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Abstract

The Rac1 GTPase is an essential and ubiquitous protein that signals through numerous pathways 

to control critical cellular processes, including cell growth, morphology, and motility. Rac1 

deletion is embryonic lethal, and its dysregulation or mutation can promote cancer, arthritis, 

cardiovascular disease, and neurological disorders. Rac1 activity is highly regulated by 

modulatory proteins and posttranslational modifications. Whereas much attention has been 

devoted to guanine nucleotide exchange factors that act on Rac1 to promote GTP loading and 

Rac1 activation, cellular oxidants may also regulate Rac1 activation by promoting guanine 

nucleotide exchange. Herein, we show that Rac1 contains a redox-sensitive cysteine (Cys18) that 

can be selectively oxidized at physiological pH because of its lowered pKa. Consistent with these 

observations, we show that Rac1 is glutathiolated in primary chondrocytes. Oxidation of Cys18 by 

glutathione greatly perturbs Rac1 guanine nucleotide binding and promotes nucleotide exchange. 

As aspartate substitutions have been previously used to mimic cysteine oxidation, we 

characterized the biochemical properties of Rac1C18D. We also evaluated Rac1C18S as a redox-

insensitive variant and found that it retains structural and biochemical properties similar to those 

of Rac1WT but is resistant to thiol oxidation. In addition, Rac1C18D, but not Rac1C18S, shows 

greatly enhanced nucleotide exchange, similar to that observed for Rac1 oxidation by glutathione. 
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We employed Rac1C18D in cell-based studies to assess whether this fast-cycling variant, which 

mimics Rac1 oxidation by glutathione, affects Rac1 activity and function. Expression of Rac1C18D 

in Swiss 3T3 cells showed greatly enhanced GTP-bound Rac1 relative to Rac1WT and the redox-

insensitive Rac1C18S variant. Moreover, expression of Rac1C18D in HEK-293T cells greatly 

promoted lamellipodia formation. Our results suggest that Rac1 oxidation at Cys18 is a novel 

posttranslational modification that upregulates Rac1 activity.
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1. Introduction

Rac1 is a member of the Rho subclass of Ras superfamily GTPases. It functions as a 

molecular switch by cycling between active GTP- and inactive GDP-bound states to control 

the timing and specificity of cellular pathways that regulate diverse cell functions, including 

gene expression, cell motility, cell morphology, and cell cycling [1]. Owing to the slow 

intrinsic rates of nucleotide exchange and hydrolysis, temporal regulation of Rac1 activity 

requires modulatory factors, such as guanine nucleotide exchange factors (GEFs)2, which 

facilitate exchange of GDP for GTP; GTPase-activating proteins (GAPs), which catalyze 

GTP hydrolysis; and guanine nucleotide dissociation inhibitors (GDIs), which prevent GDP 

dissociation and sequester Rac1 away from cell membranes [2,3]. In addition, Rac1 is 

spatially and temporally regulated by various posttranslational modifications, including C-

terminal lipidation [4–6], phosphorylation [7], ubiquitination [8,9], and SUMOylation [10]. 

Rac1 is an essential protein [11] that plays a critical role in regulating multiple cellular 

processes. Its dysregulation is correlated with many diseases, including cancer [12,13], 

osteoarthritis [14], cardiovascular disease [15], and neurological disorders [16]. Until 

recently, upregulation of the activity of Rho family GTPases in cancer was believed to result 

solely from altered Rac1 expression levels and/or aberrant expression or regulation of Rac1 

GEFs, GAPs, and GDIs [17,18]. However, oncogenic mutations have been discovered in 

Rac1, Rac2, and Cdc42 [19]. In particular, a Rac1P29S mutant has recently been identified in 

9% of primary melanomas [20], which drives oncogenic transformation in melanocytes due 

to increased nucleotide cycling [21–23], and Rac2P29L has been sporadically observed in 

human melanoma and breast cancers [24]. Another mutant, Rac1N92I, was identified in the 

fibrosarcoma cell line HT1080 [24]. Further, the Rac1 splice variant Rac1b also promotes 

fast nucleotide cycling and has been shown to promote cellular transformation [25] as well 

as sustaining tumor survival [26]. Whereas most oncogenic mutations identified in Ras 

family proteins cause chronic activation by impairing GAP-mediated GTP hydrolysis [27], 

oncogenic mutations in Rho family GTPases promote increased guanine nucleotide 

exchange in a GEF-independent manner, which results in constitutive activation [19].

In addition to GEF-mediated regulation and mutation, reactive oxygen and nitrogen species 

(ROS and RNS) can directly facilitate guanine nucleotide exchange and Rac1 activation 

[28]. Although ROS and RNS are best known for their role in oxidative stress, in which they 

induce DNA damage as well as oxidize lipids and proteins [29], ROS and RNS have been 
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shown to regulate cellular signaling at physiological levels [30,31]. Cellular oxidants, such 

as nitrogen dioxide , superoxide , hydrogen peroxide (H2O2), and peroxynitrite 

(ONOO−), have been shown to specifically react with protein thiols and alter protein activity 

[32]. In fact, we have previously shown that oxidants, such as nitrogen dioxide, superoxide, 

and peroxide, can react directly with Rac1 Cys18 and regulate Rac1 activity by promoting 

guanine nucleotide exchange in vitro [28]. Moreover, Rac1 can be activated by exogenous 

addition of peroxide to HeLa cells [33].

Osteoarthritis is a degenerative joint disease that is characterized by high levels of oxidative 

stress [34], and increased Rac1 activity has been shown to regulate disease progression [14]. 

Rac1 activity has also been found to be elevated in human osteoarthritis cells [14,35]. 

Moreover, in primary chondrocytes, Rac1 activation increases the expression of matrix 

metalloproteinase 13 (MMP-13) [35], an enzyme known to play a role in cartilage matrix 

degradation. In both of these studies, ectopic expression of inactive Rac1 or use of a 

chemical inhibitor to Rac1 reduced the level of cartilage destruction and disease progression, 

indicating a direct role for Rac1 activity in osteoarthritis.

In addition to direct regulation of Rac1 activity by ROS and RNS, Rac1 associates with and 

can regulate enzymes that produce ROS and RNS. Rac1 binds to and activates NADPH 

oxidase (NOX) isoforms (Nox1, Nox2, and Nox3) [36,37]. Once activated, the NOX 

complex produces superoxide, a common cellular ROS. Superoxide has a short half-life and 

can be reduced by superoxide dismutase 1 (SOD1) to peroxide, a less reactive ROS [38]. 

Rac1 has also been shown to directly interact with SOD1 in a redox- and nucleotide-

dependent manner [39]. In a study by Harraz et al. [39], dithiothreitol (DTT)-reduced 

GTPγS-loaded Rac1 associated with SOD1, whereas exposure of GTPγS-bound Rac1 to 

peroxide at concentrations as low as 50 pM reduced association with SOD1 in vitro. These 

data suggest that oxidation of Rac1 can regulate its activity and alter interactions with 

regulatory proteins and effectors. Rac1 can also associate with and directly regulate the 

activity of endothelial and neuronal nitric oxide synthases (eNOS and nNOS) [40]. Nitric 

oxide (NO•) generated from NOS is involved in numerous physiological processes [41], 

including vascular function [42], neurotransmission [43], and pathogen defense [44]. As 

Rac1 can regulate both nitric oxide production from NOS enzymes and superoxide 

production from NOX complexes, Rac1 likely modulates peroxynitrite generation in cells. 

Peroxynitrite is a potent oxidant that can easily cross membranes and directly oxidize thiols 

and iron–sulfur centers in proteins via direct (nonradical-mediated oxidation) or indirect 

(radical-mediated oxidation) mechanisms [45].

Given that Rac1 colocalizes with and modulates the activity of several redox enzymes, 

including Nox1/2/3, SOD1, eNOS, and nNOS, we investigated the effects of oxidative 

modification on Rac1 activity in vitro and in cells. We found that Rac1 has a redox-sensitive 

cysteine in the phosphoryl-binding loop (p-loop) that can be selectively oxidized by 

glutathione in vitro, and Rac1 was observed to be glutathiolated in primary chondrocytes. 

