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Abstract

Methicillin-Resistant Staphylococcus aureus (MRSA) poses a serious threat to worldwide health.

Historically, MRSA clones have strictly been associated with hospital settings and most hospital-

associated MRSA (HA-MRSA) disease resulted from a limited number of virulent clones.

Recently, MRSA has spread into the community causing disease in otherwise healthy people with

no discernible contact with healthcare environments. These community-associated (CA-MRSA)

are phylogenetically distinct from traditional HA-MRSA clones and CA-MRSA strains seem to

exhibit hyper virulence and more efficient host:host transmission. Consequently, CA-MRSA

clones belonging to the USA300 lineage have become dominant sources of MRSA infections in

North America. The rise of this successful USA300 lineage represents an important step in the

evolution of emerging pathogens and a great deal of effort has been exerted to understand how

these clones evolved. Here we review much of the recent literature aimed at illuminating the

source of USA300 success and broadly categorize these findings into three main categories: newly

acquired virulence genes, altered expression of common virulence determinants and alterations in

protein sequence that increase fitness. We argue that none of these evolutionary events alone

account for the success of USA300, but rather their combination may be responsible for the rise

and spread of CA-MRSA.

Multidrug-resistance in Staphylococcus aureus: the rise of MRSA

The Gram-positive pathogen Staphylococcus aureus remains one of the most problematic

and costly sources of bacterial infection worldwide1. Disease typically presents as mild skin/

soft tissue infections but can also be the source of more serious bacteremia, endocarditis,

osteomyelitis and necrotizing pneumonia2. S. aureus asymptomatically colonizes the skin,

and more commonly, the anterior nasal passages of healthy people3. Nasal colonization is

the most significant predictor of invasive disease, however, in some studies, nearly half of

patients carrying S. aureus are strictly colonized extranasally4. Thus, estimates of S. aureus

carriage at ~25% of the human population may be an underestimate of true colonization

levels. Given the near ubiquity of S. aureus among the human population combined with its

virulence potential, it is no wonder this organism has been recognized as a significant
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healthcare burden for over a century. S. aureus was first described by Alexander Ogston in

1881 as the sole microorganism within the fluid drained from a severe knee abscess5. Then,

he noted that “once established the micrococci are hard to kill…” underscoring the

recalcitrant nature of S. aureus towards antiseptic treatment6. During this time, Joseph

Lister’s influence on surgical procedures through the implementation of carbolic acid

(phenol) to sterilize wounds and instruments, had greatly reduced the occurrence of post-

operative infections7. However, it was subsequently shown that S. aureus was inherently

resistant to phenol explaining its association with surgical infections despite good “sterile

technique”8. Thus, S. aureus was recognized as an important hospital associated pathogen

over 130 years ago in the pre-antibiotic era and little has changed to this day.

Perhaps because of its intimate association with hospitals and patients, S. aureus has always

been among the first bacterial species reported to develop resistance to new antimicrobials,

from sulfonamide-resistance in the early 1940s9 to the identification of penicillinase in

194410 just months after US penicillin production reached full scale. Interestingly, these

progenitor β-lactamase positive S. aureus clones were isolated from patients that had not

even been treated with penicillin. Nonetheless, Penicillin-Resistant S. aureus (PRSA) was

here to stay, and became pandemic in hospitals during the late 1950s and early 1960s11.

Subsequently, a penicillinase-resistant β-lactam derivative, methicillin (Celbenin, Beecham

Pharmaceuticals), was approved for use in the US in 1959. Less than two years later, the

first report of methicillin-resistant S. aureus (MRSA) was published documenting the

isolation of MRSA clones from a patient and hospital staff in the UK, again none of which

were treated with methicillin12. It was immediately recognized that methicillin-resistance

was mechanistically different than penicillin-resistance in that the MRSA phenotype did not

involve direct inactivation of the drug. Rather, resistance was mediated through the

acquisition of an alternative penicillin-binding protein (PBP2a) with lowered affinity for β-

lactam antibiotics. Within 20 years after the first discovery of MRSA, it became a leading

cause of hospital-acquired infections13. Currently, it can still be responsible for nearly 60%

of skin/soft-tissue infections presenting to US emergency rooms14.

