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Automated segmenting and labeling of individual brain anatomical regions, in MRI are
challenging, due to the issue of individual structural variability. Although atlas-based
segmentation has shown its potential for both tissue and structure segmentation, due
to the inherent natural variability as well as disease-related changes in MR appearance,
a single atlas image is often inappropriate to represent the full population of datasets
processed in a given neuroimaging study. As an alternative for the case of single atlas
segmentation, the use of multiple atlases alongside label fusion techniques has been
introduced using a set of individual “atlases” that encompasses the expected variability in
the studied population. In our study, we proposed a multi-atlas segmentation scheme
with a novel graph-based atlas selection technique. We first paired and co-registered
all atlases and the subject MR scans. A directed graph with edge weights based on
intensity and shape similarity between all MR scans is then computed. The set of
neighboring templates is selected via clustering of the graph. Finally, weighted majority
voting is employed to create the final segmentation over the selected atlases. This
multi-atlas segmentation scheme is used to extend a single-atlas-based segmentation
toolkit entitled AutoSeg, which is an open-source, extensible C++ based software pipeline
employing BatchMake for its pipeline scripting, developed at the Neuro Image Research
and Analysis Laboratories of the University of North Carolina at Chapel Hill. AutoSeg
performs N4 intensity inhomogeneity correction, rigid registration to a common template
space, automated brain tissue classification based skull-stripping, and the multi-atlas
segmentation. The multi-atlas-based AutoSeg has been evaluated on subcortical structure
segmentation with a testing dataset of 20 adult brain MRI scans and 15 atlas MRI scans.
The AutoSeg achieved mean Dice coefficients of 81.73% for the subcortical structures.
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INTRODUCTION
Accurate segmentation of brain structures from magnetic res-
onance imaging (MRI) (Khan et al., 2011), functional MRI
(fMRI) (Maldjian et al., 2003) and positron emission tomog-
raphy (PET) (Tohka et al., 2007) is essential for quantitative
studies of the brain, such as disease progression and aging.
In general, manual brain anatomical labeling (identification of
anatomical brain structures and assignment of a unique label
to each structure) is considered the most accurate means of
giving the most accurate results closest to the true segmen-
tation of brain structures. However, as the size and availabil-
ity of large MRI databases increase, manual segmentation of
brain structures is not realistic means of segmenting the brain
because of the significant time-cost of human raters and un-
predictable intra- and inter-rater variability. Therefore, auto-
mated segmentation methods are highly desirable when the size
of MRI databases is considerably large (e.g., >50 cases). However,

automated anatomical brain region segmentation (labeling) of
subcortical regions in MRI data is challenging, since the con-
trast between tissues is often low for a variety of brain structures
(“Subcortical regions” is included since folding/shape variation
may be a bigger determining factor than contrast for labeling
cortical structures.). The commonly present shape and intensity
variations in a number of diseases further complicate robust brain
segmentation.

Atlas-based segmentation is a simple method for automated
segmentation as it is a compromise between manually driven and
fully automated segmentation approaches (Bajcsy et al., 1983;
Gee et al., 1993; Collins et al., 1995; van Leemput et al., 1999b).
In atlas-based segmentation methods, image information (inten-
sity and spatial) is transferred from the labeled atlas to subjects
through non-rigid image registration. Thus, the performance of
the registration algorithm would have a big impact on the accu-
racy of the final segmentation. Because the image registration
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algorithms are inherently related to the anatomical similarity
between atlas and subject, an atlas that is anatomically similar
to a subject would result in better performance for the segmen-
tation. Therefore, a good choice of atlas can help in accurately
segmenting the majority of images. However, as inherent anatom-
ical variability may present in most brain MRI data sets, the
choice of atlas for improving the segmentation performance will
likely under-perform on outlying images presenting abnormal
pathologies.

Multi-atlas-based segmentation has shown the potential to
resolve this issue by using a number of atlases with differences
in anatomy as the atlas population, performing multiple non-
rigid registrations from all the labeled atlases to the subject and
fusing the propagated labels to generate the final segmentation
(Rohlfing et al., 2004; Warfield et al., 2004; Heckemann et al.,
2006; Wang et al., 2012; Asman and Landman, 2013). By use of
multiple atlases in this way, better segmentation results can be
expected, because the anatomical variability is represented more
accurately than in a single atlas. Furthermore, the errors due to
inaccurate labeling or registration can also be averaged out, when
the individual propagated labels are fused together (Asman and
Landman, 2011). Label fusion generally plays an important role
in the multi-atlas-based segmentation approaches. It is achieved
using a majority voting in the simplest case and much of the
current research is focused on improving the label fusion step
(Warfield et al., 2004; Isgum et al., 2009; van Rikxoort et al.,
2010; Wang et al., 2012; Asman and Landman, 2013). A limita-
tion of the multi-atlas-based segmentation methods is that the
individual differences that occur in only a minority of the atlases
could be averaged out. Thus, the segmentation results would be
biased, particularly for the abnormal MRI scans with patholo-
gies. In order to address this issue, appropriate atlas selection is
needed.