Further, Rac1 Cys18 glutathiolation perturbs guanine nucleotide binding and promotes 

guanine nucleotide cycling. We prepared a Rac1C18D variant designed to place a negative 

charge in the nucleotide-binding pocket, similar to sulfinic/sulfonic acid oxidation and 
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glutathiolation, and found that the Rac1C18D variant shows greatly increased nucleotide 

dissociation rates in vitro, similar to glutathiolated Rac1 (Rac1S–SG). Further, the Rac1C18D 

variant shows increased activation in HEK-293T cells and enhances lamellipodia formation 

in Swiss 3T3 cells. We have also generated and char-acterized Rac1C18S, a redox-insensitive 

Rac1 variant that is resistant to glutathiolation. Taken together, our findings suggest that 

Rac1 oxidation may promote enhanced nucleotide cycling in a GEF-independent manner, 

which could lead to increased Rac1 cellular activation. Thus, given the role of Rac1 in 

regulating cellular oxidant production, dysregulation of Rac1 via oxidative posttranslational 

modifications may contribute to a variety of disease states in which the redox state is altered.

2. Materials and methods

2.1. Rac1 glutathiolation in primary chondrocytes

Human articular chondrocytes were isolated from normal articular cartilage obtained from 

tissue donors and cultured as previously described [35]. Confluent cultures were made 

serum-free overnight before treatment with 25 μM menadione for 0, 10, or 30 min to induce 

ROS production with or without 100 ng/ml insulin-like growth factor-1 (IGF-1) for 10 min. 

Cell lysates were prepared as previously described [35] with the addition of 20 mM 

iodoacetamide and 200 U/ml bovine liver catalase to the lysis buffer. Cell lysates with equal 

amounts of total protein were immunoprecipitated with antibodies to Rac1 (clone 23A8 

from EMD Millipore; Darmstadt, Germany) using the Pierce Classic IP Kit (Thermo 

Scientific; San Jose, CA, USA). Immunoprecipitated proteins were separated by SDS–

PAGE under nonreducing conditions and then immunoblotted with a mouse monoclonal 

antibody (Arbor Assays; Ann Arbor, MI, USA) to detect protein glutathiolation, which was 

followed by stripping the blot and reprobing for Rac1.

2.2. Expression and purification of recombinant proteins

Human Rac1WT (1–188, C178S) and the Rac1 Cys18 variants were cloned into pET15b 

(EMD Millipore), transformed into Escherichia coli BL21 (DE3) Rosetta2 cells (Stratagene; 

La Jolla, CA, USA), and grown at 37 °C to 0.6 OD600. Rac1 expression was induced upon 

adding 1 mM isopropyl-β-D-1-thiogalactopyrano-side. The cells were grown for 4 h at 37 °C 

before lysis in 50 mM KH2PO4 (pH 7.5), 150 mM NaCl, 1 mM MgCl2, 10 μM GDP, and 5 

mM β-mercaptoethanol (βME). All Rac1 and Rac1 Cys18 variants were purified using a Ni–

NTA column (Qiagen; Venlo, Limburg, The Netherlands) with a linear elution gradient 

from 0 to 300 mM imidazole. For longer term storage, purified Rac1 proteins were stored in 

50% glycerol at −20 °C. The RhoGAP domain (residues 244–431) was cloned into the 

pQlinkH vector (Addgene), and human Tiam1 (GEF domain containing the DH/PH domain, 

residues 1040–1397) was cloned into pET28a. Similar to Rac1 expression and purification, 

these constructs were transformed into E. coli BL21 (DE3) Rosetta2 cells. The cells were 

lysed in 20 mM Na2HPO4 (pH 7.4), 150 mM NaCl, 20 mM imidazole, and 5 mM βME and 

purified using Ni–NTA agarose affinity chromatography (Qiagen).

2.3. Rac1 glutathiolation

Oxidized glutathione (GSSG) was added to Rac1 at 1000-fold excess for 15–60 min at 25 or 

37 °C (time and temperature were varied to increase yield) in glutathiolation buffer (50 mM 
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KH2PO4 (pH 6.5), 150 mM NaCl, 5 mM MgCl2, 50 μM GDP, and 0.1 mM 

diethylenetriaminepentaacetic acid (DTPA)). The sample was dialyzed against prechilled 

buffer (20 mM KH2PO4 (pH 6.5), 50 mM NaCl, 5 mM MgCl2, 10 μM GDP, and 0.1 mM 

DTPA) overnight.

2.4. Mass spectrometry of unmodified Rac1, glutathiolated Rac1, and ABD-modified Rac1

Rac1 mass measurements were performed on an LTQ Orbitrap Velos mass spectrometer 

(Thermo Scientific). The mass analysis of intact Rac1 samples was achieved in full-MS, 

single-ion monitoring, and electron transfer dissociation–tandem mass spectrometry (ETD–

MS/MS) modes with a resolution of 120,000 at m/z 400 Da. The intact MS spectra were 

mass deconvoluted using ProMass, and ETD–MS/MS product ion spectra were processed 

manually by assigning sequence ions to theoretical masses corresponding to glutathiolated 

Rac1 or ABD-modified Rac1.

2.5. GDP dissociation assay

Rac1 was preloaded with 2′-/3′-O-(N′-methylanthraniloyl)guanosine-5′-O-diphosphate 

(mant-GDP; Biolog; Bremen, Germany) in 20 mM Tris (pH 7.5), 50 mM NaCl, 200 mM 

(NH4)2SO4, and 0.1 mM ethylenediaminetetraacetic acid (EDTA) for 1 h at 37 °C. The 

reaction was incubated on ice for at least 1 h upon adding 20 mM MgCl2. The excess 

nucleotide was removed, and Rac1 was buffer exchanged into 20 mM Tris (pH 7.5), 150 

mM NaCl, and 5 mM MgCl2. Nucleotide dissociation was initiated by addition of a 1000-

fold excess of unlabeled GDP, and the nucleotide dissociation rate was determined by 

monitoring the fluorescence emission at 435 nm (excitation 365 nm) using an LS50B 

spectrophotometer (PerkinElmer; Waltham, MA, USA). Where indicated, the minimal 

catalytic fragment of the Rac1 GEF Tiam1 containing the DH/PH domain was used to 

stimulate Rac1 nucleotide dissociation [46]. All dissociation experiments were performed in 

triplicate. The fluorescent nucleotide dissociation curves were fit to a one-phase exponential 

decay equation using GraphPad Prism 5.0.

2.6. GTP hydrolysis

Rac1 single-turnover GTP hydrolysis rates were determined in the presence and absence of 

the RhoGAP domain of p50 rhoGAP (1:1000 GAP:Rac1) essentially as described [47]. 

Inorganic phosphate was removed from all buffers using the “phosphate mop,” consisting of 

0.5 mM inosine in each of the following buffers and dialyzing the buffer in the presence of 1 

unit of nucleoside phosphorylase [48]. Rac1 was loaded with GTP by incubating with 10-

fold excess GTP at 37 °C for 1 min in 20 mM HEPES (pH 8), 20 mM (NH4)2SO4, 1 mM 

EDTA, and 0.1 mM DTPA. Excess GTP was removed using a PD-10 column (GE 

Healthcare). The reaction was performed in triplicate using a buffer containing 20 mM Tris 

(ph 7.4), 50 mM NaCl, 0.1 mM EDTA, and 0.5 mM inosine. GTP hydrolysis was initiated 

by adding 100 μM MgCl2 to a sample containing 50 μM Rac1 and FlipPi 5U (Addgene). 

FlipPi undergoes a conformational change upon binding inorganic phosphate, which alters 

its intrinsic fluorescence resonance energy transfer (FRET), as previously described [49]. 

Phosphate released from the hydrolysis of GTP to GDP was quantified to determine Rac1 

GTP hydrolysis rates by monitoring the FlipPi FRET signal change using a Spec-tramax 
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M5e spectrometer (excitation 415 nm and the emission ratio for 475 and 515 nm). The data 

were normalized and fit to a single association exponential (Prism 5.0; GraphPad; San 

Diego, CA, USA; n=2).

