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Abstract

Initial sensitivity to psychostimulants can predict subsequent use and abuse in humans. Acute 

locomotor activation in response to psychostimulants is commonly used as an animal model of 

initial drug sensitivity and has been shown to have a substantial genetic component. Identifying 

the specific genetic differences that lead to phenotypic differences in initial drug sensitivity can 

advance our understanding of the processes that lead to addiction. Phenotyping inbred mouse 

strain panels are frequently used as a first step for studying the genetic architecture of complex 

traits. We assessed locomotor activation following a single, acute 20 mg/kg dose of cocaine 

(COC) in males from 45 inbred mouse strains and observed significant phenotypic variation across 

strains indicating a substantial genetic component. We also measured levels of COC, the active 

metabolite, norcocaine and the major inactive metabolite, benzoylecgonine, in plasma and brain in 

the same set of inbred strains. Pharmacokinetic (PK) and behavioral data were significantly 

correlated, but at a level that indicates that PK alone does not account for the behavioral 

differences observed across strains. Phenotypic data from this reference population of inbred 

strains can be utilized in studies aimed at examining the role of psychostimulant-induced 

locomotor activation on drug reward and reinforcement and to test theories about addiction 

processes. Moreover, these data serve as a starting point for identifying genes that alter sensitivity 

to the locomotor stimulatory effects of COC.
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The most recent survey of drug use in the US indicates that there were 2.8 million new drug 

users in 2012 (SAMHSA 2013). However, only a subset of individuals who try drugs go on 

to develop addiction. Predisposition to develop addiction is controlled, in part, by genetic 

factors (Kreek et al. 2012) and thus, identifying genetic differences that alter addiction 

liability is an active area of biomedical research.

The progression from initial drug exposure to subsequent use and abuse is thought to be 

dependent on many factors including physiological or neurobiological changes following 

exposure (Badiani & Spagnolo 2013; Russo et al. 2010). There is evidence in both humans 

and animals that initial response to an addictive substance can predict subsequent use and 

abuse (De Wit & Phillips 2012; Fergusson et al. 2003; Haertzen et al. 1983; Lambert et al. 

2006; Lundahl & Lukas 2007; Schafer & Brown 1991). In humans, initial positive responses 

to cocaine (COC) and other stimulants predict latency to second use (Davidson et al. 1993) 

and increased risk for dependence and abuse (Lambert et al. 2006). Initial sensitivity in 

animal models is often measured as acute locomotor activation following drug 

administration. The extent to which this behavior predicts active drug-seeking behaviors 

such as self-administration and conditioned place preference varies across studies. Early 

studies on rats provided evidence that elevated lomocotor activation was associated with 

higher levels of self-administration (Deminiere et al. 1989; Piazza et al. 1989). This finding 

has been replicated in more recent studies (Allen et al. 2007; Fattore et al. 2009; Giorgi et 

al. 2005) but not in others (Mandt et al. 2008; Mantsch et al. 2001). These data indicate that 

associations between initial locomotor sensitivity to COC and drug reward and 

reinforcement behaviors are complex and likely depend on many factors including genetic 

background.

A wide range of untapped phenotypic and genetic diversity exists among inbred mouse 

strains and may be useful for dissecting the biological and genetic mechanisms that 

influence addiction-related behaviors. Inbred strain surveys are an effective method for 

analyzing the genetic architecture of complex phenotypes and may be helpful in dissecting 

the biological and genetic mechanisms that influence addiction-related behaviors. We tested 

male mice from 45 inbred strains, including both standard and wild-derived, for locomotor 

activation following an acute dose of COC and observed significant strain effects on 

behavior indicating substantial genetic influence. Furthermore, we tested levels of COC and 

two metabolites in both brain and plasma in the same set of strains at two time points after 

COC administration. Correlational analysis of behavior and pharmacokinetic (PK) measures 

indicate that PK explains some, but not all, of the phenotypic variation observed among 

inbred strains.

