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Abstract

Postpartum neuropsychiatric disorders are a major source of morbidity and mortality and affect at 

least 10% of childbearing women. Affective dysregulation within this context has been identified 

in association with changes in reproductive steroids. Steroids promote maternal actions and 

modulate affect, but can also destabilize mood in some but not all women. Potential brain regions 

that mediate these effects include the medial preoptic area (mPOA) and ventral bed nucleus of the 

stria terminalis (vBNST). Herein, we review the regulation of neural activity in the mPOA/vBNST 

by environmental and hormonal concomitants in puerperal females. Such activity may influence 

maternal anxiety and motivation and have significant implications for postpartum affective 

disorders. Future directions for research are also explored, including physiological circuit-level 

approaches to gain insight into the functional connectivity of hormone-responsive maternal 

circuits that modulate affect.
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1. Introduction

Changes in reproductive steroids, such as those that occur during the puerperium, are 

associated with increased vulnerability for affective dysregulation1. In fact, an estimated 10–
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20% of perinatal women are afflicted by a mood disorder, such as anxiety or depression2. 

Further, perinatal depression is the leading cause of maternal mortality, resulting from 

suicide3. The sequelae of these disorders entails not only elevated anxiety and disrupted 

mood for the mother, but also aversive outcomes for the developing infant4,5. The 

symptomology of postpartum affective disorders, such as anhedonia, anxiousness, and 

agitation6, implies a dysregulation of neural circuitry that regulates emotion and motivation. 

However, the neurobiological etiology of postpartum affective disorders remains unclear, 

perhaps due to the complexity of hormonal and environmental contributors that influence 

maternal affect and the lack of previous tools to disentangle the functional elements of these 

neural circuits.

Throughout pregnancy, the brain organizes adaptations that prepare the mother for a timely 

parturition and the rapid onset of maternal care following parturition. Pregnancy hormones 

drive these adaptations before parturition, but afterward maternal actions are maintained by 

external infant stimuli7. Ordinarily, maternal brain adaptations reduce anxiety and promote 

maternal actions that facilitate infant-associated motivation and reward8–10. However, neural 

maladaptation and hormone withdrawal during the puerperium may precipitate anxiety and 

depressive behavior. While environmental and hormonal correlates of maternal anxiety and 

mood7,9–11, as well as relationships between the brain, endocrine systems, and maternal 

care8,12–16 have been reviewed elsewhere, no review to date has focused on the precise 

hormone-responsive brain regions central to both maternal behavior and affective regulation. 

The most prominent candidates include the medial preoptic area (mPOA) and ventral bed 

nucleus of the stria terminalis (vBNST), two sexually dimorphic steroid-sensitive nuclei17,18 

essential for maternal behavior19,20. In addition, the BNST regulates anxiety21–23 and 

motivated behavior21,23,24. Further, we have recently demonstrated that vBNST sub-circuits 

have opposing roles in divergent anxiety and reward states in male mice. It is unclear 

whether similar circuit processing occurs in females or is influenced by reproductive 

steroids, parturition, or infant stimuli.

In this review, we examine the regulation of neural activity in the mPOA and vBNST by 

environmental and hormonal concomitants in the puerperal female. Since the vBNST and 

mPOA control similar maternal functions but lack clear anatomical demarcations and most 

tools used to date have been limited in their capacity to delineate between their functions, we 

will refer to them as an adjoining region (mPOA/vBNST). Herein, we discuss mPOA/

vBNST inputs engaged by hormonal or infant stimuli and their potential outputs that 

orchestrate maternal actions, anxiety, and motivated behavior. We also identify candidate 

steroid and peptide hormones that could prepare the phenotype of mPOA/vBNST neurons 

late in pregnancy, allowing for altered reactivity to infant, emotional, or rewarding stimuli. 

Lastly, we identify gaps within the current literature that require further investigation, 

especially pertaining to the functional connectivity of circuits that influence anxiety and 

reward processing in response to hormones and maternal experience.