The methicillin-resistance determining PBP2a is encoded by mecA harbored on a mobile

genetic element, Staphylococcal Cassette Chromsome (SCCmec). A nearly identical

homologue, now thought to be the ancestral mecA, was recently discovered in

Staphylococcus fleuretti, an animal colonizing staphylococcal species15. Unlike a previously

identified mecA homologue in Staphylococcus sciuri that does not confer methicillin-

resistance16, S. fleuretti is fully resistant to β-lactam antibiotics. Interestingly, the S. fleuretti

mecA homologue is not found on a mobile SCC, but rather in the core chromosome between

the mevalonate biosynthetic and xylose utilization operons, explaining the presence of mva

and xyl gene fragments in some S. aureus SCCmec elements15. These mobile islands have

diversified considerably over the 50-year history of MRSA such that there are currently

eight distinct SCCmec types circulating among S. aureus as well as some species of

coagulase negative staphylococci17. SCCmec elements can vary greatly in size and

composition with the largest (SCCmec type II) spanning 52 kb and additionally encoding

erythromycin-, spectinomycin- and tobramycin-resistance determinants18. Depending on the

particular SCCmec type, these mobile islands peppered with IS elements, transposons and
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integrated plasmids, can confer multidrug-resistance determinants that significantly diminish

treatment options in a clinical setting. Thus, in addition to methicillin resistance, MRSA

isolates have evolved multidrug-resistance leading to what the popular press refers to as an

emerging superbug19.

Paradigm-shift: The rise of CA-MRSA

After 1961, MRSA spread worldwide causing significant morbidity and mortality almost

entirely as hospital-acquired infections. Advances in molecular epidemiology allowed for in

depth analyses of MRSA spread and expansion at the evolutionary level. For instance, spa-

typing (polymorphisms in Protein A coding sequence) and SCCmec-typing discriminated

unrelated clones and identified clusters of related MRSA lineages responsible for

disease20,21. Multi-Locus Sequence Typing (MLST) involves the sequencing of fragments

from seven “housekeeping” genes (arcC, aroE, glpF, gmk, pta, tpi and yqiL) yielding unique

sequence types (STs)22. STs sharing identity at the majority of these loci are grouped into

Clonal Complexes (CCs) encompassing related lineages of MRSA23. Another highly-

discriminatory approach that can identify genomic rearrangements and insertions/deletions

is Pulsed-Field Gel Electrophoresis (PFGE) whereby SmaI digested chromosomal DNA is

separated and similarities in banding patterns reflect relatedness among lineages24,25. This

allows for the classification of S. aureus strains into the now familiar PFGE-types USA100–

1200. Employing these epidemiological approaches,researchers appreciated that most

MRSA disease worldwide (nearly 70% of reported infections) was caused by five major

CCs: CC5, CC8, CC22, CC30 and CC4524,26 (Figure 1). CC5 includes clones belonging to

the USA100 PFGE-type (e.g. SCCmec-II New York/Japan clone) the most common source

of US hospital acquired MRSA as well as USA800 (SCCmec-IV Pediatric clone). CC8

includes the archaic, or original MRSA clones as well as the related Iberian clone, the

SCCmec-III Brazilian/Hungarian clone and the SCCmec-IV USA500 clones. CC22 includes

the EMRSA-15 clones that dominated hospital infections in the UK during the 1990s along

with strains from CC30 encompassing EMRSA-16 as well as the USA200 PFGE type.

Finally, CC45 consists of clones belonging to USA600 PFGE type (e.g. Berlin clone) that

caused widespread MRSA hospital infections in northern Europe. In essence, after 30 years

of investigation, the scientific community began to understand the population structure of

the MRSA clones responsible for the majority of hospital-acquired disease. The source of

high-virulence potential inherent to these five CCs was never fully appreciated before

everything we knew about MRSA epidemiology changed at the turn of the century.