2.7. Rac1 Cys18 thiol pKa measurements

Rac1WT and Rac1C18S were dialyzed into reducing buffer (15 mM HEPES (pH 8.0), 50 mM 

NaCl, 5 mM MgCl2, 10 μM GDP, and 10 mM DTT), and the protein was incubated under 

reducing conditions for 30 min. Rac1 was then buffer exchanged using a Centricon 

concentrator (15-kDa molecular weight cut-off, Millipore) into nonreducing buffer (15 mM 

MES (pH 6.5), 30 mM NaCl, 5 mM MgCl2, 200 μM DTPA, and 10 μM GDP). Rac1 was 

diluted into a mixed buffer system with pH values ranging from 5.5 to 8.5; each buffer 

contained 30 mM MES, 30 mM MOPS, 30 mM Tricine, 5 mM MgCl2, 50 mM KCl, and 

200 μM DTPA. ABD-f (4-(aminosul-fonyl)-7-fluoro-2,1,3-benzoxadiazole; Anaspec; 

Fremont, CA, USA) was added (1 mM) to initiate cysteine thiol modification. The reaction 

rate was determined by monitoring ABD-f fluorescence (excitation 389 nm, emission 513 

nm) using a Spectromax M5e spectrometer (Molecular Devices; Sunnyvale, CA, USA). The 

initial reaction rates were fitted using linear regression analysis (Prism 5.0; GraphPad).

2.8. Rac1 circular dichroism and thermal stability

Circular dichroism data were collected on a JASCO J-815 CD spectrometer (Oklahoma 

City, OK, USA) with a JASCO Peltier device and water bath to control the temperature. 

Experiments were performed in a 1-mm cuvette at a protein concentration of 15 μM in 10 

mM potassium phosphate (pH 6.5). Far-UV scans were from 200 to 280 nm. Thermal 

denaturation of Rac1 and Rac1 variants were monitored at 222 nm to estimate the protein 

melting temperature. The temperature ramp rate was 1 °C/min and data points were 

collected every 1 °C. All data are reported in units of mean residue ellipticity, which was 

calculated as follows: [θ]MRE = (θraw × MRW)/(10 × c × l), where θraw is the ellipticity in 

degrees, MRW is (molecular mass in kilodaltons)/(No. of residues – 1), c is the protein 

concentration in g/ml, and l is the pathlength of the cuvette in cm, according to [50].

2.9. NMR experiments

Rac1 was expressed and purified as described above except that the cells were grown 

in 15N-enriched M-9 minimal medium. Two-dimensional (2D) 1H–15N HSQC 

(heteronuclear single-quantum coherence spectroscopy) NMR experiments were performed 

using a Varian Inova 700-MHz spectrometer with a cryoprobe. The sample contained 200 

μM Rac1, Rac1C18S, or Rac1C18A at 25 °C in 50 mM Tris maleate (pH 6.8), 50 mM NaCl, 5 

mM MgCl2, 50 μM GDP, 0.1 mM DTPA, and 1 mM DTT. The Rac1C18D variant was 

collected on a Bruker 700-MHz spectrometer (Billerica, MA, USA). Two-

dimensional 1H–15N HSQC NMR spectra were collected and recorded using a 2500-Hz 15N 

spectral width and 512 complex points. The NMR data were processed using NMR Pipe and 

NMRViewJ [51,52].
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2.10. Cell lines, plasmids, and reagents

HEK-293T cells (from the American Type Culture Collection) and Swiss 3T3 cells (a gift 

from Alan Hall, Memorial Sloan Kettering Cancer Center) were grown in Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (Sigma; St. 

Louis, MO, USA) and maintained at 37 °C in 5% CO2 [53]. Keith Burridge (University of 

North Carolina) provided full-length human Rac1 and the full-length Rac1C18S variant, 

which were cloned into the pCMVJ3 vector for mammalian expression; pCMVJ3-Rac1C18D 

was generated from Rac1WT using PCR-based mutagenesis.

2.11. PAK pull-down assays for Rac1-GTP in HEK-293T cells

Levels of active, GTP-bound Rac1 were assessed using pull-down assays with the PAK1 

p21-binding domain (GST-bound PAK-PBD, a gift from Keith Burridge) as described 

previously [54]. Briefly, HEK-293T cells were transiently transfected with Rac1 expression 

plasmids using the TransIT transfection reagent (Mirus; Madison, WI, USA) according to 

the manufacturer’s instructions. The next day or at 80–90% confluence, the cells were 

starved in serum-free DMEM for 3 h. Next, the cells were washed twice with ice-cold 

phosphate-buffered saline (PBS; 5.4 mM KCl, 1.7 mM KH2PO4, 13 mM NaCl, and 5.4 mM 

Na2HPO4 (pH 7.4)) and lysed in magnesium lysis buffer (50 mM Tris (pH 7.5), 10 mM 

MgCl2, 150 mM NaCl, 1% NP-40, 10% glycerol, and 0.25% Na deoxycholate) with 

protease inhibitors. Equal volumes were removed from each lysate for total protein analysis. 

Glutathione (GST) agarose beads containing 20 μg of GST–PAK-PBD were added to each 

lysate and incubated at 4 °C for 60 min. Agarose–GST–PAK-PBD and associated Rac1 

were pelleted and washed three times with 500 μl of wash buffer (25 mM Tris (pH 7.5), 40 

mM NaCl, and 30 mM MgCl2). The final pellets were suspended in 1× protein sample 

buffer and resolved using SDS–PAGE. Rac1 protein and variants were detected through 

immunoblotting using an anti-Rac antibody (Millipore). Equal protein loading was 

confirmed using anti-tubulin (Sigma–Aldrich), and the Rac1C18S and Rac1C18D data were 

normalized to the Rac1WT data.

2.12. Cytoskeleton assays in Swiss 3T3 cells

Swiss 3T3 cells were plated (5000 cells/well in 12-well plates) on coverslips previously 

coated with fibronectin (2.5 μg/ml) for 30 min at room temperature. The next day, Myc-

tagged Rac1 constructs were transiently transfected into the cells using TransIT (Mirus) 

according to the manufacturer’s instructions. Twenty-four hours after transfection, the cells 

were fixed and stained with phalloidin and for the Myc-tag, as previously described [55]. 

Briefly, the cells were fixed in 4% paraformaldehyde (Electron Microscopy Sciences; 

Hatfield, PA, USA) overnight at 4 °C, permeabilized in 0.2% Triton X-100 (Sigma) in PBS 

for 5 min, and incubated with anti-Myc 911B antibody (1:500, Cell Signaling) for 1 h, 

followed by secondary AlexaFluor 488 anti-mouse antibody (1:500, Invitrogen) for 2 h and 

AlexaFluor 568 phalloidin (Invitrogen, 1:40 in PBS) for 30 min. The cells were incubated in 

the dark and rinsed in PBS three to five times between each step. Coverslips were mounted 

using 6 μl Vectashield with DAPI (Vector Laboratories; Burlingame, CA, USA). Cells were 

visualized and counted blindly for lamellipodia using a Nikon Eclipse TS100 microscope 
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with a 40× objective. Representative images were recorded using a Zeiss LSM 710 confocal 

laser-scanning microscope with a 63× oil objective.

3. Results

We have previously shown that Rac1 activity can be directly modulated by ROS and RNS 

[28]. Our earlier studies focused on radical-mediated regulation of Rac1 activity, in which 

we found that oxidants (  and ) capable of generating a Cys18 thiyl radical caused 

guanine base oxidation and nucleotide dissociation in Rac1; however, we also observed that 

peroxide, a nonradical oxidant, increased the intrinsic rate of exchange by ~10-fold [28]. As 

S-glutathiolation is commonly observed after thiyl radical formation because of the high 

cellular glutathione concentration [56], we expanded on these studies by examining whether 

glutathione modification can alter Rac1 activity. Given that Rac1 Cys18 is located in the 

nucleotide-binding pocket and forms multiple interactions with the guanine nucleotide 

ligand, we postulated that Cys18 is redox-sensitive, and oxidation of this thiol could alter 

guanine nucleotide binding and the Rac1 activation state.

3.1. Rac1 is glutathiolated in primary chondrocytes and is specifically glutathiolated at 
Cys18 in vitro

Rac1 has previously been shown to contribute to the development of osteoarthritis, probably 

because of its ability to upregulate MMP-13 expression in articular chondrocytes [14,35]. 