2. Maternal vBNST/MPOA circuitry

In mammalian females, external infant cues stimulate multiple sensory modalities to trigger 

maternal responses. In rodents, low frequency ultrasonic vocalization pup calls promote 
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licking and nursing behavior by the mother25 and high frequency distress calls induce search 

and retrieval behavior by the mother when pups are separated from the nest26. Multisensory 

infant cues are processed by mPOA/vBNST circuits that receive hormonal and infant input 

and orchestrate complex maternal actions essential for offspring survival8,15,27. The mPOA/

vBNST receives widely distributed inputs from forebrain, hypothalamic, and brainstem 

regions and has reciprocal interactions with many of these structures, allowing for 

bidirectional control (illustrated in Figure 1). Preoptic inputs that regulate maternal 

responsiveness have been reviewed in greater detail elsewhere 15,28. The mPOA/vBNST are 

functional nodes within these circuits, as mPOA/vBNST lesions impair maternal 

behavior 29–32 and pup-associated motivation 33–35 in female rodents.

In rodents, chemosensory input originates from olfactory and vomeronasal systems and is 

relayed to the mPOA/vBNST through the medial amygdala (MeA)36–38. The vomeronasal 

organ and main olfactory epithelium are both important for retrieval of pups that stray from 

the nest39. Olfactory bulbectomy eliminates neuronal Fos activity in the MeA following 

mother-pup interactions and slightly decreases but does not eliminate Fos expression in the 

mPOA/vBNST40,41. However, these females still display relatively normal maternal 

behavior. Thus, other sensory stimuli are likely critical for the expression of maternal care39. 

Somatosensory infant input is provided during nursing, although nipple removal does not 

affect maternal behavior (except crouched nursing), maternal anxiety42, or pup-induced Fos 

expression in the mPOA/vBNST40,43. However, when olfactory bulbectomy is coupled with 

nipple removal a significant reduction in Fos expression in the mPOA/vBNST is observed, 

although maternal care is still present40. Therefore, infant generated neural activity in the 

mPOA/vBNST and the expression of maternal behavior is likely the result of combined 

afferent inputs. Further, olfactory pup cues and playback of pup ultrasonic vocalizations are 

most effective in producing maternal search behavior when presented together rather than 

separately44. However, a better functional dissection of maternally responsive mPOA/

vBNST neurons is necessary to explain the ostensible discordance between neural activation 

and behavioral effects in this region.

Regulation of maternal behavior and modulation of affect both involve reward circuits. 

Models suggest that mPOA/vBNST efferent projections to the midbrain stimulate 

mesolimbic activity for infant-related reward processing and motivated behavior8,15,20. 

Specifically, mPOA/vBNST projections innervate midbrain neurons in the ventral tegmental 

area (VTA)19,45–50 and are stimulated by maternal50, aversive, and rewarding 

experiences51–53. Further, mPOA/vBNST to VTA projecting neurons directly or indirectly 

activate dopaminergic neurons in the VTA48,54 and inactivation of the VTA disrupts 

maternal motivation55 and preference for infant-associated cues56. Further, damage to the 

dorsolateral POA disrupts maternal behavior and likely severs the axons that project from 

the mPOA/vBNST to the VTA via the lateral hypothalamus57. Dopaminergic cell bodies in 

the VTA project to a number of regions, including the ventral striatum, to mediate goal-

directed behavior58–60 and are stimulated by infant-associated cues35,61,62. Studies utilizing 

voltammetry and microdialysis associate dopamine release in the ventral striatum with 

mother-infant interactions63,64. In addition, ablation of dopamine neurons in the VTA or 

striatum disrupts maternal motivation35,65. Functional magnetic resonance imaging studies 

reveal that infant stimuli are associated with increased activity in mesolimbic regions in 
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postpartum dams, which is suppressed by presentation of cocaine rather than pup stimuli66. 

Neural activity in the mPOA/vBNST may contribute an infant-specific bias to motivational 

circuitry in the VTA in postpartum females67. Together, these studies suggest that 

dopaminergic midbrain activity is enhanced by infant stimuli under normal puerperal 

conditions. Conversely, postpartum depression is correlated with reduced responsivity to 

rewarding stimuli. Functional MRI studies reveal that women with postpartum depression 

have rapid attenuation of ventral striatum activity following presentation of a reward, 

compared to healthy mothers68. It is unclear whether postpartum depression results in 

deficits in reward processing that affect both infant care and general motivation. However, 

genetic rodent models of depression display reduced maternal care69 and lack elevated 

dopamine levels in response to infant interactions70, compared to normal rodents.