Initially reported in 1993, patients without any contact with healthcare settings contracted

invasive MRSA infections in Kimberly Australia, a region in the northern part of Western

Australia27. It was later discovered that simultaneously, strains related to these “community-

acquired” MRSA (CA-MRSA) clones were causing serious and fatal respiratory infections

in Chicago, again in patients without direct contact with hospital environments28. Prior to

these reports, MRSA infections were exclusively associated with healthcare settings. These

new clones belong to CC1 (USA400 PFGE type), a clonal complex unrelated to the five

traditional Hospital-Associated MRSA (HA-MRSA) complexes28. CC1 clones spread

quickly through Australia, the mid- and northwestern United States as well as Canada and

Alaska where they still cause significant CA-MRSA disease28–32. Recent studies show that
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USA400 can account for over 98% of MRSA infections in northern Canada33 and has been

implicated in isolated MRSA disease in southern Europe34,35. However, about 10 years ago

a new source of CA-MRSA arose from one of the “traditional” virulent clonal complexes,

CC8. Descending from a USA500 clone through acquisition of various mobile genetic

elements (MGEs)26,36, USA300 became the dominant CA-MRSA clone in US14,37,38,

effectively replacing USA400 clones in most regions39,40, and has also been isolated from

patients in Canada and Mexico41,42. The explosion of USA300 CA-MRSA across North

America resulted from a very recent clonal expansion of a successful CA-MRSA clone as

demonstrated by very low sequence divergence among geographically distinct USA300

isolates43.

Given the occurrence of multiple CA-MRSA clones in the population, a formal definition

was put forth by the Centers for Disease Control and Prevention for CA-MRSA disease as

that which is contracted within 48 hours of hospital admission by patients not having

recently undergone surgery, hemodialysis, prolonged hospitalization, catheterization or

MRSA colonization44. Currently in the US, MRSA disease fitting these criteria is almost

always caused by USA300 clones, followed by USA400 and occasionally USA1000 and

USA110014. To complicate matters further, USA300 clones have recently been implicated

in causing significant HA-MRSA disease38,45–47, blurring the lines between the two disease

onset environments38,45–47. In some studies, USA300 accounted for at least half of hospital

acquired MRSA infections38,46. Thus, USA300 represents a highly successful S. aureus

clone that emerged in the community and quickly spread throughout the North American

continent to become the leading cause of MRSA infection even in healthcare settings. For

now, USA300 seems to be primarily limited to North America, while in Europe, South

America and Asia CA-MRSA disease is dominated by divergent clones unrelated to CC8

(e.g. ST30, ST80 and ST59)48. Given the rapid and efficient transmissibility of USA300 in

North America49, it remains to be seen whether these clones will become the dominant

source of MRSA disease worldwide.

USA300 Virulence

Animal models of S. aureus infection have repeatedly demonstrated the hypervirulence

associated with USA300 compared to other MRSA strains36,50–52. USA300 strains exhibited

enhanced production of dermonecrotic lesions in skin abscess models when compared to

HA-MRSA clones36,50,51 and USA300 was more lethal in a rat model of pneumonia

compared with a USA400 isolate52. Furthermore, USA300 strains were more lethal in septic

infections compared to archaic and Iberian clones as well as ST239 clones (Brazilian

clones)36. When compared to other CA-MRSA clones, USA300 isolates generally exhibit

increased virulence with the exception of ST80 and USA1000, which also possess enhanced

virulence51. In contrast, nearly every clone of HA-MRSA tested was significantly less

virulent than USA300 with the only exception being USA500 HA-MRSA36,51. This is of

particular interest in that USA300 clones descended from USA500 via the acquisition of a

prophage containing Panton-Valentine Leukotoxin (PVL), a mobile Arginine Catabolic

Mobile Element (ACME) and enterotoxins K and Q (see below)36. Thus, the source of

USA300 hypervirulence may have originally evolved in the HA-MRSA isolates belonging

to USA500. However, for unknown reasons, despite exhibiting hypervirulence in animal
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infection models, USA500 clones remain relegated to healthcare settings and do not cause

significant CA-MRSA disease. Whether CA-MRSA USA300 clones exhibit hypervirulence

in human disease has been difficult to directly discern, however, recent population based

clinical data are beginning to corroborate conclusions drawn from laboratory animal model

experiments.