These data represent the largest inbred strain survey and the first reported analysis of wild-

derived strains for COC-induced locomotor response and PK. The strain differences 

reported here serve as a starting point for more detailed analysis of genetic and PK 
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influences on COC-induced activation and the role of initial locomotor sensitivity on 

addictive behaviors in mice.

Materials and methods

Animals

A total of 839 males from 45 inbred mouse strains were studied for locomotor response to 

COC and a separate set of 306 mice from the same set of strains were tested for COC PK. 

Strains were chosen to maximize genetic diversity and included both standard laboratory 

and wild-derived strains. The complete list of strains and number of mice tested for each 

strain are available in Table S1. For both behavioral and PK studies, mice were purchased 

from the Jackson Laboratory (Bar Harbor, ME, USA) and allowed to acclimate in an animal 

holding room in the vivarium at the University of North Carolina for at least 10 days prior to 

testing. Strains were randomly assigned to a batch such that all animals in a given strain 

were spread across multiple batches. For behavior, an average of 18 mice per strain (range: 

12–22) were tested in 42 batches across 17 months. A total of 52 C57BL/6J (B6) mice were 

tested across 21 of the 42 batches to serve as a temporal control. At least two B6 mice were 

tested per batch with the exception of one batch in which only one B6 mouse was tested. For 

PK studies, a total of six male mice per strain (three mice per time point) were tested across 

23 batches. Mice were group housed (2–4 per cage) in ventilated caging (Tecniplast, 

Buguggiate, Italy) on a 12-h light/dark cycle (lights on at 0700 h). Food (Purina RMH 3000; 

Purina, St. Louis, MO, USA) and water were provided ad libitum. Mice were approximately 

67 days of age (±6.4 days) at the onset of testing. Behavioral testing was conducted between 

the hours of 0800 and 1200 h during the light part of the animals’ light/dark cycle. All 

procedures were approved by the Institutional Animal Care and Use Committee of The 

University of North Carolina.

Behavior

Mice were tested over three consecutive days. On Days 1 and 2, mice received an 

intraperitoneal (IP) injection of physiological saline in a volume of 0.01 ml/g immediately 

prior to placement in an open field (OF; Med Associates ENV515-16, St. Albans, VT, USA) 

for 30 min. On Day 3, mice received an IP injection of 20 mg/kg COC HCl (Sigma-Aldrich, 

St. Louis, MO, USA) immediately prior to a 30-min test session in the OF. The OF was a 17 

× 17″square arena with a white Plexiglas floor and clear Plexiglas walls surrounded by 

infrared beams spaced 1″ apart on the X, Y and Z-axes to detect both horizontal and vertical 

movement. Measures in the OF included distance traveled (in centimeters), number of 

ambulatory (directed) movements, rearing behavior, average velocity and percent time 

resting. Data were collected and analyzed using Med-Associates Windows-based Open field 

activity software (v5). Individual animals’ behaviors were calculated as the sum of the 

behavior across the entire 30-min test period. Habituation to the novel OF was calculated by 

subtracting Day 2 activity from Day 1 activity. Locomotor response to COC, changes in 

average velocity and rearing were calculated as a difference score by subtracting Day 2 

phenotypes after saline injection from Day 3 phenotypes after COC injection. Latency to 

peak locomotor response was also assessed.
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Pharmacokinetics

Naïve mice were administered a single 20 mg/kg dose of IP COC HCl, anesthetized with 

isoflurane at 10 and 30 min following COC administration and 50 μl of blood was collected 

by cardiac puncture, placed in a heparinized tube, centrifuged and the resulting plasma was 

removed and snap-frozen in liquid nitrogen. Whole brain was collected, rinsed, weighed and 

snap-frozen in liquid nitrogen. Plasma and brain samples were stored at −80°C until 

analyzed. Plasma and brain concentrations of COC, norcocaine (NOR) and benzoylecgonine 

(BZE) were quantified using liquid chromatography tandem mass spectrometry (Slawson et 

al. 2002).

Plasma and brain concentrations are expressed as ng/ml and ng/g, respectively. The area 

under the concentration vs. time curve (AUC) in plasma and brain was calculated for each 

animal using a linear-up log-down function (Winnonlin v5.2; Pharsight, St. Louis, MO, 

USA).