Projections from the mPOA/vBNST to the VTA also have the capacity to control divergent 

motivational and anxiety states. Recently, we demonstrated that glutamatergic and 

GABAergic vBNST projection neurons synapse onto VTA GABA neurons54. Further, we 

found that optogenetic stimulation of vBNST GABAergic terminals in the VTA is anxiolytic 

and rewarding, while activation of glutamatergic terminals in the VTA is anxiogenic and 

aversive. However, these data are based on findings in male mice and it is unknown whether 

sex differences occur in the functioning of this circuit or if infant-dependent anxiety and 

reward states are under similar circuit control. The majority of the maternally responsive 

mPOA/vBNST neurons appear to be GABAergic71,72, however the subset that project to the 

midbrain remain uncharacterized within this behavioral context. The potential genetic 

phenotypes and receptor expression profile of mPOA/vBNST neurons that respond to 

hormones or infant stimuli for complex circuit regulation of motivation and maternal 

behavior are discussed below.

3. Maternally responsive mPOA/vBNST neurons

Pregnancy hormones and infant stimuli appear to recruit and maintain mPOA/vBNST 

circuits that regulate maternal actions and motivated behavior in puerperal females. 

Approach-avoidance models of maternal behavior suggest that maternal behavior occurs 

when the inclination to approach infant stimuli is greater than the tendency to avoid such 

stimuli. Then, recurrent infant exposure reinforces infant care through sustained activation of 

maternal circuits that promote maternal actions. Infant stimuli have anxiolytic and rewarding 

effects that may also act as reinforcing properties. Postpartum dams readily engage in 

operant responding tasks for pup reinforcement33,73–75 and develop a strong place 

preference for pup-associated cues8,76–78. Further, lactating dams exhibit less anxiety-like 

behavior in a battery of assays following mother-pup interactions9,11,79–81. Such anxiolytic 

effects appear to depend on the presence of the pups, as separation often has opposite and 

anxiogenic effects. Further, infant exposure has anxiolytic effects in virgin females after 

recurrent exposure79,81. This implies that infant experience imparts changes in anxiety and 

reward related systems. Hormones and infant stimuli appear to act synergistically to promote 

maternal actions, in part by stimulating neural activity in the mPOA/vBNST, as discussed 

below.
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3.1 Infant stimuli

Infant stimuli generate neuronal Fos expression, a marker of neural activity, within the 

mPOA/vBNST of postpartum rodents71,82,83, even after prolonged infant exposure84 and 

ovariectomy85. Such induction likely serves a function role, since genetic knock out of FosB 

abolishes maternal behavior in postpartum mice83,86,87. Further, similar effects of infant 

exposure are observed in virgin females, including expression of maternal-like behavior88 

and Fos expression in the mPOA/vBNST89. This suggests that infant stimuli alone are a 

potent activator of maternal circuits, even in the absence of hormones and pregnancy. 

Studies suggest that experience-induced effects of infant exposure may occur through 

epigenetic modifications within the mPOA88. In addition, neural activation patterns are 

influenced by the anxiety state of the mother and the presence of her offspring. Dams 

separated from their pups display higher Fos expression in the dorsal mPOA but less Fos 

expression in the vBNST, compared to those that remained unseparated from their pups 82. It 

is unknown whether disparate maternal affective states result in distinct patterns of neural 

activity or target similar genetic populations within the mPOA/vBNST.

3.2 Steroid hormones

Hormonal priming late in pregnancy, characterized by a rise in estrogen, prolactin, and 

oxytocin, and decline in progesterone, is required for the rapid induction of maternal care. 

Functionally, estrogen appears to enhance and progesterone inhibits, respectively, maternal 

behavior. Further, intra-mPOA estradiol facilitates maternal behavior90,91; thus, this is one 

site of estrogen’s maternal effects. Estradiol administration in conjunction with progesterone 

withdrawal or pregnancy termination also enhances Fos expression in mPOA/vBNST 

neurons92. Conversely, progesterone administration alone impairs maternal care and lowers 

Fos expression within the mPOA/vBNST92. It is less clear whether pregnancy termination 

and steroid hormones activate similar or distinct genetic populations in this region. However, 

hormonal profiles that occur around parturition likely promote expression patterns that act to 

facilitate maternal responsiveness. For instance, a pregnancy-like regimen of steroids alters 

prolactin receptor expression in the mPOA, with estrogens increasing and progesterone 

decreasing its expression93. As discussed below, prolactin helps to enhance maternal care 

through actions in the mPOA. Consistent with this, there are greater estrogen receptor 

concentrations94 and fewer progesterone receptors95 within the mPOA in rodents during late 

pregnancy. These steroid receptor changes may enhance the physiological effects of estrogen 

in the mPOA/vBNST and diminish those of progesterone, thereby promoting maternal 

actions in puerperal females.