In humans, USA300 S. aureus primarily causes skin infections of which, it can account for

up to 98% of all MRSA presenting as skin/soft tissue infections to US emergency rooms14.

In addition, USA300 can also cause more invasive disease such as bacteremia53,

endocarditis54 and necrotizing fasciitis55, a condition almost never associated with S.

aureus. In particular, pulmonary infections caused by USA300 S. aureus can lead to

aggressive and often fatal necrotizing pneumonia56–58. The populations most at risk for

contracting USA300 CA-MRSA are military personnel59, athletes60–62, prisoners63–65,

African Americans58,66, daycare attendees67,68 and men who have sex with men69. Patients

contracting CA-MRSA are, on average, younger than those with HA-MRSA and otherwise

generally healthy70,71. Furthermore, CA-MRSA is often associated with worse clinical

outcomes. For instance, USA300 infections were associated with increased in-hospital

mortality and a higher occurrence of severe sepsis than HA-MRSA infections66,72. USA300-

related strains were also more prone to spread from the initial infection site and caused more

severe infections than HA-MRSA in patients suffering from pneumonia with pulmonary

emboli73,74. However, other reports describe better clinical outcomes associated with

USA300 infections45,75. Although some studies that reported more positive clinical

outcomes with CA-MRSA also described hypervirulent CA-MRSA trends, such as increased

risk of being admitted into intensive care, that merely lack full statistical significance (OR =

1.8, p = 0.09)46. Additionally, effective treatment, which is easier to achieve when treating

CA-MRSA infections given their inherent susceptibility to clindamycin, tetracyclines,

rifampicin and trimethoprim/sulfonamide, can reduce the severity of CA-MRSA disease

outcomes in population-based studies76. Unfortunately, this trend of increased antibiotic

susceptibility may be diminishing as new reports show increased antibiotic resistance among

USA300 isolates, possibly through direct acquisition of resistance determinants from

multidrug-resistant HA-MRSA strains77. Thus, the future clinical outlook appears grim with

respect to USA300 infections given their increased prevalence in both hospital- and

community-acquired infections, their propensity to acquire new antibiotic resistance

determinants and the steady decline in positive clinical outcomes associated with USA300

infections.

Genetic Determinants Contributing to USA300 Success

Given the recent impact of USA300 on human health, significant research effort has been

exerted to elucidate the source of USA300 success. Here we review these findings and

broadly categorize them into three main classes: 1. Newly acquired genes that promote

virulence and/or fitness, 2. Altered regulation of core genes resulting in elevated virulence

and/or fitness and 3. Non-synonomous mutations in core genes that enhance virulence

and/or fitness.
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Newly Acquired Genes

Many different lineages of CA-MRSA (USA400, USA1000, and USA1100) cause outbreaks

and invasive infections, but in North America, none are as prevalent as epidemic USA300.

These clones have acquired many genes in the form of Mobile Genetic Elements (MGEs)

that may confer a selective advantage over other CA-MRSA strains. Several groups have

investigated many of these MGEs with the goal of elucidating factors (if any) that have

contributed to the overwhelming success of USA300.

Enterotoxins K and Q

USA300 CA-MRSA isolates contain genes encoding enterotoxins K and Q (sek2 and seq2)

in a unique pathogenicity island SaPI5 78. Sek2 and Seq2 are thought to contribute to

pathogenesis by stimulating T-cells through binding of the Vβ chain of αβ T-cell receptors.

