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Angiosarcomas (ASs) represent a heterogeneous group of malignant vascular tumors that may occur spontaneously as primary

tumors or secondarily after radiation therapy or in the context of chronic lymphedema. Most secondary ASs have been asso-

ciated with MYC oncogene amplification, whereas the role of MYC abnormalities in primary AS is not well defined. Twenty-

two primary and secondary ASs were analyzed by array-comparative genomic hybridization (aCGH) and by deep sequencing

of small RNA libraries. By aCGH and subsequently confirmed by fluorescence in situ hybridization, MYC amplification was

identified in three out of six primary tumors and in 8 out of 12 secondary AS. We have also found MAML1 as a new potential

oncogene in MYC-amplified AS. Significant upregulation of the miR-17-92 cluster was observed in MYC-amplified AS compared

to AS lacking MYC amplification and the control group (other vascular tumors, nonvascular sarcomas). Moreover, MYC-ampli-

fied ASs were associated with a significantly lower expression of thrombospondin-1 (THBS1) than AS without MYC amplifica-

tion or controls. Altogether, our study implicates MYC amplification not only in the pathogenesis of secondary AS but also

in a subset of primary AS. Thus, MYC amplification may play a crucial role in the angiogenic phenotype of AS through up-

regulation of the miR-17-92 cluster, which subsequently downregulates THBS1, a potent endogenous inhibitor of

angiogenesis. VVC 2012 Wiley Periodicals, Inc.

INTRODUCTION

Angiosarcoma (AS) represents a rare (<2%) sub-

group of soft tissue sarcomas characterized by an

aggressive clinical behavior (Fletcher et al., 2002).

Radical surgery and adjuvant radiotherapy, when

indicated, represent the cornerstone of the treat-

ment for patients with localized disease. However,

despite an adequate locoregional treatment, up to

50% of patients will develop metastatic relapse

and will die of disease (Fayette et al., 2007). The

genetic and molecular aberrations involved in AS

tumorigenesis remain poorly understood. We and

others have recently shown that a particular subset

of AS, those arising in a previously radiated area, is

characterized by a consistent amplification of the

MYC oncogene in chromosome band 8q24.21

(Manner et al., 2010; Guo et al., 2011). So far, such

amplifications of MYC have not been reported in

primary AS. MYC plays a crucial role in growth

control, differentiation, and apoptosis, and its aber-

rant expression is associated with several cancers

(Adhikary and Eilers, 2005; Albihn et al., 2010).

Interestingly, recent studies have also demon-

strated a major contribution of MYC to tumor

angiogenesis (Baudino et al., 2002; Dews et al.,

2006; Gordan et al., 2007; Dang et al., 2008). One
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gonié, 229 Cours de l’Argonne, 33000 Bordeaux, France.
E-mail: italiano@bergonie.org

Received 21 November 2011; Accepted 9 January 2012

DOI 10.1002/gcc.21943

Published online 2 March 2012 in
Wiley Online Library (wileyonlinelibrary.com).

VVC 2012 Wiley Periodicals, Inc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/345208946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of the major mechanisms involved in MYC-induced

angiogenesis is the upregulation of the miR-17-92

microRNA cluster, the predicted targets of which

include thrombospondin-1 (THBS1), encoding a

potent endogenous inhibitor of angiogenesis, and

connective tissue growth factor (CTGF), encoding an
extracellular matrix-associated molecule involved in

angiogenesis and metastatic progression (Dews

et al., 2006). We hypothesize that this molecular pro-

cess is frequent in AS, at least in those tumors carry-

ing an amplification of MYC, and may play a crucial

role in the tumorigenesis of such vascular tumors.

Thus, we used genome-wide array comparative

genomic hybridization and deep sequencing of small

RNA libraries in a group of 22 AS patients to investi-

gate this pathogenetic mechanism.

MATERIALS AND METHODS

Patient and Samples

Twenty-two AS and four other vascular tumors

(two epithelioid hemangiomas and two epithe-

lioid hemangioendotheliomas) were included in

this study on the basis of availability of frozen

material for molecular studies. The clinicopatho-

logic characteristics are summarized in Table 1.

Diagnoses were established according to the

World Health Organization Classification of

Tumors (Fletcher et al., 2002). This study was

approved by the institutional review board.