One example of atlas selection is the use of atlas-subject reg-
istration accuracy estimators to weight the influence of a given
atlas (Wu et al., 2007; Artaechevarria et al., 2009; Isgum et al.,
2009; van Rikxoort et al., 2010). Similarly, methods that employ
image similarity metrics, such as mutual information, to select
atlases (Aljabar et al., 2009) are also examples of atlas selec-
tion, which presume that choosing those atlases whose registered
images are similar to the subject will result in more accurate
segmentations. However, these approaches could not handle the
registration with large initial dissimilarity in shape between the
atlases and the target. This can lead to inappropriately high
weights in cases of initially large shape differences resulting in
incorrect image correspondences established by the atlas registra-
tion.

Recently, several segmentation methods using graph-based
(Hamm et al., 2010; Jia et al., 2012a) or tree-based (Jia et al.,
2012b) intermediate templates guided registration methods have
been demonstrated to be effective in the segmentation of brain
MR images. The key concept of these methods is to decom-
pose a large deformation into several small deformations that
can be estimated with higher reliability. Each atlas is warped
through the intermediate templates one by one on the path
toward the subject. However, a major problem of the above
strategy is that the quality of the warped atlas will be affected

by accumulated registration errors. Similar to these approaches
Langerak and Berendsen (2013) proposed a multi-atlas segmen-
tation method with pre-registration atlas selection. The atlas set
was clustered (Frey and Dueck, 2007) and exemplars for each
cluster were selected to generate a preliminary segmentation
of the subject using a majority voting label fusion. The clus-
ter with the highest similarity to the preliminary segmentation
was selected to create the final segmentation of subject. While
this method is somewhat close to the proposed method here, it
assumes that the difference between preliminary segmentation
and true segmentation is minor, which is not necessarily guaran-
teed. Furthermore, this method ignores the intensity information
in the target image and the atlas images. Finally, any sample bias
in the multi-atlas population that could bias a subsequent seg-
mentation is further aggregated by employing only the closest
or best cluster. In contrast, we proposed a novel atlas selection
method that makes use of all clusters with each one only con-
tributing a single exemplar atlas, the one closest to the subject
image.

In this study, we proposed a multi-atlas-based segmentation
scheme with a novel graph-based atlas selection technique. We
first register all atlases to the subject MR scan. The atlases are also
paired and co-registered with each other. A directed graph with
edge weights based on intensity and shape similarity between all
MRI scans is then computed. In contrast to the atlas selection
strategies discussed above, we proposed a novel atlas selection
method that separates the graph into several clusters and makes
use of all clusters with each one only contributing a single exem-
plar atlas (neighboring template), the one closest to the subject
image. Finally, weighted majority voting is employed to create
the final segmentation over the selected neighboring templates.
We use this multi-atlas-based segmentation scheme to extend a
single-atlas-based segmentation toolkit entitled AutoSeg, which
is an open-source, extensible C++ based software pipeline devel-
oped at the Neuro Image Research and Analysis Laboratories
(NIRAL) of the University of North Carolina at Chapel Hill.
This software pipeline employs BatchMake pipeline scripts that
call tools within the AutoSeg toolset based on the Insight Tool
Kit (ITK). AutoSeg has been used and is in use in a num-
ber of studies, including Parkinson’s disease (Lewis et al., 2009;
Du et al., 2011, 2012; Sterling et al., 2013), autism (Hazlett
et al., 2009, 2011, 2012), schizophrenia (McClure et al., 2013),
craniosynostosis (Paniagua et al., 2013), and drug abuse (Gerig
et al., 2011). AutoSeg entails intensity inhomogeneity correc-
tion, brain tissue classification based skull-stripping, rigid and
non-rigid image registration, and multi-atlas-based segmenta-
tion with atlas selection. For the multi-atlas-based segmentation
step, an atlas population consisting of multiple brain MRI scans
and corresponding structural region of interest (ROI) (label files)
and/or lobar subdivision definitions (parcellation files) is needed
as input. Through its transparency in atlas definitions, param-
eter definitions, and enabling/disabling of individual processing
steps, all saved within designated preference files, AutoSeg is
highly adaptive and thus designed for use in all ages includ-
ing young neonates, adolescent, adult, and even elderly popula-
tions. Please note that while AutoSeg enables the use of multiple
(two) modalities, it is still a mono-modal scheme, as it aims
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at co-registering images only of the same modality, such as
a joint weighted T1 to T1 weighted and T2 to T2 weighted
registration.