Sek2 and Seq2 share 98% amino acid homology with enterotoxins (Sek and Seq) found on

SaPI3 in S. aurueus COL an archaic HA-MRSA clone belonging to ST250 that is less

virulent than CA-MRSA isolates79. USA400 isolates (e.g. MW2) harbor νSA3, a

pathogenicity island that shares similarity to SaPI3 of COL and SaPI5 of USA300, however,

νSA3 does not contain the genes for Sek or Seq78. Thus, the acquisition of these toxins by

USA300 and not US400 may potentially explain the differences in pathogenicity although

direct demonstration of this has not been reported.

SCCmecIVa

The mecA gene encodes a penicillin-binding protein and is located on a mobile genetic

element known as the Staphylococcal Cassette Chromosome mec (SCCmec). There are

currently eight recognized SCCmec types (I VIII). SCCmec types I, II and III contain

additional drug resistance determinants, whereas types IV, V, VI, and VII cause resistance

only to β-lactams80. Initial sequence comparisons show that both USA400 and USA300

strains contain a nearly identical SSCmecIVa78,81. As it turns out, SCCmecIV is the most

common form of SCCmec found across divergent S. aureus lineages in addition to ST8

(USA300) including ST1 (USA400), ST80, ST72 (USA700) and ST8 (USA500)82,83. It has

been shown that SSCmecIV does not impose a fitness cost in vitro or in vivo, whereas

acquisition of the SSCmec types I, II and III resulted in decreased in vitro growth rates84–86.

Thus, it is thought that harboring SSCmecIV as opposed to other SCCmec types imparts CA-

MRSA with an advantage in its ability to cause infection in healthy individuals. However,

though SSCmecIV may provide a selective advantage to CA-MRSA over other SCCmec

types, the fact that nearly all CA-MRSA isolates contain SSCmecIVa suggests that it is not a

major contributing factor to the dominance of USA300 among CA-MRSA isolates.

Panton-Valentine Leukocidin (PVL)

The Panton-Valentine leukocidin (PVL) is a bicomponent pore-forming toxin that induces

necrosis and apoptosis in leukocytes87. PVL is encoded by the genes lukS-PV and lukF-PV

located on the prophage ϕSA2 pvl78. This phage is highly associated with CA-MRSA clones

in that nearly all USA300, USA400 and USA1100 clinical isolates are positive for PVL as

are many USA1000 strains88,89. Furthermore, epidemiological and clinical reports indicate a

strong correlation between PVL production and severe skin/soft tissue infections, as well as
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necrotizing pneumonia and fasciitis, suggesting PVL may be a major contributor to the

virulence of CA-MRSA90–92. Moreover, PVL can be directly detected in human skin

abscesses at levels known to result in rapid neutrophil lysis93,94. Thus, PVL is significantly

correlated with invasive CA-MRSA disease, however, recent clinical studies demonstrate

that CA-MRSA strains lacking PVL can still cause disease outbreaks95–97.

Until recently, demonstrating a direct role for PVL in model disease has proven difficult.

This likely stems from the host specificity of PVL in that it is rapidly leukocidal for rabbit

and human neutrophils, but much less active against murine, rat or simian PMNs98.

Consequently, a virulence effect of PVL in murine or rat pneumonia, sepsis and skin

infection models has never been reproducibly defined99–104. Moreover, there was no

demonstrable role for PVL in a pneumonia model involving nonhuman primates105. In

contrast, using PVL susceptible rabbit models, isogenic USA300 strains lacking PVL were

less virulent in pneumonia, osteomyelitis and skin abscess models106–109. However, the

attenuation of mutants lacking PVL in rabbit skin lesions was not nearly as striking as a

mutant lacking α-hemolysin or phenol-soluble modulin production underscoring the

contributory nature of PVL towards S. aureus pathogenesis108,110. Furthermore, the nearly

ubiquitous presence of PVL among CA-MRSA isolates clearly suggests that this toxin

cannot explain the particular success of the USA300 lineage.