Statistical analysis

Basic statistics were performed using SPSS 16.0 for Mac (Chicago, IL, USA) and SAS 

software SAS v. 9.2 (SAS Institute Inc., Cary, NC, USA). We performed hierarchical cluster 

analysis to investigate how behavior phenotypes are correlated with each other. We used 1-

absolute (Pearson correlation) as the measure of dissimilarity between pairs of phenotypes 

and the complete linkage for clustering.

Intrastrain (VE) and interstrain (VG + VE) variance were used to calculate genetic variance 

(VG) and broad sense heritability was calculated using the following formula: H2 = VG/(VG + 

VE).

Difference scores describing habituation to the novel OF (Day 1 – Day 2) and behavioral 

response to COC (Day 3 – Day 2) for locomotor behavior, rearing and average velocity were 

treated as dependent variables and analyzed by one-way analysis of variance (ANOVA) to 

determine strain effects. An analysis of covariance (ANCOVA) model that also includes 

Day 2 behavior as a covariate was used for COC response. Brain and plasma concentrations 

of COC, NOR and BZE were also analyzed by ANOVA to determine the effects of strain 

and time (10 and 30 min post-drug administration). For any phenotype with a significant 

strain by time interaction, we performed post hoc t-tests to investigate which strains have 

significant time effects and P-values were adjusted using the Bonferroni correction for 

multiple tests (45 comparisons). Corrected P-values <0.0011 are reported as significant.

The relationship between behavioral responses to COC and PK was investigated with a 

linear regression model where difference scores are response variables and PK AUC are 

covariates.

Results

Stability of behavior

Statistical analysis of B6 behavior across batches indicated that average velocity (P = 0.022) 

and rearing behavior (P < 0.0001) have significant batch effects. However, for average 
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velocity, the batch effect is no longer significant after multiple testing correction. No batch 

effects were observed for distance traveled, ambulatory episodes and percent time resting.

Open field behaviors

Hierarchical cluster analysis indicated that total distance traveled, ambulatory episodes and 

percent time resting are tightly clustered compared with rearing and average velocity on 

each of the three testing days (Fig. S1). Based on this result, we describe here the data for 

total distance only, along with rearing behavior and average velocity. Strain means for all 

variables are provided in Tables S2 and S3 and on the Mouse Phenome Database (http://

phenome.jax.org/).

Open field behavior on Days 1 and 2

Significant strain differences were observed for habituation to the OF for distance traveled 

(F(44,831) = 7.7; P < 0.001), rearing (F(44,831) = 4.6; P < 0.001) and average velocity 

(F(44,831) = 2.0; P < 0.001). In general, most strains showed a decrease in locomotor activity 

and rearing on Day 2 vs. Day 1 (Fig. 1a, b). Average velocity also decreased across the first 

two days of testing for many strains, but 14 strains showed either no change or an increase 

in average velocity on Day 2 vs. Day 1 (Fig. 1c).

Acute COC and open field behavior

Inbred strains varied significantly in their response to a single dose of COC. There were 

significant strain effects on locomotor activity (F(44,837) = 15.1; P < 0.001), rearing 

(F(44,837) = 11.4; P < 0.001) and average velocity (F(44,837) = 9.7; P < 0.001) after 

controlling for these behaviors on Day 2. Locomotor activity and average velocity increased 

in most strains following exposure to COC, although some strains showed little or no 

increase in locomotor activity (Fig. 2a) and average velocity decreased in five strains (Fig. 

2b). Rearing decreased following COC administration in most strains, although a subset of 

eight strains exhibited increased rearing (Fig. 2c).

Broad-sense heritabilities of total distance, rearing and average velocity difference scores 

were calculated at 0.53, 0.37 and 0.30, respectively.

Mean latency to peak locomotor response across strains was 12.9 min (range: 2.5–21.1) with 

significant strain differences observed (F(44,821) = 4.3; P < 0.001; Fig. S2a). However, 

latency did not correlate with locomotor response to COC (r(45) = 0.12; P > 0.40).