Array-CGH

Genomic DNA was isolated from frozen tumor

tissue by phenol/chloroform extraction and qual-

ity was confirmed by spectrophotometry and elec-

trophoresis. Array CGH analysis was performed

as described previously (Thomas et al., 2011).

Briefly, tumor and reference DNA samples were

labeled with Cyanine-3-dUTP and Cyanine-5-

dUTP, respectively, by random priming (Agilent

Enzymatic Labeling Kit, Agilent Technologies,

Santa Clara, CA). The reference sample com-

prised a pool of DNA from multiple clinically

TABLE 1. Clinicopathologic Characteristics of AS and Types of Platforms Investigated

Case ID Age Sex
Previous
RT-therapy

Chronic
Lymphedema

Primary
location

MYC
amplified
by FISH

MYC
amplified
by aCGH

Micro-RNA
deep

sequencing qRT-PCR

AS3a 58 M No No Femur NA Yes No Yes
AS4 63 F Yes No Breast Yes NA Yes No
AS9 70 M No No Thigh No No Yes Yes
AS10 70 F Yes No Breast Yes Yes No Yes
AS11 50 M No No Spleen NA No Yes No
AS15 61 F Yes No Breast NA Yes No Yes
AS20 56 F Yes No Breast Yes Yes No Yes
AS27 37 F No No Breast No NA Yes No
AS29 75 F Yes No Breast Yes No Yes Yes
AS30 38 F Yes No Head and neck No No Yes Yes
AS31 79 M No No Scalp No NA Yes Yes
AS32 76 F Yes No Breast Yes Yes No Yes
AS38 74 F Yes Yes Forearm Yes Yes Yes Yes
AS39 84 M Yes Yes Arm Yes Yes Yes Yes
AS68 80 F Yes No Breast Yes Yes Yes No
AS70a 38 F No No Breast Yes Yes Yes Yes
AS73 83 F Yes No Breast NA Yes Yes No
AS76 76 M Yes No Bladder NA No Yes No
AS85 76 F Yes No Breast Yes NA Yes No
AS123 76 F Yes No Breast No No Yes Yes
AS124 57 M No No Head and neck NA No Yes No
AS125a 73 F No No Breast Yes Yes No Yes

Other vascular tumors

Age Sex Histology Primary location Micro-RNA deep sequencing qRT-PCR

AS78 M 68 EHE Arm No Yes
AS80 M 41 Epithelioid hemangioma Chest wall Yes No
AS84 M 31 Epithelioid hemangioma Metatarsal bone Yes No
EHE74 M 44 EHE Liver No Yes

RT, radiation therapy; EHE: epithelioid hemangioendothelioma.
aPrimary AS tumors that showed MYC amplification by aCGH.

570 ITALIANO ETAL.

Genes, Chromosomes & Cancer DOI 10.1002/gcc



healthy donors (Promega, Madison, WI) of the

same gender as the AS patient. The labeled

probes were combined and hybridized to a

�180,000-feature, genome-wide oligonucleotide

CGH array (design 052252, Agilent Technolo-

gies). Arrays were scanned at 5 lm resolution

using an Agilent G2565CA scanner. Image data

were processed with Feature Extraction version

10.10 and Genomic Workbench version 6.5 (Agi-

lent Technologies). Data were filtered to exclude

probes exhibiting nonuniform hybridization or

signal saturation and were normalized using the

centralization algorithm with a threshold of six.

The ADM2 algorithm was used to define CNAs

using a ‘‘three probes minimum’’ filter and a

threshold of six with a fuzzy zero correction. A

genomic copy number amplification was defined

as a region within which the log2 ratio of tumor

DNA to reference DNA exceeded 2.0. The dis-

tribution of aberrations within all tumors of the

same subtype (primary or secondary) was eval-

uated using the ‘‘common aberration’’ function of

Genomic Workbench, to identify statistically sig-

nificant trends. The ‘‘differential aberration’’

function was similarly used to compare the

genomic profiles of all primary tumors with all

secondary tumors, to identify aberrations whose

DNA copy number status was significantly associ-

ated with tumor subtype.

