. Hence, we fitted a Beta distribution to the observed 10,000
minimum p-values from the permutation tests for each GWAS data set and estimated the
two beta parameters by maximum likelihood estimation (MLE) using SAS version 9.1.3
(SAS Institute, Cary, NC, USA). For the Illumina 1M BeadChip, the MLEs for the two beta
parameters, α and β, are α̂ = 1.02 and β̂=413549.7. If we fix α=1 and only estimate β, then
the MLE β̂=404001, which is in line with the Meff suggested by the permutation tests,
378368. Goodness-of-fit tests based on empirical distribution function (EDF) statistics did
not reject the null hypothesis (the data follow a specified distribution) at the 0.25
significance level, which suggests that the data (minimum p-values) follow the specified
beta distribution. The p-values are >0.25, >0.25 and >0.25 for the EDF tests: Kolmogorov-
Smirnow, Cramér-von Mises and Anderson-Darling statistic, respectively. The quantile-
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quantile plot for minimum p-values from the permutation tests is shown in Figure 1. From
the plot, we see that the empirical distribution and theoretical distribution agree with each
other and the data points fall on the diagonal line, indicating that the minimum p-values
follow the beta distribution very well. In Table 1, we also find that the genome-wide Meff
estimation from the simpleM, 413360, gives a better (closer) approximation to the MLE
estimate β̂ and the permutation suggested Meff than the Keff estimate.

For the Affymetrix 500K data, we saw a pattern similar to the Illumina data. The MLEs for
the two beta parameters, α and β, are α̂ = 1.03 and β̂ = 222043.9. The MLE β̂ = 214986.2 if
we fix α=1, which is consistent with the Meff suggested by the permutation tests, 208408.
Goodness-of-fit tests based on EDF statistics did not reject the null hypothesis at the 0.1
significance level, which suggests that the data follow the specified beta distribution. The p-
values are 0.19, 0.13 and 0.13 for the EDF tests: Kolmogorov-Smirnow, Cramér-von Mises
and Anderson-Darling statistic, respectively. The quantile-quantile plot for minimum p-
values from the permutation tests is shown in Figure 2. From the plot, we see that the
empirical distribution and theoretical distribution agree with each other, indicating that the
minimum p-values follow the beta distribution very well. In Table 2, we find that the
genome-wide Meff estimation from simpleM, 229760, gives a better approximation to the
MLE estimate β̂ and the permutation suggested Meff than the Keff estimate. Therefore, the
effective number of independent tests is indeed valid for these data sets based on statistical
theory and significance tests and is a reasonable approach in multiple testing corrections for
GWASs.

Many other multiple testing correction methods exist. Lin [2005] proposed using a Monte
Carlo approach to approximate the joint distribution of test statistics and then using a Monte
Carlo distribution to adjust p-values. Seaman and Müller-Myhsok [2005] proposed a direct
simulation approach that approximates p-values from permutation tests. Both methods avoid
permutation by simulating test statistics directly from the asymptotic distribution. Conneely
and Boehnke [2007] developed a p-value adjustment method through numerical integration
assuming an asymptotic multivariate normal distribution for the test statistics and achieved
even greater speed compared to simulation approaches. However, the numerical integration
can only handle up to 1,000 dimensions at present. Furthermore, these methods can take
much longer to compute than the simpleM method. Conneely and Boehnke [2007] estimated
that it would take several hours for a 400K genome-wide scale, and for the Affymetrix 500K
data, the simpleM method only took about 7 minutes. Moreover, the simpleM method is a
non-parametric method that does not rely on the joint distribution of test statistics to be
known.

With the increasing popularity of GWASs, the simpleM algorithm can serve as a fast
approximation to the computationally intensive permutation procedure. It gives a highly
accurate estimation of the permutation threshold for multiple testing correction while greatly
reducing the computing time and resources required. We validated the method using each
individual autosomal chromosome and together in a genome-wide format. We believe the
simpleM method, an effective number of independent tests approach, can be useful to
current large-scale genetic association studies for quickly estimating the permutation
threshold. Moreover, the multiple testing thresholds derived in this study can provide
practical guidelines for other GWASs using similar population samples, genotyping
platforms and quality control protocols.
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Figure 1.
Quantile-Quantile plot for minimum p-values using the Illumina 1M data.
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Figure 2.
Quantile-Quantile plot for minimum p-values using the Affymetrix 500K data.
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