Arginine Catabolic Mobile Element (ACME)

Of all the genetic elements acquired by CA-MRSA isolates, only the arginine catabolic

mobile element (ACME) is completely unique to USA30078. The type 1.02 ACME carried

by USA300 is juxtaposed to the SCCmecIV island and was acquired from S. epidermidis

through horizontal gene transfer via a mechanism likely involving the SCCmec-related

CcrAB recombinases78,84,111. The physical linkage of ACME with SCCmecIVa is mirrored

by an epidemiological linkage in that nearly all USA300 strains harboring SCCmecIVa also

carry ACME, while USA300 clones with other SCCmec islands, with rare exceptions, do

not83,112. The ACME of USA300 contains a complete arginine deaminase (arc) system that

converts L-arginine to L-ornithine for both ATP and ammonia production. The island also

encodes a putative oligopeptide permease, a zinc-containing alcohol dehydrogenase, and a

spermine/spermidine acetlytransferase (SpeG) as well as several hypothetical proteins78.

While a role for ACME in USA300 virulence was demonstrated in a rabbit sepsis model84,

no effect of ACME was observed in murine pneumonia or skin abscess models113. Thus, it

has been proposed that ACME aids primarily in USA300 colonization, in part, through the

Arc mediated ammonification of the acidic skin environment, though this has never been

experimentally verified84,114.

We have additionally observed a peculiar phenotype in S. aureus suggestive of a selective

advantage afforded by the ACME cassette. Polyamines, including spermine, spermidine and

putrescine are a group of polycationic compounds reportedly synthesized from L-arginine by

all living organisms. Not only does S. aureus lack the ability to synthesize polyamines de

novo, but spermine and spermidine are bactericidal to this organism at levels found within

mammalian tissue115,116. Polyamine-sensitivity was apparent in all tested strains except

those belonging to USA300, and in these isolates polyamine-resistance was dependent on

Thurlow et al. Page 7

FEMS Immunol Med Microbiol. Author manuscript; available in PMC 2014 July 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



speG encoding a spermine/spermidine aceytltrasferase harbored on ACME. Could speG

provide USA300 with a selective advantage by nullifying the staphylocidal effects of host

polyamines? While no direct measure of host polyamine levels during S. aureus infections

have been reported, several indirect lines of evidence may suggest that polyamines do affect

the outcome of staphylococcal disease and/or colonization.

Upon wounding, the host response in the skin is proinflammatory and dominated by

cytokines such as IL-1, INF-γ and TNF- α117. The resulting inflammation is mediated,

among other effectors, by the production of reactive oxygen and nitrogen species, the latter

of which, nitric oxide (NO·) is synthesized from L-arginine by the inducible NO·-synthase

(iNOS, Figure 2). This enzyme competes for available L-arginine with host enzymes such as

Arginase-1 (Figure 2) as well as with arginine-auxotrophic S. aureus118. Once tissue damage

signals resulting from the primary inflammation outweigh pathogen-associated signals, the

host response shifts away from proinflammatory mediators and initiates the profibrotic

response117. This phase is dependent on the production of TH2-like anti-inflammatory

cytokines such as IL-4, IL-10, IL-13 and TGFβ and results in induction of host fibrotic

response involving Arginase-1 expression. At this stage the L-ornithine produced by

Arginase-1 can be converted to staphylocidal polyamines that will additionally promote

fibroblast proliferation, collagen deposition and inhibition of inflammation (e.g. blocking

iNOS translation)119. It therefore may be during this TH2-dominant fibrotic phase that host

polyamines exert their effects on invading S. aureus thereby selecting for ACME encoded

SpeG. Indeed, inhibiting IL-4 signaling in mice increased organism burdens during S.

aureus sepsis while INF-γ -/- mice (lacking robust inflammatory wound response) survived

better than WT mice120. Thus, TH2-dependent signaling, as opposed to an inflammatory

TH1 response, proved critical to the host’s ability to control S. aureus infections. Recently,

protection against chronic implant infections was also highly dependent on an effective TH2/

Treg response121. Furthermore, polymorphisms in the human IL-4 gene associated with

reduced IL-4 production are significantly linked with increased S. aureus colonization122.