Fluorescence In Situ Hybridization

Fluorescence in situ hybridization (FISH) anal-

ysis was performed by hybridization of bacterial

artificial chromosome (BAC) probes, covering MYC
(RP11-440N18; 8q24.21:128,596,756-128,777,986),

FLT4 (RP11-586L9; 5q35.3:179,971,355-180,139,

031), MAML1 (RP11-828P1; 5q35.3:179,128,722-

179,355,313) and two reference probes from the

5q33.3 region (RP11-583A20; chr5:158,433,114-

158,602,540 and RP11-117N12; chr5:158,645,646-

158,819,496) onto 4-lm sections of formalin-fixed

paraffin-embedded tissue from each tumor. BAC

clones were chosen according to their genomic

location as defined in the UCSC genome browser

(http://genome.ucsc.edu). The BAC clones were

obtained from BACPAC sources of Children’s Hos-

pital of Oakland Research Institute (CHORI)

(Oakland, CA) (http://bacpac.chori.org). BAC DNA

was isolated according to the manufacturer’s

instructions, labeled with different fluorochromes in

a nick translation reaction, denatured, and hybri-

dized to pretreated slides. Slides were then incu-

bated, washed, and mounted with DAPI in an

antifade solution as described previously (Anto-

nescu et al., 2010). The genomic location of each

BAC set was verified by hybridizing them to nor-

mal metaphase chromosomes. Two hundred inter-

phase nuclei from each tumor were examined

using a Zeiss fluorescence microscope (Zeiss Axio-

plan, Oberkochen, Germany), controlled by Isis 5

software (Metasystems).

Micro-RNA Sequencing

Total RNA was extracted from frozen tumor

tissue using Trizol reagent according to the man-

ufacturer’s instructions (Invitrogen, Carlsbad,

CA). Small RNA cDNA libraries were prepared

from 16 AS and two other vascular tumors as

described previously (Hafner et al., 2010). In 20-

ll reactions, 2 lg total RNA was ligated to 100

pmol adenylated 30 adapter containing a unique

pentamer barcode at the 50 end using 1 lg
Rnl2(1-249)K227Q [purified from Escherichia coli
containing pET16b-Rnl2(1-249)K227Q (Addgene,

Cambridge, MA)], in 50 mM Tris-HCl, pH 7.6;

10 mM MgCl2; 10 mM 2-mercaptoethanol; 0.1

mg/mL acetylated bovine serum albumin (Sigma-

Aldrich, St. Louis, MO) and 15% DMSO for 16

hr on ice. After ligation, up to 20 samples bearing

unique barcodes were pooled and purified on a

15% denaturing polyacrylamide gel. RNAs of 45

and 50 nucleotides were excised from the gel,

eluted, and ligated to 100 pmol 50 oligoribonu-

cleotide adapter (GUUCAGAGUUCUACAGUC

CGACGAUC) as described above for the 30 adap-
tors, except that reactions contained 0.2 mM

ATP and RNL1 instead of RNL2(1–249) K227Q

and were incubated for 1 hr at 37�C. Ligated

small RNAs were purified on a 12% polyacryl-

amide gel, reverse transcribed using SuperScript

III Reverse Transcriptase (Invitrogen, Carlsbad,

CA), and amplified by PCR. The forward primer

was AATGATACGGCGACCACCGACAGGTT-

CAGAGTTCTACAGTCCGA; reverse transcrip-

tion and reverse primer was CAAGCAGAAGAC

GGCATACGA. On average 1,265,133 (range,

332,816–2,543,130) sequence reads of miRNAs

were obtained per sample.

Real-time RT-PCR

One microgram of total RNA was reverse tran-

scribed using the High-Capacity cDNA Reverse

Transcription Kit (Applied Biosystems, Carlsbad,

CA) at 25�C for 10 min, 37�C for 120 min, 85�C
for 5 min and hold at 4�C. In all, 20 ng/lL of
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resultant cDNA was used in a Q-PCR reaction

using an 7500 Real-Time PCR System (Applied

Biosystems, Carlsbad, CA) and predesigned Taq-

Man ABI Gene expression Assays (Hs_

01070499_m1 for MAML1; HS00905030_m1 for

MYC; Hs_00962908_m1 for THBS1; HS_

00170014_m1 for CTGF). Amplification was car-

ried at 95�C for 10 min, and 40 cycles (95�C for

15 sec, 60�C for 1 min). To calculate the effi-

ciency of the PCR reaction, and to assess the sen-

sitivity of each assay, we also performed a 5-point

standard curve (80, 26.67, 8.88, 2.96, and 0.98 ng/

lL). Triplicates CT values were averaged, amounts

of target will be interpolated from the standard

curves and normalized to GAPDH (reference gene).