Locomotor activity and response to COC

Mice that showed lower habituation scores (difference score of Day 1 – Day 2) showed a 

trend toward increased COC locomotor activation, although the correlation was not 

significant (r(45) = −0.27; P = 0.071). A comparison of locomotor response to novelty on 

Day 1 and COC locomotor difference scores (Day 3 – Day 2) indicated that Day 1 

locomotor behavior was significantly correlated with COC-induced locomotor activation 

(r(45) = 0.43; P < 0.01; Fig. S3).
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Pharmacokinetic analysis

Cocaine—Plasma COC concentration decreased significantly between 10 and 30 min in all 

strains (F(1,305) = 354.7; P < 0.001) and mean COC concentration in the plasma differed 

significantly across strains (F(44,305) = 2.5; P < 0.001) (Fig. S4a). No strain by time 

interaction effects were observed (F(44,305) = 1.2; P > 0.05).

Brain concentrations of COC also decreased significantly between 10 and 30 min time 

points in all strains (F(1,305) = 245.7; P < 0.001) and mean COC concentration in the brain 

varied significantly across strains (F(44,305) = 2.5; P < 0.001; Fig. 3a, Table S4). No strain 

by time interaction effects were observed (F(44,305) = 1.2; P > 0.05)

Norcocaine—Plasma NOR concentration decreased significantly between 10 and 30 min 

(F(1,305) = 117.8; P < 0.001). Mean plasma NOR concentration varied across strains 

(F(44,305) = 6.5; P < 0.001) and was lower than brain concentration at both time points (Fig. 

S4b). No strain by time interaction effects were observed (F(44,305) = 1.4; P > 0.05).

Brain NOR concentration was approximately 10 times lower than COC concentration at 

both 10 and 30 min and NOR levels in the brain also decreased significantly between 10 and 

30 min (F(1,305) = 203.1; P < 0.001) and varied significantly by strain (F(44,305) = 10.5; P < 

0.001). A significant strain by time effect was observed (F(44,305) = 1.9; P < 0.01) and post 

hoc t-tests by strain indicated that the decrease in brain NOR concentration was significant 

for four strains (P < 0.001). (Fig. 3b, Table S4).

Benzoylecgonine—Plasma BZE levels increased between 10 and 30 min (F(1,305) = 

133.0; P < 0.001), varied significantly across strains (F(44,305) = 7.0; P < 0.001) and showed 

a significant strain by time interaction (F(44,305) = 2.0; P < 0.01). Post hoc t-tests by strain 

indicated that two strains showed a significant increase (P < 0.001) in plasma BZE while the 

remainder showed no significant increase (Fig. S4c).

Benzoylecgonine levels in the brain were significantly lower than concentrations of both 

COC and NOR at both 10 and 30 min. However, unlike both COC and NOR, levels of BZE 

increased significantly between 10 and 30 min (F(1,305) = 798.5; P < 0.001). Significant 

strain differences in brain concentrations of BZE were also observed (F(44,305) = 7.8; P < 

0.001) as well as a strain by time interaction effect (F(44,305) = 3.1; P < 0.001). Post hoc t-

tests by strain indicate that there are 17 strains for which brain BZE concentrations are 

significantly increased (P < 0.001) at 30 min (Fig. 3c, Table S4).

Ratios of brain to plasma exposure—The mean ratios of brain to plasma 

concentrations of COC, NOR and BZE at 10 min after administration were 5.2, 4.0 and 0.04 

and at 30 min were 5.6, 3.6 and 0.07, respectively (Table S4). The ratio of brain to plasma 

concentrations of COC varied significantly across strains at both 10 min (F(44,166) = 5.2; P < 

0.001) and 30 min (F(44,137) = 3.4; P < 0.001). Similarly, ratio of brain to plasma 

concentration of NOR varied significantly across strains at 10 min (F(44,167) = 5.0; P < 