These data are consistent with the TH2 anti-inflammatory fibrotic response as being critical

for controlling S. aureus infection. Whether this is directly due to the induction of

polyamine synthesis has yet to be reported, but the acquisition of speG-encoding ACME

would counter increased spermine levels in fibrotic tissue perhaps explaining the association

of USA300 CA-MRSA with severe skin/soft tissue infections.

How do we reconcile a significant role for SpeG in S. aureus pathogenesis with the lack of a

strong ACME phenotype in most model infections84,113? One explanation could be that the

observed increase in α-hemolysin and Protein A expression upon ACME inactivation in

USA300 could overcompensate for the resulting polyamine-sensitivity84. Another

possibility is that the Arc operon on ACME actually drives excess polyamine production

necessitating SpeG-mediated spermine detoxification. The Arc operon consists of genes that

convert L-arginine to L-ornithine and CO2 while producing ATP and ammonia. The

resulting L-ornithine is exchanged for extracellular L-arginine by the L-arginine/L-ornithine

antiporter ArcD effectively converting extracellular L-arginine to L-ornithine. Thus, the Arc

operon could skew the flux of host L-arginine away from iNOS towards polyamine

synthesis rendering speG essential (Figure 2). Deleting all of ACME might allow the host to
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partition available L-arginine towards NO·-production, an immune effector that S. aureus is

known to effectively resist123–125. This is consistent with the presence of speG on ACME

islands that harbor the auxiliary arc gene cluster (Figure 2). While this hypothesis could

explain the modularity of ACME that results in ΔspeG attenuation, it has several aspects that

require experimental attention. First, all strains of S. aureus already encode an Arc operon

on the core chromosome that could also result in excess host polyamine synthesis, yet SpeG

is only associated with ACME-positive USA300 S. aureus. This could be explained by the

fact that the chromosomal Arc operon is only expressed under conditions of low oxygen and

low glucose and little is known about ACME Arc expression in S. aureus126. Second, a

dominant MRSA clone of ST22 lineage in Irish hospitals harbors an ACME island with an

arc gene cluster but appears to lack a speG homologue112. Another issue is that significant

CA-MRSA disease in Latin America is caused by USA300 clones that lack ACME127.

Thus, ACME may contribute to colonization and virulence, but it cannot fully explain the

predominance of USA300 in CA-MRSA disease in North America.

Enhanced Virulence Gene Expression

S. aureus elaborates a wide variety of toxins and proteases that have proven critical for

efficient dissemination, inflammation and disease progression128–130. For instance, α-toxin

or α-hemolysin (Hla) is a potent heptameric pore-forming toxin known to be critical for

virulence in nearly every tested disease model from skin lesions and endocarditis to murine

mastitis131–133. Upon interacting with susceptible cells, which include leukocytes,

keratinocytes, platelets and endothelial cells, it forms a 100 Å deep pore in the plasma

membrane resulting in rapid cell lysis134,135. Recently, a number of reports have shown that

Hla expression is highly elevated in USA300 clones compared with other S. aureus

isolates36,50–52. Moreover, deletion of hla abrogates USA300 virulence in murine and rabbit

skin lesion models as well as pneumonia43,100,136. However, it should be noted that hla

mutants in almost any S. aureus background are attenuated133,137–140, thus the loss of

virulence in USA300 hla mutants is consistent with α-toxin in general being a critical

pathogenicity factor to S. aureus. δ-toxin (encoded by hld) and related α-type phenol-soluble

modulins (αPSMs) are amphipathic α-helical peptides with potent leukocidal and

chemotactic properties141. They have been shown to be overproduced by CA-MRSA clones

with respect to most HA-MRSA isolates36,51,141. Their abundant production is essential for

full virulence in murine and rabbit skin models of infection as well as murine sepsis108,141.