Western Blotting

Western blotting was performed to assess the

expression of MAML1 protein in AS with and

without MAML1 gene amplification. Frozen tissue

from five AS samples (one with MAML1 amplifi-

cation and four without MAML1 amplification)

and cells from the MYC-amplified breast cancer

cell line SKBR3 (Guo et al., 2011) were homoge-

nized in RIPA buffer supplemented with prote-

ase and phosphatase inhibitors. Electrophoresis

and immunoblotting were performed on the pro-

tein extracts using 50 lg of protein per sample

and the anti-MAML1 monoclonal antibody (Cell

Signaling Technology, Danvers, MA) was diluted

according to the manufacturers’ recommenda-

tions. Following hybridization with the secondary

anti-rabbit antibody (Calbiochem, La Jolla, CA),

the blots were incubated with Immun-Star horse-

radish peroxidase luminal/enhancer (Bio-Rad) and

exposed onto Kodak Biomax MR Film (Eastman

Kodak Co., Rochester, NY).

Statistical Analysis

The count data were normalized/rescaled using

DESeq R package (Anders and Huber, 2010). Micro-

RNAs with <10 counts in both type/condition were

not considered for further analysis. To determine dif-

ferentially expressed microRNAs a Binomial test

implemented in DESeq, package was used with fold

change of 2, and false discovery rate of 0.1.

RESULTS

MYC is Amplified in the Majority of Secondary

AS but also in a Subset of Primary AS

Eighteen cases of AS (6 primary AS and 12

secondary AS) were analyzed by array-CGH, each

Figure 1. Penetrance plots showing the frequency of gain and loss of genomic regions within (A) all
18 AS evaluated by aCGH, (B) all primary tumors, and (C) all secondary tumors. Each chromosome is
represented on the x-axis, and the y-axis indicates the % gain or loss of the corresponding genomic
region within the corresponding population. Gains are shown in red and losses in green. The position of
MYC genomic region is indicated by an arrow.
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of which exhibited DNA copy number aberra-

tions. The frequency and distribution of aberra-

tions within the cohort is summarized as a

penetrance plot in Figure 1, which also compares

the profiles of genomic gains and losses in pri-

mary tumors with those of secondary tumors. A

total of 438 aberrations was identified across the

cohort of 18 cases, with a mean of 24 aberrations

per case (median ¼ 22). The incidence of aberra-

tions within the 12 cases of secondary AS (total ¼
309 aberrations, range ¼ 12–49, mean per case ¼
26, median ¼ 23) was highly comparable to that

of the six primary AS (total ¼ 129 aberrations,

range ¼ 10–35, mean per case ¼ 22, median ¼
20). No genomic regions showed statistically sig-

nificant association with tumor subtype when

evaluating all tumors within the same subtype,

nor when comparing all primary tumors to all sec-

ondary tumors. Supporting Information Table 1

provides a summary of genomic imbalances

within each of the 18 tumors evaluated by array-

comparative genomic hybridization (aCGH).

Strikingly, the MYC locus was found amplified in

8 out of the 12 secondary AS, but also in three

out of the six primary AS. The amplification sta-

tus of MYC was confirmed by FISH in all but

two cases, showing consistently more than hun-

dreds of copies in the form of hsr or multiple

focal amplicons, compared to FLT4 used as con-

trol (Fig. 2A). In one case, FISH results were not

interpretable despite several attempts (AS3: pri-

mary AS arising from bone), whereas in the other

case (AS29: radiation-induced breast AS), there

was discordance between FISH showing a MYC
amplification and array-CGH, showing no imbal-

ance at this locus. Among the four secondary AS

lacking MYC amplification, two of them were out-

side the breast, one in the parotid, and the other

one in the bladder. In two of these cases, the

lack of MYC abnormalities was validated by both

aCGH and FISH, whereas in one case no mate-

rial was available for FISH validation. MYC
mRNA expression by real-time PCR was assessed

in eight cases of AS [three primary AS with MYC
amplification, three secondary AS with MYC
amplification, and two AS without MYC amplifica-