Therefore, we used primary human chondrocytes to examine whether endogenous Rac1 is 

glutathiolated. The cells were treated with menadione, which induces ROS production, in 

the absence and presence of the growth factor IGF-1, to examine the effects of ROS on IGF 

signaling. As shown in Fig. 1, menadione treatment, but not IGF-1, increased the level of 

Rac1 glutathiolation. Detection of glutathiolated Rac1 was greatest at 10 min after 

menadione addition and declined at 30 min.

Given that Rac1 Cys18 is solvent accessible (Supplementary Table 1) and sensitive to ROS 

and RNS [28], we explored whether Cys18 in Rac1 can be specifically glutathiolated in 

vitro. To generate glutathiolated Rac1 (Rac1S–SG), Rac1WT was treated with 1000× GSSG. 

The reaction products were analyzed by MS. Fig. 2 shows the intact mass analysis of 

Rac1WT treated with GSSG at pH 6 and 7.5, as well as the subsequent characterization of 

Rac1 with a single glutathione modification by top-down mass spectrometry. We were able 

to semi-quantitatively assess the amount of adduct formed by comparing the normalized 

peak intensity of unmodified Rac1 to the intensity of the Rac1 glutathiolated peak. These 

analyses also show that the amount of glutathiolated Rac1 is dependent on the pH of the 

reaction. Fig. 2A shows the deconvoluted MS of Rac1 treated with GSSG at pH 7.5 that 

resulted in ~25% glutathione adduct (normalized to base peak of Rac1), and Fig. 2B shows 

the deconvoluted MS of Rac1 treated with GSSG at pH 6 that resulted in ~10% glutathione 

adduct (normalized to base peak of Rac1). The twofold drop in glutathiolation observed in 

the MS data of intact Rac1 suggests that a single cysteine residue in Rac1 is modified in a 

pH-dependent manner. These observations are consistent with data in Supplementary Fig. 1, 

in which ESI–MS performed on Rac1WT and Rac1C18S show glutathiolation for Rac1WT but 

not Rac1C18S, indicating that Cys18 is the primary site of glutathiolation in Rac1.
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The site of Rac1 glutathiolation was characterized by top-down mass spectrometry by 

subjecting the [M+16H+G]16+ ion (Z=16+ of Rac1 containing a single glutathione) to ETD. 

The resulting MS/MS product ion spectrum consists of the major c- and •z-type fragment 

ions, shown at two different mass ranges for clarity. Data in Fig. 2C show products spanning 

m/z 800–1500 Da, and Fig. 2D shows all product ions spanning m/z 1500–2000 Da. The 

lower m/z region resulted in mostly singly charged c- and •z-type product ions from C-

terminal residues, whereas the N-terminal fragment ion c45+G contained the only 

glutathione-containing product ion. Most of the N-terminus lacked structurally informative 

fragments because of the lower number of basic amino acid residues. In addition, the neutral 

loss of glutathione during ETD was occasionally observed. Conversely, the higher m/z 

region produced structurally rich c-type ions, i.e., c87+G, and a number of other larger 

multiply charged c-type ions that contained glutathione (Fig. 2E). Our ability to detect 

glutathiolated Rac1 fragments was probably due to preservation of the covalently attached 

disulfide bond of glutathione upon competitive fragmentation along the N–Cα backbone. 

These ions, along with complementary multiply charged •z-type fragment ions lacking 

glutathione (•z154, •z145, •z99), lead to unambiguous localization of glutathiolation to either 

Cys6 or Cys18. In further support of site-specific glutathiolation at Cys18, a Rac1 variant that 

lacks a cysteine at position 18 (Rac1C18S), but shows biochemical properties similar to 

Rac1WT, is not covalently modified by glutathiolation (Supplementary Fig. 1). Taken 

together, our data indicate that treatment of Rac1WT with GSSG results in specific 

glutathiolation of Rac1 Cys18.

3.2. Rac1 Cys18 glutathiolation perturbs guanine nucleotide binding and enhances the 
intrinsic GDP dissociation rate

As Cys18 is located in the p-loop of Rac1 and directly interacts with the bound guanine 

nucleotide, we hypothesized that glutathiolation at this site may interfere with nucleotide 

binding. To determine whether Rac1 glutathiolation alters guanine nucleotide dissociation, 

Rac1S–SG was preloaded with fluorescent GDP (mant-GDP), and the rate of GDP 

dissociation was determined. As shown in Fig. 3, oxidative modification of Rac1 Cys18 with 

glutathione enhances the rate of GDP dissociation by 200-fold. Adding the GEF domain 

(DH/PH) of Tiam1 to Rac1S–SG did not increase the GDP dissociation rate. However, as the 

intrinsic rate of GDP dissociation is rapid under our experimental conditions, it is unclear 

whether we have the dynamic range to detect GEF-mediated enhancement.

To better understand the enhanced nucleotide exchange properties associated with 

glutathiolated Rac1, we generated Rac1 C18D, C18S, and C18A variants. The Rac1C18D 

variant was generated because a Cys→Asp substitution has previously been shown to mimic 

a cysteine-to-sulfenic/sulfinic acid modification in recoverin [57]. As both Rac1C18D and 

Rac1S–SG introduce a negative charge into the phosphoryl-binding pocket, we also made 

more conservative Cys18 substitutions, including Rac1C18S and Rac1C18A. All variants were 

preloaded with fluorescent GDP (mant-GDP), and Rac1 GDP dissociation was determined 

by measuring the decrease in mant-GDP fluorescence as a function of time (Fig. 3A). The 

GDP dissociation rates of Rac1 and the Cys18 variants were also measured in the presence 

of the GEF domain of Tiam1. Similar to glutathiolated Rac1, Rac1C18D shows a greatly 

enhanced intrinsic rate of nucleotide dissociation that was approximately 200-fold faster 

Hobbs et al. Page 9

Free Radic Biol Med. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



than that of Rac1WT and was not further increased by addition of Tiam 1. In contrast, 

Rac1C18S shows a similar GDP dissociation rate compared to Rac1WT, and Rac1WT and 

Rac1C18S were similarly responsive to GEF-mediated GDP dissociation. Consistent with 

previous studies of Cdc42C18A [58], the Rac1C18A variant enhances the intrinsic rate of 

GDP dissociation by 11-fold. These results indicate that the Cys18 thiol side chain plays a 

role in stabilizing nucleotide binding (Fig. 3B and Table 1).

In-cell regulation of Rac1 activity requires exchange of GDP for GTP to activate Rac1 and 

GTP hydrolysis for inactivation. To characterize the effects of Rac1 Cys18 variants on 

intrinsic and GAP-mediated GTP hydrolysis, we determined the rates of GTP hydrolysis of 

Rac1WT, Rac1C18D, and Rac1C18S in the presence and absence of the minimal catalytic 

domain of p50 rhoGAP. Single-turnover GTP hydrolysis rates were determined by 

monitoring phosphate release upon GTP hydrolysis by detecting the FRET change 

associated with the phosphate-binding protein FlipPi 5U. As shown in Fig. 3C and 

quantified in Table 2, mutating Rac1 Cys18 to either Asp or Ser did not significantly affect 

either the intrinsic or the GAP-mediated GTP hydrolysis rates. These data indicate that 

perturbation of Rac1 Cys18 by mutation, including the oxidation mimetic, does not alter 

GAP-mediated down regulation in vitro.

3.3. The Rac1 Cys18 thiol has a depressed pKa and can be selectively modified by ABD-f at 
physiological pH

As Rac1 Cys18 can be selectively modified by oxidized glutathione at physiological pH, we 

investigated whether the pKa of the Rac1 Cys18 thiol is altered relative to a typical free 

cysteine thiol by measuring the cysteine reactivity of Rac1WT and Rac1C18S to ABD-f. We 

used the thiol-modifying reagent ABD-f, which preferentially reacts with the thiolate form 

of cysteine [59], to measure thiol reactivity over a wide pH range, as described previously 

by us for Ras [60]. ABD-f fluorescence was measured from pH 5.5 to 8.5 for Rac1WT and 

Rac1C18S (Fig. 4A). The rate of ABD-f reactivity for Rac1WT was normalized to produce a 

pH titration curve for Rac1 Cys18 (Fig. 4B) and resulted in a pKa for the Rac1 Cys18 thiol of 

~7.25, which is approximately 1.5 pH units lower than a typical pKa for a free cysteine [61]. 