MATERIALS AND METHODS
MATERIALS
We evaluated the proposed multi-atlas segmentation within
AutoSeg with a dataset of 35 defaced T1-weighted structural
MRI scans. Fifteen scans (5 males and 10 females with an age
range of 19–34) were used as the multi-atlas population and
the remaining 20 scans (8 males and 12 females with an age
range of 18–90) were used for testing. Thus, the 20 testing
MRI scans were segmented one-by-one using the 15 atlases.
These MRI scans were selected from the Open Access Series of
Imaging Studies (OASIS) database (http://www.oasis-brains.org)
(Asman and Landman, 2013). This dataset has been used in the
MICCAI 2012 Multi-Atlas Labeling challenge, URL: https://masi.
vuse.vanderbilt.edu/workshop2012/. This dataset was expertly
labeled courtesy of Neuromorphometrics, Inc. (Somerville, MA)
and provided under a non-disclosure agreement of the Creative
Commons Attribution-NonCommercial (CC BY-NC). For each
atlas, a collection of 28 labels of subcortical structures were
used (Asman and Landman, 2013): 3rd ventricle, 4th ventri-
cle, brain stem, left/right hemispheric accumbens, cerebral White
Matter (WM), cerebellar WM, caudate, amygdala, hippocampus,
lateral ventricle, pallidum, putamen, thalamus, and ventral dien-
cephalon (DC), as well as cerebellar vermal lobules I-V, VI-VII,
and VIII-X. All images are 1 mm isotropic resolution.

METHOD SUMMARY
In summary, we extended a single-atlas-based segmentation
toolkit entitled AutoSeg, with an additional multi-atlas-based seg-
mentation tool. The processing pipeline of the proposed method
is shown in Figure 1. The AutoSeg software pipeline is pub-
licly available under a BSD license on the NITRC website, at
http://www.nitrc.org/projects/autoseg. AutoSeg starts with inten-
sity inhomogeneity correction, followed by registration into a
common MRI template space (such as standard MNI space).
Next, the Atlas Based Classification (ABC) tool is applied to per-
form atlas moderated, Expectation Maximization based tissue
classification (van Leemput et al., 1999b; Prastawa et al., 2003)
for skull-stripping. AutoSeg then employs the symmetric dif-
feomorphic registration via the ANTS (Advanced Normalization
ToolS) registration tool (Avants et al., 2008) to align all atlases
and subject MRIs with a non-rigid diffeomorphic image regis-
tration scheme. The label files for each atlas are warped with
the computed deformation field from the atlases to the sub-
ject data. A fully connected graph is then constructed, including
all the atlases and the subject image. Every edge between two
vertices of the graph is assigned a cost, which is defined by
a weighted sum of an intensity similarity term and a shape
similarity term. We cluster the atlas population into groups by
searching the shortest path from each atlas to the subject. Atlases
on the same shortest paths are combined into the same clus-
ter. We then select the atlas that is closest to the subject for
each cluster as the neighboring template. Finally, the propagated
label files of the neighboring templates are fused to create the

final segmentation via a weighted majority voting label fusion.
In summary, the major results of AutoSeg include (a) the bias-
corrected, atlas co-registered, skull-stripped MR images, (b) a
tissue classification with optional parcellation, and (c) the multi-
atlas-based regional segmentations. In the following sections, we
discuss each step of AutoSeg’s segmentation framework in more
detail.

INTENSITY INHOMOGENEITY CORRECTION
Intensity inhomogeneity in MRI is typically caused by the imper-
fections of the image acquisition process, such as B1 inhomo-
geneity, receive coil non-uniformity or static field inhomogeneity
(Hou et al., 2006; Vovk et al., 2007). We employ the N4 algo-
rithm (Tustison et al., 2010) to correct intensity inhomogeneity
in AutoSeg. N4 is an extension of the well-known N3 algorithm
(Sled et al., 1998) that has been routinely used in many MRI-
based studies and applications. This iterative method determines
a multiplicative smooth field that maximizes the high frequency
content of the tissue intensity distribution.

REGISTRATION INTO COMMON TEMPLATE SPACE
After intensity inhomogeneity correction, each subject’s MRI scan
(commonly a T1 weighted and optionally a T2 weighted scan
per subject) is rigidly aligned to a common space of an exist-
ing brain atlas, usually a template image in the ICBM atlas
space (Mazziotta et al., 2001). We use rigid registration to align
the subject MRI scans to a common space, because it has the
advantage that the input images are not distorted and thus mea-
surements made in that space do not need to be adjusted. The
registration is done using a standard rigid transformation with
a normalized mutual information based metric. This is achieved
via the 3D BRAINSFit (Johnson et al., 2007) tool within 3D
Slicer [called “General Registration (BRAINS)” in Slicer’s User
Interface].