tion (used as control group)]. We found an over-

expression of the MYC gene in secondary and

Figure 2. MYC and MAML1 amplification in AS. (A) FISH analysis
with BAC probes RP11-440N18 (MYC) and RP11-586L9 (FLT4),
showing high level of MYC amplification (red signal) in a case of pri-
mary AS (AS125). FLT4 (green signal) is not amplified. (B) FISH analy-
sis with BAC probes RP11-828P1 (MAML1), RP11-586L9 (FLT4), and
5q33.3 region reference probes (RP11-583A20 and RP11-117N12;
red) in a chronic lymphedema-associated AS (AS39). MAML1 (orange
signal) and FLT4 (green signal) are coamplified. (C) QRT-PCR analysis

measuring MAML1 mRNA expression in AS with MAML1 gene ampli-
fication, in AS without MAML1 gene amplification and in other vascu-
lar tumors. Gene expression was quantified by QRT-PCR and
expressed as mean relative expression (reference gene: GAPDH). (D)
Western blotting assessing MAML1 protein expression in AS with
MAML1 gene amplification (AS 39), in AS without MAML1 gene ampli-
fication (AS27, AS29, AS38, and AS70) and in the SKBR3 breast can-
cer cell line.

miR-17-92 OVEREXPRESSION IN MYC-AMPLIFIED ANGIOSARCOMA 573

Genes, Chromosomes & Cancer DOI 10.1002/gcc



primary AS with MYC amplification (mean fold

changes ¼ 2.5 and 2.4, respectively). There were

no correlations found with AS histologic subtype

(epithelioid, spindle), anaplasia or degree of vas-

cular differentiation and the presence of MYC
genomic aberrations.

The NOTCH Pathway Effector Gene MAML1

(5q35.3) is Amplified and Overexpressed in a

Subset of AS

Two cases of MYC-amplified secondary AS dis-

played coamplification of the 5q35.3 region,

which included FLT4, encoding the vascular en-

dothelial growth factor receptor 3, as reported

previously (Guo et al., 2011), as well as MAML1,
which appears relevant for AS genesis because it

encodes a crucial effector of the NOTCH path-

way. As such, we further analyzed the amplifica-

tion status of MAML1 in 10 additional cases (two

primary AS and eight secondary AS) by FISH.

Overall, we have found an amplification of

MAML1 in 5 cases (all secondary AS) out of 28

samples (18%) (Fig. 2B). In all these cases,

MAML1 was coamplified with FLT4. To confirm

that MAML1 may be a ‘‘driver’’ gene of the

5q35.3 amplicon, we have assessed its mRNA by

qRT-PCR (3 AS cases with MAML1 amplifica-

tion, 17 AS cases without MAML1 amplification,

and 2 other vascular tumors) and protein expres-

sion by Western blotting (one case with MAML1
amplification, four AS cases without MAML1
amplification and the SKBR3 cell line). By qRT-

PCR, we have found a significant overexpression

of MAML1 in AS with MAML1 amplification in

comparison with AS without this aberration (P <
0.0001) and other vascular tumors (P < 0.0001)

(Fig. 2C). By Western blotting, we observed that

TABLE 2. Significant Differential Expression of the miR-17-92 Cluster in MYC-Amplified AS Compared to MYC-unamplified AS,
Other Vascular Tumors, WDLPS and DDLPS

Mean clone count Frequency of cloning (log scale)

MicroRNA
MYC-amplified

AS
MYC-unamplified

AS
MYC-amplified

AS
MYC-unamplified

AS FC FDR

hsa-miR-17-92 cluster 36,687 15,609 6.54E202 1.48E202 4.4 4E202
hsa-miR-17 12,999 5,137 2.3E�02 6.7E�03 3.4 1.8E�02
hsa-miR-18a 4,160 1,334 7.7E�03 1.3E�03 5.7 3.3E�02
hsa-miR-19a 10,107 4,744 1.9E�02 5.3E�03 3.6 1.2E�01
hsa-miR-20a 9,357 4,344 1.6E�02 4.2E�03 3.8 3.5E�02
hsa-miR-92a 19 5 3.8E�05 1.3E�05 2.8 4.4E�02