No significant reactivity was detected for Rac1C18S.

The Rac1 construct (Rac1 1–188, C178S) contains five cysteines, some of which are 

partially solvent accessible (Supplementary Table 1). Fig. 5 shows the intact mass analysis 

of Rac1WT and Rac1C18S that were reacted with ABD-f under the conditions used for 

glutathione modification. A single ABD-f modification site was identified by top-down 

mass spectrometry. The deconvoluted mass spectra of Rac1WT shown in Fig. 5A consists of 

major peaks corresponding to unmodified intact Rac1, Rac1 with a single ABD adduct mass, 

and Rac1 with a single deoxygenated adduct mass. Conversely, the deconvoluted mass 

spectra of the Rac1C18S variant, in Fig. 5B, show peaks corresponding to unmodified intact 

Rac1C18S, Rac1C18S with a sodium adduct, and two unidentified peaks ([M+76] and [M

+99]). However, an ABD adduct is not observed for Rac1C18S, suggesting that the Rac1WT 

ABD adduct occurs exclusively at Cys18. This result is consistent with Rac1WT 

glutathiolation MS data (Fig. 2) in which a single glutathione adduct was observed at Cys18. 

The ESI–MS spectra for Figs. 5A and 5B are shown in Supplementary Figs. 2A and 2B, 
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respectively. The site of the ABD adduct was further characterized by top-down mass 

spectrometry. Both [M+18H+ABD]18+ (Z = 18+ of Rac1 containing a single ABD) and [M 

+ 18H]18+ (Z = 18+ of unmodified Rac1) were subjected to ETD to comprehensively assign 

peaks modified by ABD-f. Fig. 5C shows the ABD-modified Rac1 sequence map annotated 

with observed major c- and •z-type fragment ions. The c27+ABD, c54+ABD −H2O, 

c123+ABD, c132+ABD, and c133+ABD ions as well as the z148 ion allow localization of the 

ABD adduct to either Cys18 or Cys6. The absence of the ABD adduct for the Rac1C18S 

variant confirms that Cys18 is the most likely site of ABD-f modification.

Supplementary Figure 3 shows the resulting ETD-MS/MS product ion spectra of Rac1 and 

Rac1+ABD as a tiled view to compare the fragmentation of unmodified and ABD-modified 

Rac1. Comparative analysis of peaks associated with top and bottom spectra show 

differences (difference spectral peaks) that assist in narrowing down the fragments 

containing ABD-f modification. The distinct product ion peaks along with all other observed 

product ions were used for the annotation of the sequence map shown in Fig. 5C. The major 

c- and •z-type fragment ions are shown at several different mass ranges for clarity.

Taken together, our data show that Cys18 is the only cysteine that appreciably reacts with 

ABD-f or GSSG at physiological pH values. These results indicate that Rac1 Cys18 has a 

depressed pKa, which populates the more reactive thiolate state under physiological 

conditions.

3.4. Thermal stability and structural analysis

As a decrease in nucleotide binding affinity is correlated with a decrease in stability for the 

Ras GTPase [62], we used CD to determine the total secondary structure content and 

thermal stability of Rac1, Rac1S–SG, and Rac1 variants. By comparing the overall secondary 

structure and thermal stability, we can evaluate whether Rac1S–SG and the Rac1 Cys18 

variant disrupts the overall protein fold. As shown in Fig. 6, the overall secondary structure 

content determined by CD spectroscopy was unchanged for Rac1S–SG. In contrast, the 

thermal stability was decreased by 9 °C relative to Rac1WT. As the nucleotide exchange rate 

was significantly increased in Rac1S–SG relative to Rac1WT, the change in Tm is probably a 

reflection of decreased nucleotide binding affinity. We also find that the secondary structure 

content and thermal stability of Rac1C18D are similar to those of Rac1S–SG. In contrast to 

mutations and oxidative modifications that promote fast cycling, the thermal denaturation of 

the redox-insensitive Rac1C18S variant was slightly higher than that of Rac1WT, with a Tm of 

69 °C compared to 67 °C for Rac1WT.

To determine how mutations at Cys18 perturb Rac1 in a site-specific manner, we employed 

NMR on 15N-enriched Rac1-GDP. We performed a 2D 1H–15N HSQC on Rac1WT, 

Rac1C18D, and Rac1C18S and compared the variants to the HSQC spectrum of Rac1WT, 

which has been previously assigned [63]. As we are able to detect one peak for every 

backbone amide with the exception of proline, this technique allows us to probe whether 

mutation at Cys18 causes localized or more global structural perturbations in Rac1. The 

2D 1H–15N HSQC overlay of Rac1WT and Rac1C18D is shown in Fig. 7A, with residues 

showing chemical shift changes mapped onto the Rac1 structure (pdb 1MH1) (Fig. 7B). 

Comparison of the NMR spectra of Rac1C18D and Rac1WT showed chemical shift 
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differences (22) in a small percentage (14%) of the total amides (chemical shifts greater than 

one line width). In addition, two amide peaks showed changes in linewidth. As shown in 

Fig. 7B, residues that undergo chemical shift changes upon mutation of Cys18 to Asp are 

highlighted in purple and are primarily localized to the p-loop, switch I, and SAx motif of 

Rac1 (switch II was not detected in the Rac1WT NMR spectrum).

In contrast, only nine residues show chemical shift changes for Rac1C18S compared to 

Rac1WT. Moreover, the residues displaying chemical shift changes correspond to residues 

proximal to the site of mutation (Fig. 7C). In Fig. 7D, a ribbon diagram of the structure of 

Rac1 (pdb 1MH1) is presented with residues showing chemical shift perturbations 

highlighted. Most of the residues that show peak changes are near the site of mutation, 

indicating that mutation of Cys18 to Ser does not significantly perturb the structure of Rac1, 

consistent with our findings that the biochemical properties and secondary structure of 

Rac1C18S are not significantly altered compared to Rac1WT. Further, these data support the 

use of Rac1C18S as a redox-insensitive variant of Rac1.

3.5. Rac1C18D is hyperactivated in HEK-293T cells

Our data indicate that both the Rac1C18D variant and glutathiolated Rac1 show greatly 

enhanced rates of GDP dissociation, similar to the Rac1 fast-cycling mutant (P29S) that 

promotes Rac1-mediated oncogenesis. The Rac1P29S mutant has a significantly faster 

nucleotide exchange rate and induces an activated phenotype in COS-7 cells [21]. As 

Rac1C18D shows greatly enhanced nucleotide dissociation (>200-fold), we postulated that 

this oxidative mimetic will populate Rac1 in the active, GTP-bound state in cells. Therefore, 

we examined the activation state of Rac1WT, Rac1C18D, and Rac1C18S in HEK-293T cells 

using a PAK1 pull-down assay. As shown in Fig. 8, Rac1WT and Rac1C18S show similar 

levels of association with PAK1-PBD. In contrast, Rac1C18D showed a 5-fold higher level of 

activation compared to Rac1WT and Rac1C18S, which is consistent with our observation that 

Rac1C18D has a greatly enhanced in vitro nucleotide dissociation rate compared with 

Rac1WT. As enhanced Rac1 activation has been previously observed in HeLa cells upon 

H2O2 addition [33], our data further support the hypothesis that oxidation at Rac1 Cys18 can 

modulate the Rac1 activation state.

3.6. Rac1C18D enhances Rac1-mediated lamellipodia formation in Swiss 3T3 cells

As we determined through PAK1 pull-down assays that Rac1C18D is more populated in its 

GTP-bound state compared with Rac1WT or Rac1C18S (Fig. 8), we sought to determine if the 

increased activity of Rac1C18D could induce a biological phenotype that indicates enhanced 

Rac1 signaling. A canonical function of active Rac1 is actin cytoskeleton changes that 

induce lamellipodia formation [64,65]. Therefore, we visualized the actin cytoskeleton 

through phalloidin staining in Swiss 3T3 cells expressing Rac1WT, Rac1C18D, or Rac1C18S. 