While steroids often promote maternal behavior, they also predispose some mothers to 

disruptions in mood. Estrogens in particular are potent mediators of maternal behavior that 

may underpin altered postpartum affective states96–98. In female rodents, estradiol 

withdrawal enhances anhedonia, such as reduced operant responding for electrical self-

stimulation 99 and sucrose consumption 98, compared to non-steroid deprived females. 

While, the brain regions involved remain undefined, estrogenic actions in the mPOA may 

contribute to postpartum changes in mood. Late in pregnancy, rodents express higher levels 

of Fos expression in the mPOA than non-pregnant females, and approximately 25–45% of 

these neurons co-express estrogen receptor α (ERα)100. ERα expression in the mPOA is 
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linked with individual differences in maternal care and anxiety behavior. Specifically, 

females with higher ERα expression are more maternal and less anxious, opposite from 

those with lower ERα expression in the mPOA101. Moreover, administration of an ERα 

agonist reduces postpartum anxiety and depressive-like behaviors102. However, knock down 

of ERα in the mPOA similarly reduces postpartum anxiety103. Thus, estrogenic actions 

within the mPOA may act through disparate routes and modulate affect in complex ways in 

response to fluctuating estrogen levels. Further, estrogens often interact with other steroid 

and peptide hormones to modulate maternal activity, as discussed below. In addition, 

estrogen-responsive mPOA/vBNST circuits, including those that influence mood and 

maternal actions, remain unmapped. Neuroanatomical tracing studies indicate that mPOA/

vBNST to VTA projections are estrogenic104,105. However, it is unknown whether 

estrogenic actions in the mPOA/vBNST stimulate midbrain projections that control anxiety 

and divergent motivational states.

Apart from estrogen, progesterone could influence maternal affect, directly or through the 

progesterone metabolite and neurosteroid, allopregnanolone. Allopregnanolone can alter 

inhibitory functions through its actions at ionotropic GABAA receptors106. Such effects 

could alter neuronal excitability within maternal circuits. For instance, application of 

allopregnanolone in mPOA brain slices enhances GABAergic transmission107–109. Changes 

in inhibitory tone within the mPOA could have ramifications for downstream targets that 

regulate motivated behavior or anxiety state, such as those that project to the midbrain.

3.3 Peptide hormones and neurotransmitters

The mPOA/vBNST is a heterogeneous structure with the capacity to integrate a variety of 

hormonal, neurochemical, and environmental signals that collectively modify maternal 

anxiety and reward states. These neuronal and hormonal substrates have distinct expression 

patterns within the mPOA/vBNST, as exemplified in Figure 2. This information was 

originally derived from the Allen Brain Atlas in situ mouse brain database110. Recently, a 

web-based tool has become available by the Allen Brain Atlas to visual gene expression 

within specified structures of the mouse brain111. In Figure 2B, we have created a heat map 

of relative gene expression levels within the POA and BNST. Microarray studies have 

recently shown that parity and maternal behavior can alter gene expression patterns in the 

mPOA112. Molecular studies by Shah have also found that adult sex hormones regulate gene 

expression in a sex- and site- specific manner18. Further, mice with disruptions of these 

target genes show functional deficits in an array of reproductive behaviors, including 

parenting and mating. Thus, additional studies, such as those that incorporate Cre-driver 

tools and transgenic mouse lines, are necessary to further dissect the functional properties of 

genetically defined cells and circuits within the mPOA/vBNST and their role not only in 

reproductive behaviors, but also in regulation of divergent motivational and emotional states.