MicroRNA MYC-amplified
AS

Other
vascular
tumors

MYC-amplified
AS

Other
vascular
tumors

FC FDR

hsa-miR-17-92 cluster 36,687 7,908 6.54E202 6.89E203 9.5 4.4E204
hsa-miR-17 12,999 2,606 2.29E�02 2.32E�03 9.8 1.1E�03
hsa-miR-18a 4,160 609 7.68E�03 5.24E�04 14.6 5.8E�04
hsa-miR-19a 10,107 2,305 1.89E�02 2.01E�03 9.4 2.2E�03
hsa-miR-20a 9,357 2,326 1.59E�02 1.98E�03 8.0 5.1E�03

MicroRNA MYC-amplified AS WDLPS MYC-amplified AS WDLPS FC FDR

hsa-miR-17-92 cluster 36,687 2,551 6.54E202 5.4E203 12.1 2.2E207
hsa-miR-17 12,999 277 2.3E�02 4.7E�04 48.4 2.8E�12
hsa-miR-18a 4,160 158 7.7E�03 2.9E�04 26.3 1.8E�08
hsa-miR-19a 10,107 1,374 1.9E�02 3.1E�03 6 7.7E�04
hsa-miR-20a 9,357 742 1.6E�02 1.5E�03 10.8 4.8E�06
hsa-miR-92a 19 0 3.8E�05 0 NA 2.9E�10

MicroRNA MYC-amplified AS DDLPS MYC-amplified AS DDLPS FC FDR

hsa-miR-17-92 cluster 36,687 2,551 6.54E202 5.4E203 12.1 2.2E207
hsa-miR-17 12,999 549 2.3E�02 5.9E�04 39 2.6E�06
hsa-miR-18a 4,160 274 7.7E�03 3.3E�04 23.1 5.2E�05
hsa-miR-20a 9,357 1,444 1.6E�02 1.7E�03 9.4 1.9E�03

FC: fold-change; FDR: false discovery rate.
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MAML1 protein was expressed in the AS cases

with MAML1 amplification, but not in the four

AS cases lacking MAML1 amplification nor in the

MYC-amplified SKBR3 cell line (Fig. 2D). We

did not observe any difference in terms of clinical

or pathologic characteristics between AS with and

without 5q35 amplification.

The miR-17-92 Cluster is Preferentially

Overexpressed in AS with MYC Amplification

We profiled miRNA expression in 16 AS (eight

with MYC amplification and eight without MYC
amplification) and two other vascular tumors

using deep sequencing of small RNA libraries.

By comparing the miRNA expression profile of

MYC-amplified AS and MYC unamplified AS, we

found 43 miRNAs that were differentially

expressed (Table 2). Among them, miRNAs from

the miR-17-92 cluster were the most strongly up-

regulated miRNAs (Fig. 3 and Table 2). This

overexpression was not the result of genomic

amplification, because the 13q31.3 locus encoding

the mir-17-92 cluster was balanced in all the 18

cases assessed by array-CGH (data not shown).

We also observed this upregulation in comparison

to other vascular tumors and a group of 44 non-

vascular sarcomas (well-differentiated/dedifferen-

tiated liposarcomas, WDLPS/DDLPS) without

MYC amplification/overexpression and previously

analyzed with the same method and in the same

laboratory (Ugras et al., 2011) (Fig. 3). Moreover,

all the five miRNAs encoded by the 17-92 cluster

were overexpressed except miR-19b-1 and miR-

92a-1, which were poorly represented in AS (data

not shown).

Overexpression of the miR-17-92 Cluster in AS

with MYC Amplification is Associated with

Downregulation of THBS1

The miR-17-92 cluster contains miR-18a and

miR-19a that have been shown to affect tumor

angiogenesis by downregulating the mRNA

expression of THBS1 and CTGF genes, respec-

tively. Therefore, we compared the expression of

these two genes in AS with (n ¼ 13) and

AS without (n ¼ 12) MYC amplification, other

vascular tumors (n ¼ 2), and WD/DDLPS (n ¼
4) by qRT-PCR. We found a significant

Figure 4. QRT-PCR analysis measuring THBS1 and CTGF mRNA
expression in MYC-amplified ASs, in MYC-unamplified AS, in other
vascular tumors, in WDLPS/DDLPS. Gene expression was quantified
by QRT-PCR, and expressed as mean relative expression (reference
gene: GAPDH).