Cells expressing the Myc-tagged Rac1 constructs were identified by immunofluorescence, 

and lamellipodia formation in the Rac1-expressing cells was quantified. We determined that 

Rac1C18D expression increased lamellipodia formation 5- to 10-fold compared with Rac1WT 

and Rac1C18S (Fig. 9). Therefore, Rac1C18D can function similar to activated Rac1WT and 

promote lamellipodia formation.
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4. Discussion

Among its many vital functions, the small GTPase Rac1 plays a key role in regulating redox 

enzymes, such as NOS and NOX, which generate nitric oxide and superoxide, respectively 

[66]. Moreover, Rac1 has been shown to interact directly with the antioxidant enzyme SOD1 

in a redox- and nucleotide-dependent manner [39]. Rac1 has also been shown to be directly 

regulated by ROS and RNS oxidants in vitro [28] and by exposure to peroxide in REF52 and 

HeLa cells [33]. These findings suggest that ROS and RNS regulate both Rac1-mediated 

oxidant production and Rac1 signaling.

Redox regulation by modification of cysteine residues has been shown to regulate the 

function of diverse types of signaling proteins. For example, the transcription factor NF-κB, 

which is a key mediator of Rac1 function, is one prominent example of a cell signaling 

protein that is regulated in part by cysteine oxidation [67,68]. NF-κB can be regulated 

directly by S-glutathiolation of its own p50 and/or p65 subunit or indirectly by S-

glutathiolation of its regulators IKK and IκBα [69]. In addition, p38 MAPK can be activated 

by reversible cysteine oxidation [70], whereas a number of protein tyrosine phosphatases 

become inactivated by oxidation of a catalytic cysteine [71]. In addition to these signaling 

proteins, we have previously reported that thiyl radical formation at Cys118 of the small 

GTPase Ras can regulate its activity [72,73]. This mechanism of activation appears to play a 

key role in Ras-mediated tumorigenesis [74]. However, we have previously shown that non-

radical-mediated cysteine oxidation (i.e., nitrosation and glutathiolation) of this solvent-

accessible cysteine does not alter Ras activity [75,76]. In contrast to Ras, the redox-sensitive 

cysteine in Rac1 (Cys18) has direct interactions with the bound nucleotide [77], and 

oxidation of this cysteine by both radical- and nonradical cysteine oxidation can impair 

guanine nucleotide binding, resulting in accelerated nucleotide exchange [28] and 

upregulation of Rac1 activity [33]. Given that cellular Rac1 colocalizes with enzymes that 

generate both ROS and RNS, Rac1 probably reacts with a variety of oxidants in the cell. 

Here, we show that cellular Rac1 is S-glutathiolated in chondrocytes. This oxidative 

modification leads to enhanced nucleotide exchange in vitro, which is a key step to promote 

Rac1 activation in cells. Consistent with these observations, we find that a Rac1 oxidative 

mimetic shows enhanced GTP-dependent effector binding and downstream sig-naling to the 

cytoskeleton.

The 305-Da S-glutathione modification is a common thiol oxidation product found under 

both basal conditions and oxidative stress [56,78] and has been observed in many proteins 

with redox-sensitive cysteine residues [69,79,80]. For example, the Ras GTPase undergoes 

S-glutathiolation at Cys118 upon exposure to peroxynitrite and DEA NONOate (an NO• -

donating agent) in bovine aortic endothelial cells [80,81]. We now show that Rac1 is S-

glutathiolated in primary chondrocytes upon menadione-induced ROS formation. 

Osteoarthritis is a degenerative joint disease that is characterized by high levels of oxidative 

stress in chondrocytes [34], and Rac1 activity is enhanced in osteoarthritic chondrocytes 

compared to normal cells [35]. Moreover, inhibition of Rac1 blocked production of the 

degra-dative matrix metalloprotease MMP-13 in chondrocytes [35] and reduced the severity 

of arthritis in a mouse model [14]. As we show here that S-glutathiolation of in vitro-

purified Rac1 Cys18 greatly accelerates nucleotide dissociation, a key mechanism of 
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activating Rac1, we postulate that Rac1 oxidation may promote its activation in degenerative 

joint disease and may play a role in driving arthritis progression.

In addition to S-glutathiolation, oxidation of cellular thiols by ROS can also promote the 

formation of sulfenic, sulfinic, and sulfonic acids. However, generation of a single species of 

oxidized thiol in vitro can prove difficult if not impossible. Previously, Permyakov et al. 

[57] used a Cys→Asp variant to mimic thiol oxidation in recoverin because aspartic acid 

shows similarity in shape and charge to sulfinic acid (Supplementary Fig. 4). As oxidation 

by ROS can yield several different oxidation products [32], use of the oxidation mimetic 

Rac1C18D allows for the study of a singly oxidized species. This variant shows greatly 

enhanced guanine nucleotide exchange, similar to glutathiolated Rac1, supporting the use of 

this variant as an oxidation mimetic. We also generated redox-insensitive Rac1C18S and 

Rac1C18A variants. Interestingly, we observe a trend toward increased nucleotide 

dissociation for Rac1C18S<Rac1C18A<Rac1C18D. Whereas the Rac1C18D variant has a 

dramatically enhanced (200-fold) GDP dissociation rate, similar to that observed for Rac1 

glutathiolation, the Rac1C18A variant possesses an approximately 11-fold increased rate of 

nucleotide exchange relative to Rac1WT. In contrast, the Rac1C18S variant has an intrinsic 

dissociation rate that is similar to that of Rac1WT. Therefore, the effect of mutation at Cys18 

on guanine nucleotide binding is dependent on the mutation type, with the less conservative 

negatively charged substitution (Rac1C18D) producing the largest perturbation in guanine 

nucleotide binding. Given these observations, we postulate that different oxidation states 

alter Rac1 activity in distinct ways.

Rac1 is well known as an inducer of cytoskeletal reorganization, such as membrane ruffling 

and lamellipodia formation [64,82]. Consistent with our in vitro data demonstrating 

increased nucleotide exchange, we observed that Rac1C18D is hyperactivated in HEK-293T 

cells and promotes lamellipodia formation in Swiss 3T3 cells, whereas Rac1C18S showed 

levels of cellular activation similar to those of Rac1WT. To the extent that the Rac1C18D 

variant mimics oxidized Rac1 (e.g., Rac1S–SG), these results suggest that oxidation of Rac1 

at Cys18 can promote Rac1 activation through increased nucleotide exchange. Furthermore, 

our results indicate that Rac1C18D retains the ability to bind to at least a subset of effector 

proteins that promote Rac1-mediated cytoskeletal changes. Thus, unlike other dynamic 

posttranslational modifications of Rac1, such as phosphorylation [83,84] and palmitoylation 

of the C-terminal membrane-targeting domain [6], which decrease Rac1 activity and/or alter 

Rac1 effector binding by altering its localization [85], oxidation of the N-terminal Cys18 

primarily enhances the population of activated Rac1.

Rac1 is also well known as an inducer of ROS and RNS [86]. However, in contrast to the 

enhancing effects of oxidation on Rac1-mediated cytoskeletal organization, cysteine 

oxidation of Rac1 has been reported to decrease its association with SOD1 [39]. Therefore, 

it will be interesting to determine whether its interactions with other redox enzymes, such as 

NOX [36,37] and NOS [40], are also negatively affected by Rac1 cysteine oxidation. If so, 

this could indicate the presence of a negative feedback loop that would further add to the 

complexity of Rac1-mediated redox signaling. Conversely, a positive feedback loop could 

exist in which oxidation of Rac1 may facilitate interactions with other effectors. Future 

studies will investigate whether Rac1 oxidation alters effector interactions.
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Finally, it is intriguing to note that Rac1 and Ras are differentially regulated by thiol 

oxidants. We have previously reported that thiyl radical formation at Ras Cys118 can 

promote guanine nucleotide exchange and Ras activation [72,73], whereas non-radical-

mediated nitrosation and glutathiolation does not alter Ras nucleotide binding [75,76]. In 

contrast, we show herein that Rac1 can be activated by nonradical oxidation at Cys18. We 

propose that the distinct locations of the redox-sensitive cysteines within the nucleotide 

binding motifs of Rac1 and Ras explain this differential regulation. We therefore performed 

sequence and structural analyses of the redox-sensitive motifs in the context of the redox-

sensitive thiols. Fig. 10A and 10B depict the redox-sensitive motifs contained within the 

protein structures ([77] and pdb 3GFT) for Rac1 and Ras, respectively. The redox-sensitive 

thiol in Rac1, Cys18, is within the GxxxxGK [S/T] motif, otherwise known as the p-loop, 

which places the thiol within hydrogen-bonding distance from the α-phosphate. However, in 

Ras, the redox-sensitive thiol lies within the [N/T] KxD motif and does not have direct 

interactions with other residues in Ras or with the bound nucleotide. Further, the thiol is 

located 6.6 Å away from the bound nucleotide and is solvent exposed. This difference in 

location can explain their distinct modes of regulation. For both Rac1 and Ras, thiyl radical 

formation at their respective cysteines can lead to oxidation of the bound nucleotide 

[28,72,73], which promotes nucleotide dissociation and can result in activation. We find by 

several complementary methods that thiol oxidation by nonradical oxidative mechanisms 

perturbs nucleotide binding only in Rac1 and not Ras ([75,76] and this study). Further, the 

altered pKa of Rac1 Cys18 (this study) relative to Ras [61] renders Rac1 susceptible to thiol 

oxidation at physiological pH. Hence, Rac1 Cys18 is susceptible to a wider array of 

oxidative modifications, including both radical and nonradical oxidation. This differential 

oxidant-mediated regulation is depicted in Fig. 10C and 10D.