0.001) and 30 min (F(44,137) = 5.2; P < 0.001) as did the ratio of brain to plasma 

concentration of BZE at 10 min (F(44,167) = 2.3; P < 0.001) and 30 min (F(44,137) = 5.2; P < 

0.001) (Table S4).
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Pharmacokinetic and behavioral correlations

Behavior was measured over a 30-min period and PK data were collected at 10 and 30 min 

time points after administration of COC. Linear regression of the AUC representing brain 

and plasma concentrations of COC, NOR and BZE over the entire 30 min on distance, 

average velocity and rearing difference scores indicated that COC concentration in the brain 

was significantly and positively correlated with both locomotor activation (t(44) = 2.45; P < 

0.05) and average velocity (t(44) = 2.87; P < 0.01). Norcocaine concentration in the brain 

showed a similar pattern with both locomotor activation (t(44) = 2.53; P < 0.05) and average 

velocity (t(44) = 2.32; P < 0.05) (Fig. 4). COC and NOR concentrations in the brain did not 

predict rearing behavior. Benzoylecgonine concentrations in the brain did not affect 

locomotor activity, rearing or average velocity. Plasma levels of COC, NOR and BZE did 

not have an effect on any behavior (Table S5).

Discussion

Inbred strain surveys have been utilized for decades to examine the genetic architecture of 

complex traits (Rodgers & Mc 1962). However, phenotypic assessment of numerous strains 

has only recently been carried out for many complex phenotypes. One impetus for these 

efforts has been the perception of a ‘phenotype gap’ or the lack of access to a full range of 

phenotypes that model human disease thereby impeding functional annotation of genes 

(Bullard 2001; Paigen & Eppig 2000). Moreover, the rapidly increasing amount of genomic 

data across hundreds of inbred strains expands the utility of such efforts (Baker et al. 2011; 

Keane et al. 2011; Kirby et al. 2010; Szatkiewicz et al. 2008; Williams & Mulligan 2012). 

The data presented herein represent the largest inbred strain survey for locomotor and PK 

responses to COC using both standard and wild-derived strains, thereby increasing the range 

of phenotypic and genetic diversity currently available in the literature. These data provide a 

starting point from which to examine genetic architecture and strain differences and provide 

a rich resource for planning further experiments and analyses aimed at expanding 

knowledge of how genetic background and, ultimately, specific genes influence initial 

sensitivity to COC and whether these genes are involved in the rewarding and reinforcing 

properties of psychostimulants.

Significant phenotypic variation for locomotor response to COC was observed across the 45 

inbred strains. Similar strain patterns have been observed in surveys of COC-induced 

locomotor activation using fewer strains. A/J and 129S1 have been classified as low 

responding, C3H, SJL and DBA have intermediate responses and B6 mice have a robust 

response (Eisener-Dorman et al. 2011; Ruth et al. 1988; Seale & Carney 1991; Thomsen & 

Caine 2011; Zombeck et al. 2010). B6-related strains, C57BR/cdJ and C57L/J, have 

previously been shown to exceed the response of B6 mice at 20 mg/kg and most other doses 

(Downing et al. 2003). Differences among closely related strains can be exploited for fine-

mapping and gene identification as these strains carry larger segments of shared haplotype 

(Bailey et al. 2008; Eisener-Dorman et al. 2010; Kumar et al. 2013). The concordance 

between strain phenotypes described in this study and those reported by others indicates that 

at moderate doses, strains at the extreme ends of the phenotypic distribution are stable and 

replicable across laboratories. This is an important observation because behavioral traits can 
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be labile and vary under individual laboratory conditions making it difficult to generalize 

across studies (Crabbe et al. 1999; Sorge et al. 2014; Wahlsten et al. 2006).

Based on the literature suggesting that locomotor response to novelty predicts initial 

sensitivity to the locomotor effects of psychostimulants (Deroche et al. 1993; Hooks et al. 