Figure 3. Differential expression of the miRNA of the miR-17-92 cluster in MYC-amplified AS, in
MYC-unamplified AS, in other vascular tumors, in WDLPS and in DDLPS. (y axis: frequency of cloning:
proportion of miRNA from the total, transformed by the log function).

miR-17-92 OVEREXPRESSION IN MYC-AMPLIFIED ANGIOSARCOMA 575

Genes, Chromosomes & Cancer DOI 10.1002/gcc



downregulation of THBS1 and CTGF in MYC-
amplified AS in comparison with MYC-unampli-

fied AS (THBS1: fold change ¼ 0.15, P ¼ 0.02;

CTGF: fold change ¼ 0.18; P ¼ 0.06), other vas-

cular tumors (THBS1: fold change ¼ 0.20, P ¼
0.004; CTGF: fold change ¼ 0.16; P ¼ 0.02) and

WD/DDLPS (THBS1: fold change ¼ 0.19, P ¼
0.004; CTGF: fold change ¼ 0.21; P ¼ 0.05)

(Fig. 4).

DISCUSSION

We herein report that genomic amplification of

MYC is not restricted to radiation-induced AS as

previously recognized, but may also occur in a

proportion of primary AS. The three cases of pri-

mary AS with an amplification of MYC arose in

different anatomical sites: breast (n ¼ 2) and

bone (n ¼ 1), suggesting that this genomic event

represents a true driver genomic event rather

than a site-specific epiphenomenon. A recent

study which identified a signature of 135 genes

discriminating radiation-induced sarcomas (leio-

myosarcomas, osteosarcomas, and ASs) from spo-

radic sarcomas did not include MYC as part of

this signature; the only function found to be sig-

nificantly deregulated between the two groups

being mitochondria (Hadj-Hamou et al., 2011).

Moreover, we reported in a previous study the

absence of MYC amplification in radiation-

induced sarcomas other than ASs (Guo et al.,

2011). Altogether, these data suggest that MYC
amplification is not the hallmark of ionizing radia-

tion in the radiation-induced sarcomas, whatever

their histology might be.

By extending the number of primary AS cases

analyzed by array-CGH and FISH, we report that

genomic amplification of MYC is not restricted to

radiation-induced AS as suggested previously, but

may also occur in a proportion of primary AS.

The high incidence of MYC amplification in sec-

ondary AS and its occurrence in a subset of pri-

mary AS raises the question of its functional role

in the tumorigenesis of these highly aggressive

vascular tumors. MYC exerts its transcriptional

activation function through heterodimerization

with MAX (Kretzner et al., 1992). The MYC/

MAX heterodimer interacts with specific consen-

sus sequences—the E boxes—in promoters of

activated target genes. We previously showed

that the MYC/MAX interaction is detected only

in AS with MYC amplification (Guo et al., 2011).

Moreover, we observed that MAX mRNA expres-

sion did not parallel the high levels of MYC in

these tumors but showed equally low expression

at both mRNA and protein level in AS with and

without MYC amplification (Guo et al., 2011).

These results suggested that the functional role

of MYC in MYC-amplified AS may involve addi-

tional or alternative mechanisms outside the

MYC/MAX interaction.

Interestingly, recent studies have demonstrated

that besides its involvement in the control of cell

proliferation, apoptosis, and differentiation, MYC

contributes also in noncell-autonomous cancer

process such as angiogenesis (Baudino et al.,

2002; Dews et al., 2006; Gordan et al., 2007;