ATLAS BASED CLASSIFICATION (ABC) AND SKULL-STRIPPING
Skull-stripping or whole brain segmentation refers to the process-
ing of separating the brain tissues [gray matter (GM), white mat-
ter (WM) and cerebrospinal fluid (CSF)] from non-brain image
parts such as, sclera, orbital fat, skin, etc. It is an important step
of many neuroimaging applications, such as surgical planning,
cortical surface reconstruction and brain morphometry, which
depend on the ability to accurately segment brain from non-
brain tissue. In this study we employ the Atlas Based Classification
(ABC) tool (van Leemput et al., 1999a,b; Prastawa et al., 2003) to
perform tissue segmentation as well as skull-stripping integrated
into a single method.

ABC is ITK-based and can be run within 3D Slicer or as a
stand-alone tool. ABC classifies brain MRI voxels into GM, WM,
and CSF via standard atlas moderated Expectation-Maximization
(EM) optimization (van Leemput et al., 1999b) and an atlas
template mapping using fluid image registration (Christensen
et al., 1996). The hard tissue segmentations are then combined,
smoothed via mathematical morphology operations and level-set
based smoothing (Styner et al., 2006), and hole filled to create
a brain tissue mask. Figure 2 show an example of skull-stripped
image of the scan using ABC.
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FIGURE 1 | Overall computational scheme of AutoSeg with multi-atlas segmentation.

FIGURE 2 | ABC based brain skull-stripping result. (A) the brain tissue in
original MRI scan, (B) the skull-stripped brain.

MULTI-ATLAS-BASED SEGMENTATION WITH ATLAS SELECTION
Image registration
As mentioned before, non-rigid registration plays an indis-
pensable role in the atlas based, particularly multi-atlas-based
segmentation approaches. In AutoSeg we employ the ANTS reg-
istration tool (as part of the ANTS registration package) (Avants
et al., 2008) to register each skull-stripped atlas image to the

skull-stripped subject image using a cross-correlation similar-
ity metric and a symmetric diffeomorphic deformation model
that preserves anatomical topology even with large deformation.
We use cross-correlation as the image registration metric within
ANTS, due to its enhanced reliability and accuracy over mean
square error in our experiments. Furthermore, in Klein et al.
(2009) mean squared error based registration algorithms per-
formed significantly worse than cross-correlation based ANTS,
though cross-correlation was not compared directly with mean
squared error in the same registration algorithm. One additional
advantage is that it does not require intensity calibration between
the target and the source images. The transformation is differen-
tiable and guaranteed to be smooth and one-to-one, i.e., for every
element in the moving image, there is a single corresponding ele-
ment in the fixed image. The transformation field obtained from
the registration is then employed to propagate the brain labels
of each atlas. Prior to the atlas-to-subject image registrations, all
atlases are like-wise co-registered with each other, i.e., each atlas
is pairwise registered to all the other atlases.

Construction of graph
We represent the registered dataset as a graph (Figure 3) whose
vertices correspond to the atlases and target. Every edge between
two vertices is assigned a cost (eij), which is defined by a weighted
sum of an intensity similarity term Mij (mean squared voxel-wise
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FIGURE 3 | Example of a graph with the subject T and atlases I, J, K, L

and M. The graph is constructed based on the similarity measurements
between image pairs.

intensity difference) and a shape similarity term Hij (harmonic
energy) [Equation (1)].

eij = w1Mij + w2Hij (1)

where w1 and w2 represent the weighting factors for the intensity
similarity term and shape similarity term, respectively. We empir-
ically determined a combination of w1 = 0.2 and w2 = 0.8 to be
the weighting factors. The weighting factors were determined by
applying the AutoSeg to a training dataset, i.e., a small group of
MRI scans, and then selecting the combination of parameters that
produced the best segmentation of the training dataset. The M
intensity difference is defined by

Mij = 1

N

N∑

m = 1

(im − jm)2 (2)

where im is the intensity of m-th voxel of a MRI scan I; jm is the
intensity of m-th voxel of another MRI scan J, where J is registered
to I. N is the number of voxels in a MRI scan.

The shape similarity term H is defined as the harmonic energy,
which is the mean Frobenius norm of the Jacobian of the defor-
mation field from ANTS registration (Hamm et al., 2010).

Clustering-based atlas selection
From the graph constructed in the previous section, we can
choose atlases that are close to the subject via an atlas cluster-
ing. On this graph, we cluster the atlas population into groups
by searching the shortest path from each atlas to the subject using
the Floyd-Warshall algorithm (Floyd, 1962). We assume that the

FIGURE 4 | Clustering-based atlas selection framework.

atlases on the same shortest path belong to the same cluster. We
then select the atlas that is closest to the subject in each cluster as
the neighboring template for the final segmentation. An exam-
ple of the clustering from a graph is illustrated in Figure 4 to
demonstrate the framework of the atlas selection. In this example,
the atlases are partitioned into three clusters. Three neighboring
templates are selected for creating the final segmentation of the
subject. It is noteworthy that the clustering result changes for
every subject image, i.e., the atlases cannot be pre-clustered in this
approach.