5. Conclusions

In summary, our in vitro and cell-based experiments suggest that oxidative modification of 

Rac1 can increase Rac1 activity and downstream signaling by enhancing nucleotide 

exchange. In addition, our findings indicate that Rac1C18D may prove useful as an oxidation 

mimetic, whereas Rac1C18S is a redox-insensitive variant that displays biochemical 

properties, structure, and interactions with Rac1 regulators similar to Rac1WT under 

nonstressed conditions. Thus, the Rac1C18S variant should serve as a valuable tool to 

determine whether cellular oxidants act directly or indirectly on Rac1 and will aid in 

elucidating the role of Rac1 oxidation in normal and disease states. Our data support a 

potential new layer of regulation for Rac1 activation through oxidative modification. Redox 

regulation of Rac1 may not only directly modulate Rac1 activity but also provide a feedback 

mechanism for regulating major ROS- and RNS-modulating enzymes, including NOS, 

NOX, and SOD1, that are, in turn, regulated by Rac1. Our observations are particularly 

interesting given that Rac1 plays a critical role in cellular redox regulation and that both 

Rac1 and ROS/RNS are involved in multiple common pathophysiological conditions. For 

example, our finding that Rac1 is S-glutathiolated in primary chondrocytes suggests a 

possible mechanism for regulating Rac1 activity levels in osteoarthritis. It will be interesting 

to determine the role of Rac1 oxidation in this and other diseases, such as cancer, in which 

high levels of oxidative stress are present.
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Abbreviations

ABD-f 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole

βME β-mercaptoethanol

CD circular dichroism

DMEM Dulbecco’s modified Eagle’s medium

DTPA diethylenetriaminepentaacetic acid

DTT dithiothreitol

EDTA ethylenediaminetetraacetic acid

eNOS endothelial nitric oxide synthase

ETD–MS/MS electron transfer dissociation–tandem mass spectrometry

FRET fluorescence resonance energy transfer

GAP GTPase-activating protein

GDI guanine nucleotide dissociation inhibitor

GEF guanine nucleotide exchange factor

GSSG oxidized glutathione

HSQC heteronuclear single-quantum coherence spectroscopy

IκBα nuclear factor of κ light polypeptide gene enhancer in B cells inhibitor, α

IKK IκB kinase

IGF-1 insulin-like growth factor-1

MAPK mitogen-activated kinase

mant-GDP 2′-/3′-O-(N′-(methylanthraniloyl)guanosine-5′-O-diphosphate

MMP matrix metalloproteinase
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NF-κB nuclear factor-κB

nNOS neuronal nitric oxide synthase

NOX NADPH oxidase

PBD p21-binding domain

PBS phosphate-buffered saline

p-loop phosphoryl-binding loop

RNS reactive nitrogen species

ROS reactive oxygen species

SOD1 superoxide dismutase 1
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Fig. 1. 
Rac1 glutathiolation in human chondrocytes. Primary human chondrocytes were treated for 

10 or 30 min with 25 μM menadione to induce oxidative stress in the absence and presence 

of 100 ng/ml IGF-1. Cell lysates immunoprecipitated with a monoclonal antibody to Rac1 

were run on a nonreducing gel and immunoblotted with a monoclonal antibody to 

glutathione. The blot was stripped and reprobed with the Rac1 antibody.
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Fig. 2. 
Mass spectrometry characterization of Rac1WT glutathione adducts. (A and B) Mass 

deconvoluted zero-charge spectra of the ESI full-MS spectra (Supplementary Fig. 1) 

associated with intact Rac1 treated with 1000× glutathione at pH 6 and 7.5, respectively. 

Note: A single glutathione adduct is seen at pH 6.0 and 7.5, with more adducts observed at 

higher pH. (C and D) Top-down product ion MS/MS spectra resulting from the ETD of [M

+16H+G]16+ (glutathiolated Rac1, Z = 16+, m/z = 1259.6 Da) with fluoranthene anions. 

Note: c- and z-type ions, nondissociated precursors (electron transfer with no dissociation), 

and precursors with fluoranthene (m/z = 202 Da) adducts (+F) of Rac1 were observed. As 

glutathione is prone to cleavage at the disulfide bond during ETD, some neutral loss 

glutathione ions were detected. In addition, z-type ions are prone to radical-mediated oxide 

adduction in ETD, which were detected. (E) ETD sequence ions mapped to Rac1 with 

putative glutathione sites highlighted by asterisks. Confident assignment of c- and z-type 

ions z154, z145, z99, and c45+G leads to the localization of the glutathione adduct to either 

Cys6 or Cys18 of Rac1.
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Fig.3. 
Oxidation of Rac1 Cys18 and Rac1 Cys18 variants alters guanine nucleotide exchange but 

not GTP hydrolysis. (A) Intrinsic mant-GDP dissociation curves for Rac1WT, Rac1C18S, 

Rac1C18D, and Rac1S–SG. The data were fit to a single exponential and standard errors were 

determined using Prism 5.0 (n = 3). (B) Bar graph of rates of intrinsic nucleotide exchange 

with GEF-mediated dissociation data (using the DH/PH domains of Tiam1) where 

applicable. (C) Graph of intrinsic and GAP-mediated single-turnover hydrolysis for 

Rac1WT, Rac1C18S, and Rac1C18D. The RhoGAP domain of p50 rhoGAP was used for the 

GTP hydrolysis measurements. The data were fit to a single exponential and standard errors 

were determined using Prism 5.0 (n = 2). (D) Bar graph of rates of nucleotide hydrolysis 

with GAP-mediated hydrolysis data (using p50 rhoGAP) where applicable. Rates of 

exchange and hydrolysis are presented in Table 1.
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Fig. 4. 
Rac1 Cys18 has an altered pKa and populates the thiolate state at physiological pH. (A) 

ABD-f reactivity data for Rac1WT over a pH range of 5.5–8.5. (B) Using the initial rate of 

modification by ABD-f to Rac1WT, the initial rate of modification was plotted vs the pH to 

determine the pKa of the Cys18 thiol. The resulting curve was fit to a Boltzmann sigmoidal 

curve to determine the inflection point, indicative of the pKa, using GraphPad Prism 5.0. 