1991; Kosten & Miserendino 1998; Mantsch et al. 2001), we examined the correlation 

between locomotor response to the novel OF on Day 1 and locomotor response to COC. A 

significant positive correlation was detected indicating that strains with increased locomotor 

response to novelty also had a greater locomotor response to COC. This result is in 

agreement with similar observations of increased psychostimulant-induced locomotor 

response in rodents selected for response to novelty (Giorgi et al. 1997; Hooks et al. 1991; 

Kabbaj 2006; Piazza et al. 1989).

We also examined the role of locomotor habituation on response to COC by comparing the 

difference score between locomotor activity on Day 1 vs. Day 2 and COC-induced 

locomotor activation. A negative and borderline significant correlation was observed 

between habituation and COC-induced locomotor activation and indicated that strains with 

lower habituation scores were more activated by COC. The inability to habituate across 

testing sessions may reflect inherent strain differences in anxiety-like behavior or deficits in 

memory (Bolivar 2009; Muller et al. 1994). Interestingly, several of the strains that do not 

show habituation, including DBA/2J, BALB/c, CBA/J and BUB/BnJ, have been described 

as performing poorly in standard learning and memory tests such as the Morris water maze, 

fear conditioning and the eight-way radial arm maze (Crawley et al. 1997). It is interesting 

to speculate that strains with little or no habituation may perceive the OF as novel on both 

Days 1 and 2, and by extension, on Day 3, when they receive the drug and that this may 

result in higher locomotor response to the drug. Enhancement of psychostimulant-induced 

locomotor response in novel vs. familiar environments has been reported (Badiani et al. 

1995a,1995b) and has important implications for models of relapse which depend on 

environmental cues (Badiani & Spagnolo 2013).

These data represent the first report of COC-induced locomotor activation in wild-derived 

strains. Wild-derived mice present challenges for conducting behavioral assays due to 

general ‘wildness’ (Wahlsten et al. 2003) defined as ease of capturing mice for testing and 

the ability of the animal to stay within a behavioral phenotyping enclosure. However, the 

added genetic diversity they provide has proven useful for identifying genomic loci involved 

in behavior (Logan et al. 2013). The wild-derived strains used in this study did not cluster at 

the high end of the phenotypic distribution for locomotor activity on either Day 1 or Day 2. 

These results are consistent with what has previously been reported (Wahlsten & Crabbe 

2014) and indicate that wild-derived mice are not more active in the OF compared with 

standard inbred strains. Wild-derived strains are also not among the highest or lowest 

responders to COC. Upon closer examination, however, wild-derived strains cluster by 

subspecific background. The Mus musculus domesticus strains (Zalende/EiJ, WSB/EiJ and 

PERA/EiJ) cluster together near the lower end of the phenotypic range while the five wild-

derived strains with a predominantly Mus musculus musculus background (Yang et al. 2011) 

cluster at the higher end of the phenotypic range. Interestingly, subspecific clustering was 

not observed for rearing behavior. PWD/PhJ (musculus) and Zalende/EiJ (domesticus) mice 
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exhibited the most extreme increase in rearing response to COC, contrary to the decrease 

observed for many other strains. It should be noted that rearing was the only behavior for 

which we saw significant batch effects. Because of our randomized design, we do not expect 

that batch effects highly biased the estimation of strain effects. However, we cannot fully 

eliminate this possibility.

The observation that COC and NOR levels in the brain correlate significantly, but modestly, 

with locomotor activation and average velocity has been reported by others (Benuck et al. 

1987; Festa et al. 2004; Reith et al. 1987; Wiener & Reith 1990; Zombeck et al. 2010) and 

indicates that PK alone does not fully explain strain differences in COC-induced locomotor 

activation. Benzoylecgonine does not readily pass the blood brain barrier, but has been 

observed at very low levels in the brain of rats (Misra et al. 1974; Nayak et al. 1976) and 

mice (Benuck et al. 1987). It has been postulated that brain concentrations of BZE following 

subcutaneous injections of 20 mg/kg COC result from some passage of BZE into the brain 

as well as metabolism of COC that is present in the brain (Misra et al. 1975). However, 

previous studies have shown that BZE is inactive toward the dopamine transporter (Reith et 

al. 1986) and based on inactivity and low brain concentrations reported here, it is not 

surprising that BZE levels did not correlate with behavior.