Weighted majority voting label fusion
Majority voting is the most widely used label fusion algorithm
for multi-atlas-based segmentation approaches. This algorithm
weights each candidate segmentation equally and assigns to each
voxel the label on which most segmentations agree (Heckemann
et al., 2006). However, the assigned label by this simple major-
ity rule does not necessarily imply a correct segmentation in
applications with large variation in size, shape, and appear-
ance. This issue can be mitigated via a weighted majority voting
approach, i.e., assigning larger weights to the atlases that show
higher similarity to the subject image. For each selected neigh-
boring template, we use one minus the edge cost between that
template and the subject on the graph as its voting weight.
The final segmentation is determined by collecting weighted
votes from all the segmentations over the selected neighbor-
ing templates and assigning the label with the highest vote to
each voxel.

SEGMENTATION PERFORMANCE ASSESSMENT
We assess the performance of our proposed segmentation method
by evaluating how close the resulting segmentation is to the cor-
responding reference segmentation. The most commonly used
metric is the Dice similarity coefficient (DSC), also referred to
as the mean overlap or the similarity index, which is computed
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between two segmentations as:

DSC = 2 × Vauto ∩ Vref

Vauto + Vref
× 100% (3)

where Vauto and Vref are the volume of the automated seg-
mentation result and the volume of the reference segmentation,
respectively. A DSC of 1 indicates complete volumetric overlap,
and 0 indicates no overlap at all. We also employ the symmetric
mean absolute distance (MAD) and Hausdorff distance (Wang
et al., 2009) between the surfaces of the resulting segmentation
and the corresponding reference segmentation as additional met-
rics to evaluate the segmentation results. MAD is calculated by
measuring the average distance from all points on the surface of
the automatically segmented brain tissue to the surface of the ref-
erence segmentation. On the other hand, to assess the maximal
local discrepancy between an automatic segmentation and ref-
erence segmentation, the symmetric Hausdorff distance between
the surface of the automatically segmented brain tissue and that
of the reference segmentation is calculated. The smaller the MAD
or Hausdorff distance, the better aligned the points on the two
surfaces and thus the better the agreement with the reference
segmentation.

EXPERIMENTAL RESULTS
We have applied the AutoSeg segmentation software pipeline to
the brain MRI data set with 20 testing scans and 15 atlases.
The parameter settings of this experiment are described in the
Appendix. Table 1 summarizes the mean values of the DSC,
MAD, and Hausdorff distance of the 28 subcortical structures
for the 20 testing MRI scans in our database. The mean DSC,
mean MAD and the mean Hausdorff distance for subcortical
regions were 81.73%, 0.57 and 5.68 mm, respectively. All struc-
tures showed a MAD below 1 mm, which indicates sub-millimeter
accuracy on average (at a 1 mm isotropic image resolution).
Smaller, skinnier structures showed DSC above 70% and larger
structures were all above 80% DSC. Figure 5 shows the 3D seg-
mentation results of subcortical structures on a selected example.
The segmentation results and the parameter settings of the testing
data set used for our experiment are available at the NITRC
web page of AutoSeg: http://www.nitrc.org/docman/view.php/
421/1312/MICCAI_2012_Challenge_Data_Seg.zip.

The most time consuming steps of our segmentation method
are the ANTS based image registration step and the ABC
based brain tissue classification. The average computational
time of the ANTS registration of one pair of images on a
standard workstation with 2.6GHz CPU (running on as a single

Table 1 | Mean Dice Similarity Coefficient (DSC), symmetric Mean Absolute Distance (MAD), and symmetric Hausdorff distance for subcortical

structures.

DSC (%) MAD (mm) Hausdorff distance (mm)