Dang et al., 2008). The role of MYC in angiogen-

esis may be of particular importance in vascular

tumors, such as AS. Interestingly, one of the

major proangiogenic events triggered by MYC

relies on the activation of the miR-17-92 cluster

(Dews et al., 2006). This miRNA cluster, located

at 13q31.3, encodes six mature miRNAs: miR-17,

miR-18a, miR-19a, miR-19b-1, miR-20a, and

miR-92a-1 and is a direct transcriptional target of

MYC. These miRNAs have been shown to medi-

ate the proangiogenic effect of MYC by decreas-

ing the THBS1 (particularly for miR-19a) and

CTGF mRNA (particularly for miR-18a) half-life,

thereby promoting tumor growth in vivo in a

mouse colon carcinoma model (Dews et al.,

2006). THBS1 is the first endogenous inhibitor of

angiogenesis which has been identified. This pro-

tein inhibits angiogenesis directly by interacting

with specific receptors and stimulating Fas/Fas

ligand-mediated apoptosis of endothelial cells,

but also indirectly by modulating the activity of

several angiogenic factors such as FGF-2, VEGF,

HGF, or PDGF. There are only very limited

data about the status of THBS1 in sarcomas, a

decreased expression having been reported in

Kaposi sarcoma (Taraboletti et al., 1999) or

Ewing sarcoma (Potikyan et al., 2007). Interest-

ingly, the therapeutic efficacy of the THBS1-mi-

metic angiogenesis inhibitor ABT-510 has been

evaluated in a phase 2 trial including several his-

tological sarcoma subtypes (Baker et al., 2008).

Although some patients experienced prolonged

disease stabilization, the activity of this agent was

considered as modest by the investigators. This

conclusion may have been affected by the lack of

selection of patients included in the study.

Indeed, in regard to AS, our results suggest that

only a subset of patients may benefit from such a

therapeutic strategy.

CTGF (also known as CCN2) is a member of

the so-called CCN family, which includes
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cysteine-rich 61 [(Cyr61) CCN1], nephroblastoma

overexpressed [(Nov) CCN3], Wisp-1/elm1

(CCN4), Wisp-2/rCop1 (CCN5), and Wisp-3

(CCN6) cells (Bradham et al., 1991). Its role in

angiogenesis appears ambivalent and depending

on the cellular context (Inoki et al., 2002). Our

results showing a downregulation of CTGF in

MYC-amplified AS favor its involvement in

angiogenesis inhibition at least in this specific sar-

coma subtype. Besides downregulating THBS1,

the mir-17-92 cluster can also promote angiogene-

sis by attenuating the TGF-b signaling pathway

to shut down clusterin expression (Dews et al.,

2010).

This cluster can also act as a bona fide onco-

gene. For instance, miR-17 and miR-20a have

been shown to regulate cell-cycle progression by

targeting E2F1 (O’Donnell et al., 2005; Sylvestre

et al., 2007; Woods et al., 2007). However, the

analysis of our array-expression data did not

reveal any significant difference of expression of

E2F1 between MYC-amplified and MYC-unam-

plified AS (data not shown). This result suggests

that noncell-autonomous cancer processes such as

angiogenesis represent the main functional conse-

quences of MYC amplification in AS.

Array-CGH data confirmed the presence of

genomic imbalances in AS cases without MYC
amplification. However, further studies are neces-

sary to identify the oncogenic trigger events of

this subset of tumors. Our CGH results showed

coamplification of the 5q35.3 region in 2 out of

11 cases with MYC amplification. Our previous

study suggested FLT4 gene as a potential target

gene of this amplicon (Guo et al., 2011).

Although, our present results support these find-

ings, they identify MAML1 as a new potential

candidate. MAML1 belongs to a family of

defined transcriptional coactivators for the Notch

pathway (Wu et al., 2000). The Notch pathway

plays a crucial role in vascular development

and tumor angiogenesis (Ranganathan et al.,

2011). There are also several lines of evidence

of an aberrant activation of the Notch pathway

in benign vascular tumors such as hemangio-

mas (Calicchio et al., 2009; Wu et al., 2010;

Adepoju et al., 2011). As several inhibitors of

the Notch pathway are currently under clinical

development, the finding of MAML1 amplifica-

tion and overexpression in AS deserves further

in vitro and in vivo studies to clarify the func-

tional role of the Notch pathway in AS-genesis

and as potential therapeutic target.

AS represents a heterogeneous group of malig-

nant vascular tumors, occurring not only in differ-

ent anatomical locations, but also in distinct

clinical settings, such as after radiation therapy or

in association with chronic lymphedema. This

clinical heterogeneity mirrors the genetic hetero-

geneity of AS. We have previously shown that

despite their consistent morphology, radiation-

induced ASs are genetically different from the

majority of primary AS as a result of MYC amplifi-

cation. Our present results strongly suggest that

this genomic aberration may play a crucial role in

the angiogenic phenotype radiation-induced AS

and a minority of primary AS through upregula-

tion of the miR-17-92 cluster. Functional experi-

ments are needed to confirm the role of miR-17-

92 overexpression and THBS1 downregulation in

MYC-amplified AS.
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