The relatively low level of genetic correlation between brain concentration of COC and 

NOR and COC-induced locomotor behavior and average velocity across all strains indicates 

that the position of a strain on the phenotypic distribution can be explained only partially by 

PK parameters. It is likely that some strains sharing a similar behavioral response may not 

do so because of the same underlying mechanisms. For example, WSB and PERA mice 

have similar average locomotor responses to COC when activity data are summed across the 

entire 30 min. However, WSB mice exhibit a peak behavioral response immediately after 

drug administration while locomotor activation in PERA mice does not peak until 22 min 

post-drug administration (Fig. S2b). Interestingly, PERA mice have one of the highest levels 

of NOR in the brain at 10 min and a relatively low concentration of COC at the same time 

point. Norcocaine administered IP at doses similar to COC does not increase locomotor 

activity (Bedford et al. 1980; Elliott et al. 1987) and has even been shown to inhibit 

locomotor behavior in BALB/cByJ mice when administered systemically (Reith & Lajtha 

1986; Reith et al. 1985). Therefore, it is possible that the high levels of NOR along with the 

low level of COC diminishes locomotor activation at earlier time points. Further necessary 

steps required for understanding these data and other mechanisms that determine location in 

the phenotypic distribution include assessing behavior and PK parameters with an expanded 

dose range and additional time points to accurately capture peak concentrations of COC and 

its metabolites in the brain. This study measures PK at only two time points. The initial 10-

min time point was based on peak behavioral response from literature and observations in 

our laboratory. However, actual peak concentrations of COC in the brain likely occur at a 

much earlier time point (Benuck et al. 1987). Therefore, our calculation of AUC does not 

accurately capture the complete PK profile that might explain differences in behavior over 

the entire 30-min test.

This study is limited to a single dose but provides a starting point for further genetic, 

behavioral and pharmacological studies. Strains at the extreme ends of the phenotypic 
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distribution can be examined more closely to test specific hypotheses regarding the link 

between locomotor activation and the rewarding and reinforcing effects of COC (Orsini et 

al. 2004) or the relationship between drug reward and stress response pathways (Koob 

2008). Phenotypically divergent strains can also be used for standard quantitative trait locus 

studies to identify loci that contribute to COC-induced locomotor response. Assessing 

complete PK profiles in strains for which PK differences appear to play a more prominent 

role in initial locomotor response will also provide information regarding the role of drug 

and metabolite disposition in behavioral differences. Finally, data collected in genetic 

reference populations, such as inbred mouse strains, can be drawn upon repeatedly as 

technology and resources expand, providing a lasting legacy on which to develop and test 

new hypotheses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Open field habituation
Day 2 minus Day 1 difference scores for distance (a), average velocity (b) and rearing 

behavior (c). Each data point is the strain mean and error bars are SEM. Strains are sorted 

from lowest to highest for locomotor activity habituation. Open diamonds denote wild-

derived strains and filled diamonds represent classical inbred strains.
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Figure 2. COC-induced OF behavior
Day 3 minus Day 2 difference scores for distance (a), average velocity (b) and rearing 

behavior (c). Each data point is the strain mean and error bars are SEM. Strains are sorted 

from lowest to highest for COC-induced locomotor activation. Open diamonds denote wild-

derived strains and filled diamonds represent classical inbred strains.
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Figure 3. Brain pharmacokinetics
Brain concentrations of COC (a), NOR (b) and BZE (c) for all strains at 10 (gray diamonds) 

and 30 (open circles) minutes post-drug administration. Error bars are SEM.

Wiltshire et al. Page 16

Genes Brain Behav. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. PK and behavior correlations
Correlation of brain concentrations of COC (a, b) and NOR (c, d) with locomotor activation 

and average velocity. Brain concentrations of COC and NOR are expressed as area under the 

curve as determined by a linear-up log-down function. Each triangle is a strain mean and 

triangles are color coded based on strain location in the Petkov (Petkov et al. 2004) 

phylogenetic tree.
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