3rd Vent 73.34 ± 5.56 0.53 ± 0.18 5.1 ± 2.3

4th Vent 79.37 ± 3.64 0.52 ± 0.23 7.87 ± 3.96

Right accumbens 70.32 ± 8.34 0.55 ± 0.22 4.18 ± 2.02

Left accumbens 70.81 ± 7.83 0.54 ± 0.2 3.81 ± 2

Right cerebral WM 87.75 ± 2.05 0.49 ± 0.09 7.71 ± 2.16

Left cerebral WM 87.31 ± 1.82 0.5 ± 0.08 9.42 ± 4.33

Right cerebellum WM 86.02 ± 3.47 0.57 ± 0.25 8.25 ± 2.26

Left cerebellum WM 86.13 ± 3.89 0.57 ± 0.29 8.81 ± 2.61

Brain stem 90.46 ± 1.65 0.55 ± 0.15 6.85 ± 3.53

Right caudate 75.2 ± 13.98 0.76 ± 0.51 5.37 ± 2.75

Left caudate 74.68 ± 16.87 0.82 ± 0.69 5.35 ± 3.4

Right amygdala 75.92 ± 2.99 0.56 ± 0.08 3.96 ± 0.93

Left amygdala 76.93 ± 2.93 0.55 ± 0.09 3.33 ± 1.09

Right hippocampus 79.03 ± 3.64 0.59 ± 0.16 5.39 ± 1.63

Left hippocampus 80.64 ± 2.55 0.56 ± 0.14 6.51 ± 2.12

Right lateral ventricle 83.46 ± 4.79 0.61 ± 0.24 9.65 ± 5.39

Left lateral ventricle: 84.01 ± 3.91 0.6 ± 0.29 7.86 ± 3.03

Right pallidum: 83.8 ± 4.5 0.42 ± 0.07 2.71 ± 0.63

Left pallidum: 84.3 ± 2.06 0.41 ± 0.05 2.76 ± 0.56

Right putmen: 88.02 ± 3.08 0.38 ± 0.08 3 ± 0.89

Left putmen: 88.11 ± 3.58 0.38 ± 0.1 3.23 ± 1.21

Right thalamus 89.5 ± 2.06 0.51 ± 0.1 4.01 ± 1.71

Left thalamus 89.32 ± 2.05 0.53 ± 0.1 4.19 ± 1.71

Right ventral DC 85.02 ± 1.99 0.53 ± 0.1 5.53 ± 2.97

Left ventral DC 84.84 ± 1.97 0.54 ± 0.11 5.25 ± 3.03

Cerebellar vermal lobules I-V 78.32 ± 3.76 0.84 ± 0.2 7.27 ± 7.58

Cerebellar vermal lobules VI-VII 72 ± 4.95 0.89 ± 0.3 6.88 ± 2.9

Cerebellar vermal lobules VIII-X 83.7 ± 4.39 0.58 ± 0.32 4.89 ± 3.2
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FIGURE 5 | Visual comparison between structures segmented by

AutoSeg (left) and the corresponding manually segmented structures

(right) via 3D rendering.

core/thread) and 8GB RAM was 185 min; the average computa-
tional time of the ABC tissue classification including deformable,
fluid image registration was 48 min. The remaining steps were
performed with an average computational time less than 5 min.

DISCUSSION
In this paper we present both a novel label fusion algorithm for
multi-atlas-based brain segmentation, as well as a comprehensive,
extendable brain segmentation software pipeline called AutoSeg.
For the label fusion, we employ an approach that incorporates
shape and intensity information of subject and atlases for both
atlas selection and fusion weighting.

The multi-atlas-based AutoSeg segmentation software pipeline
was tested on a dataset with 15 atlases and 20 testing MRI scans for
the segmentation of subcortical structures. As volumetric analysis
of subcortical structures is a major aim in various neuroimag-
ing studies, many automated segmentation methods, particularly
atlas-based methods, have been developed as mentioned in the
introduction section. Liu et al. (2007) and Gouttard et al. (2007)’s
single atlas-based methods achieved mean DSC of 74.66 and 79%,
respectively, over the major subcortical structures (caudate and
putamen for Liu’s study and amygdala, caudate, hippocampus,
lateral ventricle, pallidus, and putamen for Gouttard’s study) in
different settings. In our multi-atlas-based method, we achieved
a mean DSC of 81.50% for caudate and putamen and 81.18% for
amygdala, caudate, hippocampus, lateral ventricle, pallidus, and
putamen. Although the experiments of these studies were con-
ducted on different datasets, the relatively large improvement in
results with our method indicates the advantage of using multi-
ple atlases [see also other multi-atlas segmentation papers such as
(Asman and Landman, 2013)].

The dataset used in our experiment is from the MICCAI 2012
Grand Challenge on Multi-atlas Labeling. The multi-atlas-based
segmentation approaches were developed by different groups
participated in the Grand Challenge. The segmentation results
of subcortical structures from the various participants ranged
from DSC 83.77–78.64%. While AutoSeg did not participate in
the Grand Challenge, we computed the same measurements as
employed in the challenge. AutoSeg achieves a segmentation per-
formance of 81.73% of DSC, which places it within the upper
mid-rank of the competition with ranking 5 out of 25 methods.

The winning method (Wang et al., 2012) of the competition
employed local similarity based weighting, whereas our current
method employs global weighting computations. We plan to
extend our method to include similar local weighting scheme.

As mentioned above, the local weighting algorithms achieved
the best segmentation results in the MICCAI 2012 Grand
Challenge on Multi-atlas Labeling (Wang et al., 2012; Asman and
Landman, 2013). There is no conflict between “atlas selection”
and “local weighting” based label fusion. Rather, the atlas selec-
tion algorithm we proposed in this paper can be combined with
local weighting to improve performance; such an implementation
is currently being added to AutoSeg.