Studies have begun to phenotype select neuronal populations within the mPOA/vBNST that 

are maternally and hormonally responsive. Neurochemical investigation of Fos-expressing 

neurons in the mPOA/vBNST of maternal mice indicate that most are inhibitory GABAergic 

neurons (~75%, glutamate decarboxylase 67), while very few appear to be glutamatergic 

(~6%, Vglut2)72. The majority of Fos positive GABAergic cells are located primarily in the 
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dorsal central MPOA and ventral lateral BNST71. Many of the Fos activated subset co-

express galanin (~47%), neurotensin (~49%), or tachykin2 (~29%)71. Studies have started to 

examine the functional role of these cell types and other steroid and peptide hormones 

within the context of infant care and maternal anxiety or reward. Recently, a study found that 

a sub-set of galanin neurons in the mPOA are activated by parental experience in male 

mice50. Optogenetic activation of mPOA galanin neurons in male mice enhances parental 

care, whereas genetic ablation results in impairments in both male and female mice. This 

demonstrates a functional role for galanin neurons in paternal behavior. However, the 

projection targets of these neurons remain uncharacterized, as well as the function of 

maternally activated mPOA/vBNST neurons within the context of maternal affect and 

emotion. Apart from galanin, neurotensin-containing neurons in the mPOA may also 

promote maternal functions. Neurotensin mRNA is elevated within the mPOA and dorsal 

BNST of postpartum mice, but lowered in other regions, compared to virgins114. 

Neurotensin administration enhances Fos expression in the mPOA and dorsal BNST and 

suppresses maternal aggression115. Neurotensinergic neurons in the mPOA project to the 

VTA and appear to convey distinct reward information116,117, although no studies have 

examined these projections within the context of maternal specific motivation or infant 

reward.

One commonality among maternally engaged peptides is that reproductive steroids, such as 

estrogen, often modulate their activity. For instance, approximately half of neurotensin 

neurons in the mPOA contain estrogen receptors118 and estrogens enhance galanin 

expression in the mPOA113. Further, estrogen interacts with oxytocin to promote maternal 

actions119,120 and estrogen enhances oxytocin receptor binding in the mPOA101. In vitro 
electrophysiological slice recordings in the BNST reveal that oxytocin sensitivity is higher 

during lactation compared to late pregnancy and is enhanced by concomitant application of 

estradiol105. Also, oxytocin has potent anxiolytic effects123 that are enhanced by 

estrogens124.

3.3.1 Oxytocin—Oxytocin subserves a number diverse maternal functions, including the 

regulation of maternal care, infant reward, social attachment, and anxiolysis62,125,126. 

Oxytocin acts as a peripheral hormone for peripartum functions, including milk ejection and 

labor. Suckling discharges bursts of spikes that release oxytocin into circulation, acting as an 

infant-mediated positive feedback loop127. Oxytocin also acts as a neuropeptide in the 

mPOA to promote maternal functions around parturition. Oxytocin administration induces 

the spontaneous onset of maternal care in steroid-primed virgin females128. In contrast, 

oxytocin antagonists disrupt this natural onset of maternal behavior through actions within 

the mPOA129,130. Additionally, oxytocin receptor expression is upregulated in the mPOA 

late in pregnancy and in the mPOA/vBNST after parturition131,132. Changes in oxytocin 

receptor expression affect not only maternal behavior, but also anxious states. In lactating 

dams, central oxytocin infusions enhance Fos within the mPOA/vBNST133 and reduce 

anxiety-related behavior, compared to virgin females134. The target projections of oxytocin 

containing neurons remain unmapped, although. neuroanatomical tracing studies suggest 

that oxytocin containing cells in the mPOA project to the VTA61 and promote anxiolytic and 

McHenry et al. Page 7

Front Neuroendocrinol. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rewarding maternal states61. Oxytocin interacts with the mesolimbic dopamine system here 

to facilitate aspects of maternal motivation and infant reward states62.

3.1.2. Prolactin—Prolactin has been implicated in maternal care and peripartum 

adaptations, as extensively reviewed elsewhere11,16,135–137. Prolactin systems undergo 

changes that facilitate maternal behavior under the presence of gonadal steroids, in part 

through actions in the mPOA136,138,139. For instance, exogenous prolactin stimulates 

maternal-like behavior in nulliparous females, but only when administered centrally rather 

than systemically, and only in steroid-primed females140,141. Further, a similar effect is 

observed when prolactin is infused directly into the mPOA. Prolactin is released within the 

mPOA of lactating rats during suckling142, and prolactin receptors are upregulated 

peripartum133. In addition, treatment with prolactin increases prolactin receptors in the 

mPOA144. Steroid-induced changes around parturition likely promote prolactin receptor 

alterations that enhance maternal responsiveness, since estrogen increases prolactin receptor 

expression, whereas progesterone decreases it93. Further, actions at the prolactin receptor 

likely play a functional role in maternal care, since prolactin receptor knock out results in 

maternal deficits145,146. While prolactin is clearly involved in the regulation of maternal 

behavior, it is less clear whether it affects maternal anxiety or mood, although, maternal 

hypoprolactinemia around the end of lactation is associated with increased anxiety147.