Curve fitting resulted in an estimated pKa of 7.25 for Rac1 Cys18.
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Fig. 5. 
MS of Rac1WT and Rac1C18S treated with ABD-f. (A) Mass deconvoluted spectrum of 

ABD-f-treated Rac1WT. (B) Mass deconvoluted spectrum of ABD-f-treated Rac1C18S. Note: 

Rac1WT has a peak corresponding to an ABD adduct, whereas a peak at the predicted mass 

(shown by the arrow) for the corresponding ABD adduct of Rac1C18S is not observed. The 

unassigned peaks +76 and +99 Da from Rac1C18S are adducts of unknown origin. (C) ETD 

map of ABD-modified Rac1WT. Product ions generated by ETD of ABD-f-treated Rac1 are 

presented in Supplementary Fig. 3. Note that the N-terminal three residues (GHM) are not 

part of the native Rac1WT sequence. The c27+ABD, c54+ABD−H2O, c123+ABD, 

c132+ABD, and c133+ABD ions as well as the z148 ion allow for the localization of ABD to 

either Cys18 or Cys6. The absence of the ABD adduct in the Rac1C18S variant supports 

Cys18 as the site of ABD modification.
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Fig.6. 
Oxidation and mutation of Rac1 Cys18 does not perturb protein secondary structure or 

stability. (A) CD spectra (scan from 200 to 280 nm) measuring the secondary structure 

elements of Rac1WT, Rac1C18S, Rac1C18D, and Rac1S–SG. (B) Thermal denaturation of 

Rac1WT, Rac1C18S, Rac1C18D, and Rac1S–SG at 220 nm at temperatures ranging from 25 to 

95 °C. Tm values were calculated by fitting the data to a Boltzmann sigmoidal curve. Data 

are representative of three thermal melts and were fit using GraphPad Prism 5.0.
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Fig. 7. 
2D NMR spectra of Rac1 and Rac1 variants. (A) 2D 1H–15N HSQC spectra overlay of 

Rac1WT (black) and Rac1C18D (magenta). Peaks that showed line broadening are shown in 

cyan and peaks with a chemical shift greater than one linewidth are in black. (B) The major 

chemical shift perturbations (broadening, where the Rac1C18D resonance linewidth is less 

than 50% of the corresponding Rac1WT resonance (shown in light pink), or shifted, where 

there was no peak detected in Rac1C18D within one linewidth of a peak in Rac1WT (shown 

in magenta) are mapped onto a ribbon diagram of GTP-bound Rac1 (pdb 1MH1). (C) 

2D 1H–15N HSQC spectra overlay of Rac1WT (black) and Rac1C18S (red). Peaks that 

showed line broadening are shown in cyan and peaks with a chemical shift greater than one 

linewidth are in black. (D) The major chemical shift perturbations (broadening, where the 

Rac1C18S resonance linewidth is less than 50% of the corresponding Rac1WT resonance 

(shown in light red), or shifted, where there was no peak detected in Rac1C18S within one 

linewidth of a peak in Rac1WT (shown in red) are mapped onto a ribbon diagram of GTP-
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bound Rac1 (pdb 1MH1). In (B) and (D), residues with chemical shifts or line broadening 

are as indicated. The unassigned and undetected residues are indicated in black, and the 

remaining residues are gray. GTP is depicted as a multicolored stick structure, and Mg2+ is 

shown as a green sphere.
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Fig. 8. 
The Rac1C18D variant is hyperactivated in HEK-293T cells. Rac1WT, Rac1C18S, and 

Rac1C18D were transiently expressed in HEK-293T cells and PAK pull-down assays were 

used to assess the levels of active, GTP-bound Rac1. Active Rac1 was pulled down from 

cell lysates with PAK-PBD (p21-binding domain) coupled to agarose beads and was 

detected by immunoblotting for Rac1. A representative pull-down assay (n = 6) is shown.
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Fig. 9. 
Rac1C18D enhances lamellipodia formation in Swiss 3T3 cells. To examine the effect of 

Rac1 oxidation on its ability to regulate the actin cytoskeleton, Swiss 3T3 cells were 

transfected with Rac1WT, Rac1C18S, or Rac1C18D. The actin cytoskeleton was visualized 

using phalloidin staining. (A and B) Rac1C18D induces lamellipodia formation, whereas 

Rac1C18S does not. Twenty-four hours after transfection with Myc-tagged Rac1 constructs, 

cells were fixed and stained for Myc-tag and phalloidin. Using the Myc-tag antibody to 

identify cells that express the Rac1 constructs, cells were counted (blindly with respect to 

the specific Rac1 construct expressed) for the presence or absence of lamellipodia (n = 2, 

Rac1WT, 88 cells total; Rac1C18S, 78 cells; and Rac1C18D, 92 cells). Representative images 

were collected using a Zeiss 710 microscope with a 63× oil objective and are shown in (A). 

The percentage of cells with lamellipodia was quantified (B). Statistical significance was 

determined using Student’s t test (*p = 0.05); error bars represent SEM.
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Fig. 10. 
Differential modes of Rac1 and Ras activity regulation by thiol-mediated oxidants. (A) A 

linear depiction of Rac1 and residues critical for nucleotide binding. The top bar shows the 

consensus sequence for the nucleotide binding motifs with the GTPase-specific sequence 

highlighted within the box. Below, the structural depiction illustrates where the 

GxxxxGK[S/T] and [N/T]KxD motifs are located within the Rac1 structure (pdb 1MH1) and 

their proximity to the nucleotide. Cysteine 18 is approximately 3.5 Å from the α-phosphate 

(labeled PA) in Rac1 when bound to GDP or GTP. The coloring is as follows: blue, 

nitrogen; orange, phosphate; yellow, cysteine; red, oxygen; teal, carbon associated with 

Rac1; and the bound nucleotide (GMPPNP) carbons are colored magenta. (B) A linear 

depiction of Ras (pdb 3GFT) as in (A) with the structural depiction of the GxxxxGK[S/T] 

and [N/T]KxD motifs shown below. The redox-sensitive Cys118 is approximately 6.6 Å 

from the guanine ring of the bound GMPPNP nucleotide and does not make direct 

interactions with either the nucleotide or residues within Ras. In addition, the orientation of 

the Cys118 thiol is directed away from the nucleotide-binding pocket. (C) The redox-cycle 

diagram for Rac1 illustrates the effects of reactive oxygen and nitrogen species on Rac1 

nucleotide binding. Rac1 is sensitive to thiol oxidation by radical oxidants through reaction 

with Cys18, resulting in enhanced nucleotide dissociation. In addition, reaction of Rac1 with 

nonradical oxidants impairs nucleotide binding by covalent modification of Cys18. Owing to 

the proximity of Cys18 to the bound nucleotide, oxidation at this site interferes with 
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nucleotide binding, which is indicated by the oxidative modification triangle (Ox) that 

overlaps with the nucleotide, and results in increased nucleotide exchange. As oxidation 

does not affect GAP function, oxidized Rac1 can be inactivated by GAPs. Known 

nucleotide-dependent steps are labeled with diamonds with a nucleotide label and 

independent steps are shown as diamonds with no label. NO•, nitric oxide; , nitrogen 

dioxide; , superoxide; GSH, glutathione; GSSG, oxidized glutathione; H2O2, peroxide; 

GAP, GTPase-activating protein; GEF, guanine nucleotide exchange factor. (D) A redox-

cycle diagram for Ras. The redox-sensitive thiol in Ras at Cys118 does not directly interact 

with either Ras residues or the bound nucleotide; consequently, the major difference 

between Ras and Rac1 is that covalent modification of Ras Cys118 does not alter nucleotide 

binding. As such, the oxidative modification does not overlap with the bound nucleotide, as 

depicted. Labeling is the same as in (C).
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Table 1

Intrinsic and GEF-mediated GDP dissociation rates for Rac1WT, Rac1C18S, Rac1C18A, Rac1C18D, and 

Rac1S–SG.

Rac1 construct koff (s−1) intrinsic Fold increase (relative to WT) koff (s−1) with Tiam1

Rac1WT 0.71 ± 0.02 × 10−4 – 5.02 ± 0.01 × 10−4

Rac1C18S 0.81 ± 0.00 × 10−4 1.1 4.28 ± 0.03 × 10−4

Rac1C18A 7.58 ± 0.02 × 10−4 10.7 n/d

Rac1C18D 157.87 ± 1.38 × 10−4 222.4 114.73 ± 0.61 × 10−4

Rac1S–SG 167.50 ± 25.13 × 10−4 235.9 n/d
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Table 2

Intrinsic and GAP-mediated GTP hydrolysis rates for Rac1WT, Rac1C18S, and Rac1C18D.

Rac1 construct Intrinsic GTP hydrolysis (s−1) p50 rhoGAP GTP hydrolysis (s−1)

Rac1WT 0.90 ± 0.07 × 10−3 4.8 ± 0.1 × 10−3

Rac1C18S 1.50 ± 0.11 × 10−3 5.5 ± 0.3 × 10−3

Rac1C18D 0.26 ± 0.01 × 10−3 4.9 ± 0.2 × 10−3
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