Because of the large shape and intensity variations of the brain
structures caused by disease, we need a database whose size is
large enough to represent the variations of the data. Although the
current atlas population (15 MRI scans) in our experiment is of
limited size, our method has been shown to provide segmenta-
tion results at an acceptable performance level on the separate
testing dataset (20 scans). In our current neuroimaging stud-
ies, we employ all training and testing datasets (totally 35 scans)
for multi-atlas segmentation to improve the performance even
further than reported here.

We select neighboring templates via an atlas clustering tech-
nique. As shown in Figure 4, the clusters are determined via
overlapping paths between the atlases and the subject image.
It is noteworthy that this overlap varies across subject images
and thus the clustering needs to be recomputed for each image.
Furthermore, per cluster, we choose the atlas closest to the subject
to ensure the highest similarity for label fusion, while reducing the
sample bias of choosing one atlas per cluster.

In the atlas selection step, the path computation was in
part determined via an intensity-based similarity measure (mean
square difference). As Rohlfing mentioned (Rolhfing, 2012), the
intensity-based image similarity metric is not optimal to eval-
uate registration accuracy. However, the atlas selection was also
determined by a deformation field-based shape similarity mea-
sure (Harmonic Energy). Furthermore, the purpose of the energy
function we used for the atlas selection is to measure the similarity
between two images but is not focused on evaluating the accuracy
of registration. In addition, our intensity similarity is based on
intensity-calibrated images, thus reducing potential confounding
effects between the atlas selection and the image registration.

As mentioned above, skull-stripping is a critical step for brain
segmentation. We used the ABC based brain tissue classification
to identify GM, WM, and CSF and create the brain mask for
the skull-stripping. We often run multiple iterations of ABC (this
number of iterations is a parameter of AutoSeg) and use the skull-
stripped ABC output from prior iterations as the initialization for
the next iteration to improve the performance of the classifica-
tion and skull-stripping. In the experiments of this study, ABC
was iterated twice and thus the first iteration performed regis-
tration and tissue classification on a non-skull-stripped image,
whereas the second iteration performed registration and tissue
classification on the skull-stripped data from the first iteration.

We employ several existing tools/algorithms in the AutoSeg
framework. Decisions on algorithms are based on (i) performance
in our own tests as well as in the literature, and (ii) availability
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as open source. In general, AutoSeg employs the state-of-the-art
tools in the field and each component has been vetted in our
studies. All tools employed by AutoSeg are currently up-to-date
(N4, ABC) or continuously being improved (BRAINSfit, ANTS,
etc.). ANTS is the core registration tool employed and has consis-
tently been shown to be the best current option for deformable
registration (Klein et al., 2009). It is noteworthy that AutoSeg
has a very flexible computational scheme that allows a developer
to efficiently replace one component with a new tool, i.e., addi-
tional algorithms for different purposes can be easily added to
AutoSeg.

Most of the recently developed multi-atlas segmentation algo-
rithms including the STAPLE-based algorithms and the ANTS
joint fusion algorithm participated in the 2012 Grand Challenge.
In this paper, AutoSeg was tested on the same dataset of the
Grand Challenge. The segmentation results of the subcortical
structures were compared to the segmentation results of other
algorithms that participated in the Grand Challenge and we found
that AutoSeg would be ranked 5 out of 25. This result indicates
that AutoSeg can provide good segmentation results that are com-
parable to other widely used multi-atlas segmentation methods.
Furthermore, AutoSeg has a unique user friendly GUI. Thus,
users without any computer science or technology background
can also easily use AutoSeg in their studies.

The pipeline scripting by AutoSeg employs BatchMake, which
is a cross-platform tool for batch processing large amounts of
data. BatchMake scripts can be easily edited with any text editor
or a specified BatchMake script editor developed by Kitware Inc.
BatchMake is easy to use, and allows straightforward integration
of the scripts into condor and SGE grid environments.

In datasets where large morphological or intensity changes are
present [due to pathology, e.g., in Parkinson’s disease, MPS, ALD,
Duchenne muscular dystrophy (DMD)], and where AutoSeg
is being applied, atlas selection has significant advantages as
AutoSeg reduces the influence of common disproportion of the
normative vs. pathology exhibiting atlases in such settings. On
the other hand, selecting the best atlas in each cluster ensures that
the label fusion is achieved from the atlases similar to the target,
with the variability represented by the atlas population still being
incorporated by the label fusion procedure. AutoSeg was tested
on the same dataset from the MICCAI 2012 Grand Challenge on
Multi-atlas Labeling, and it would be ranked 5th out of the 25
algorithms in the challenge. This result shows that AutoSeg can
provide good segmentation results that are comparable to other
widely used multi-atlas segmentation methods, with still room
for improvement.

The segmentation of brain structures, in general, includes
the segmentation of subcortical structures and cortical
regions/parcellations. The proposed AutoSeg software pipeline
allows for the direct labeling of cortical regions via standard
atlas/multi-atlas-based segmentation. It further allows the com-
bination of the tissue classification with the cortical regions for a
joint classification/multi-atlas-based cortical parcellation.