3.1.3. Corticotrophin releasing factor—In contrast to the peptides discussed thus far, 

corticotrophin releasing factor (CRF) enhances anxiety and impairs maternal care. Central 

administration of CRF impairs maternal behavior in lactating dams148 and results in pup 

killing in steroid-primed ovariectomized females149. Administration of a CRF agonist in the 

BNST reduces pup care and enhances maternal anxiety in virgin and lactating dams150. In 

contrast, administration of a CRF antagonists in the BNST reduces anxiety in virgin and 

lactating females150. Further, CRF enhances Fos expression in the BNST to a greater extent 

in virgin females compared to lactating dams151. Since CRF in the BNST inhibits maternal 

functions, reduced sensitivity here may protect against maternal deficits. Neuroanatomical 

and electrophysiological studies indicate that BNST to VTA projecting CRF neurons 

influence reward processing143–145, although none have examined BNST-VTA circuit 

processing in maternal females.

4. Concluding remarks

Collectively, these findings indicate that infant stimuli and reproductive steroids regulate 

motivated behavior and maternal affect. Such changes appear to be modulated through 

neural and hormonal actions in the mPOA/vBNST. However, most studies to date are based 

on behavioral pharmacology and immunohistochemical analyses, and functional circuit-level 

relationships are lacking. Dulac and colleagues have begun to examine the functional role of 

mPOA neurons in parenting with the use of in vivo behavioral optogenetics. Future studies 

should expand upon these findings and target other genetically defined and maternally 

responsive cell populations. Also, studies should establish the function of mPOA/vBNST 

input and output circuits not only in relation to maternal care, but also in the context of 

general affective and motivational states. In particular, a more detailed dissection of mPOA/

vBNST to midbrain circuits is necessary to determine similarities between infant-specific 
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and general motivational processing. The influence of steroids and reproductive experience 

on mPOA/vBNST circuits that modulate anxiety and affect may have significant 

implications for the understanding and treatment of reproductive subsets of affective 

disorders.
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Highlights

• Postpartum neuropsychiatric disorders are a major source of morbidity and 

mortality.

• The neurobiological etiology of postpartum affective disorders remains unclear.

• The mPOA and vBNST regulate maternal actions and motivated behavior.

• Adaptations in the mPOA and vBNST may be involved in modulation of 

postpartum affect.

• Future studies should examine the functional connectivity of maternal circuits 

that regulate anxiety and reward.
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Figure 1. 
Schematic detailing medial preoptic (mPOA) and bed nucleus of the stria terminalis (BNST) 

afferent and efferent connectivity implicated in maternal functions. (A) The BNST receives 

inputs from the accessory olfactory bulb (AOB), medial amygdala (MeA), and medial 

preoptic area (mPOA) and ventral tegmental area (VTA, projection not shown). The BNST 

sends projections to the VTA, MeA, and mPOA. The mPOA receives inputs from the AOB, 

MeA and BNST and sends outputs to the VTA. The VTA has reciprocal connections with 

the nucleus accumbens (NAc). Cellular phenotypes are indicated by color; mixed 

GABAergic/glutamatergic populations shown in purple, GABAergic shown in pink, mixed 

GABAergic/dopaminergic shown in blue, and glutamatergic shown in green.
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Figure 2. 
Allen Brain Atlas–Driven Visualizations: A) Photomicrographs represent mRNA expression 

for galanin, neurotensin, VGAT (GABA vesicular transporter), and VLGUT2 (vesicular 

glutamate transporter) in the mPOA and vBNST. Derived from Allen Brain Atlas In situ 

hybridization data. B) Heatmap illustrates gene expression within the medial preoptic area 

(MPOA), medial preoptic nucleus (MPN), bed nucleus of the stria terminalis (BNST), and 
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ventral (vBNST). Values were derived from energy expression; see Zaldivar & Krichmar, 

2014. Gene symbols are labeled according to Allen Brain Atlas.
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