The experimental results presented here illustrate the power
of our multi-atlas AutoSeg MRI segmentation software pipeline.
This software pipeline is publicly disseminated as open source
on the NIH Neuroimaging Informatics Tools and Resources

Clearinghouse (NITRC) website with accompanying testing
datasets (http://www.nitrc.org/projects/autoseg).

CONCLUSIONS
In conclusion, we have presented a multi-atlas segmentation
scheme implemented in our comprehensive AutoSeg segmenta-
tion software pipeline. Graph based clustering is employed to
select the closest atlas per cluster for a weighted label fusion
procedure. We validated this method on a publicly available
dataset. The results show that the proposed method achieved
comparable segmentation results to other existing multi-atlas seg-
mentation methods for subcortical structures. Overall, AutoSeg
provides the field of brain MRI studies with an automated multi-
atlas segmentation software pipeline for brain MRI neuroimaging
studies.
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APPENDIX PARAMETER SETTINGS OF AUTOSEG FOR
EXPERIMENTS
The parameter settings are very important for users to imple-
ment a software tool (Tustison et al., 2013). The parameter
settings of AutoSeg used in the Experiments can be found
online on the NITRC website of AutoSeg, at http://www.nitrc.
org/projects/autoseg. The settings were recorded in two text files:
AutoSeg_Computation.txt and AutoSeg_Paramters.txt. The set-
tings of input data directory, atlas directory, output directory,
etc. can be found in AutoSeg_Computation.txt. The param-
eters related to processing algorithms, such as N4 intensity
inhomogeneity correction, ABC, ANTS, etc. can be found in
AutoSeg_Paramters.txt. All parameters are further itemized below
(all parameters identified as AutoSeg parameters can be edited
within the AutoSeg GUI and are stored in the parameter files):

1. Tissue Segmentation:

a) EM Software: ABC (default)
b) Filter Iterations: 10 (default)
c) Filter Time Step: 0.01 (default)
d) Filter Method: Curvature flow (default)
e) Max Bias Degree: 4 (default)
f) Initial Distribution Estimator: robust (default)
g) Prior 1: 1.3 (default)
h) Prior 2: 1.0 (default)
i) Prior 3: 0.7 (default)
j) Prior 4: 1.0 (default)

k) Prior 5: 0 (modified)
l) Fluid atlas warping: Warp (default)

m) Fluid Atlas Warp Iterations: 50 (default)
n) Fluid Atlas Warp Max Step: 0.1 (default)
o) Atlas Linear Mapping: affine (default)
p) Image Linear Mapping: id (default)

2. Registration to common space:

a) Registration: Rigid Registration (default)
b) Is ROIAtlasGridTemplate: 1 (default)
c) GridTemplate SizeX: 0 (default)
d) GridTemplate SizeY: 0 (default)
e) GridTemplate SizeZ: 0 (default)
f) GridTemplate SpacingX: 0 (default)
g) GridTemplate SpacingY: 0 (default)
h) GridTemplate SpacingZ: 0 (default)
i) Registration Initialization:

useCenterOfHeadAlign (default)
j) Use T1 initial transform: 0 (default)

3. ANTS registration parameters:

a) Warping Method: ANTS (default)
b) ANTS Iterations: 100 × 50 × 25 (default)
c) ANTS CC weight: 1 (default)
d) ANTS CC region radius: 2 (default)
e) ANTS MI weight: 0 (default)
f) ANTS MI bins: 32 (default)
g) ANTS MSQ weight: 0 (default)

h) ANTS CC weight for 2nd modality: 0 (default)
i) ANTS CC region radius for 2nd modality: 0 (default)
j) ANTS MI weight for 2nd modality: 0 (default)

k) ANTS MI bins for 2nd modality: 0 (default)
l) ANTS MSQ weight for 2nd modality: 0 (default)

m) ANTS Registration Type: GreedyDiffeomorphism
(default)

n) ANTS Registration Step: 0.25 (default)
o) ANTS Gaussian Smoothing: 1 (default)

4. Inhomoneity correction via N4:

a) N4 ITK Bias Field Correction: 1 (default)
b) N4 Number of iterations: 50,40,30 (default)
c) N4 Spline distance: 0 (default)
d) N4 Shrink factor: 4 (default)
e) N4 Convergence threshold: 0.0001 (default)
f) N4 BSpline grid resolutions: 1,1,1 (default)
g) N4 BSpline alpha: 0 (default)
h) N4 BSpline beta: 0.5 (default)
i) N4 Histogram sharpening: 0 (default)
j) N4 BSpline order: 3 (default)

5. Multi-Atlas

a) Label Fusion Algorithm: Weighted Majority Voting
(default)

b) Intensity Energy Weight: 0.8 (modified)
c) Harmonic Energy Weight: 0.2 (modified)
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