Interestingly, they have recently been shown to exert potent antimicrobial activity against

multiple Gram-positive bacterial species142. This property may prove critical for efficient

colonization of non-sterile sites such as skin and nasal passages, thereby providing CA-

MRSA with a selective advantage during transmission. Finally, S. aureus expresses a

number of secreted proteases that, while antagonistic to in vitro biofilm formation, likely

mediate the breakdown of host fibrotic tissue synthesized to confine S. aureus-containing

lesions thereby promoting bacterial dissemination and disease progression. As with α-toxin

and αPSMs, USA300 clones are also known to excrete proteases in excess, potentially

limiting the host’s ability to control minor skin and soft-tissue infections143. Thus, several

groups have consistently reported the robust expression of numerous virulence determinants

in USA300 compared with other clinical isolates. It has therefore been hypothesized that this
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over-production of toxins/proteases confers the selective advantage that explains the

overwhelming success of USA300 clones. If true, the regulatory mechanisms explaining

these virulence trait expression phenomena are poorly defined.

Agr Quorum Sensing System

S. aureus expresses a peptide-based quorum sensing system known as Agr for Accessory

Gene Regulator129,144. Signaling is mediated through a peptide form of AgrD (processed by

the combined activity of the AgrB endopeptidase and a type I signal peptidase, SpsB145) that

stimulates the two-component system sensor kinase, AgrC. The resulting activation of the

response regulator AgrA leads to induction of the agrBDCA operon as well as the

divergently transcribed RNAIII. While RNAIII encodes δ-toxin, the RNA molecule itself

mediates a significant proportion of Agr regulation by affecting the expression of α-

toxin146, protein A147, repressor of toxins (Rot)148 and others149. Active AgrA is also

known to directly control the expression of other virulence determinants including the

PSMs150. Thus, the reported overproduction of Hla, Hld and PSMs in USA300 clones may

be explained by a hyperactive Agr system in these clones. Indeed, the RNAIII molecule was

shown to be expressed to a higher level in USA300 clones than in other S. aureus isolates

explaining the overabundance of δ-hemolysin production51,52. Additionally, the overactive

USA300 Agr system was the source of excess PSM and protease production associated with

these clones and was partially responsible for excessive Hla expression50. Consistent with

these data, Δagr mutants in USA300 are highly attenuated in murine sepsis, pneumonia and

skin abscess models50,108,151. Though, given the importance of Agr in virulence gene

regulation, it is not surprising that mutants exhibit such attenuation. Moreover,

overproduction of PSMs was reported for USA400 CA-MRSA clones implying that the

greater success of USA300 cannot be fully attributed to overactive Agr51,141. In fact,

USA500 clones, thought to be ancestral to USA300 also exhibit phenotypes with

hyperactive Agr as well as being highly virulent in murine model infections36,51. Thus, the

high virulence potential of USA300, including high Agr-activity, likely evolved in the HA-

MRSA clones belonging to USA500. Still, Δagr mutants of USA300 are highly attenuated

and exhibit no increased virulence relative to non-USA300 agr mutants underscoring its

importance in the evolution of USA30050.

SaeR Two-Component System

The S. aureus exoprotein expression (Sae) locus contains four genes, saePQRS the latter of

which comprise a two-component regulatory system152–154. The response regulator/sensor

kinase genes (saeRS) are preceded by genes encoding a membrane protein (SaeQ) and a

lipoprotein (SaeP) of unknown function. All four genes are cotranscribed from a promoter

that is strongly induced by active SaeR155. A second promoter drives the expression of

saeRS alone and is modestly repressed by these regulatory gene products155. Activation of

the Sae system seems to involve sensing changes in the overall integrity of the cell envelope

and is highly stimulated by hydrogen peroxide and cationic peptides including α-

defensins155,156. Active SaeR promotes the induction of a number of virulence genes in S.

aureus through binding of a consensus sequence found upstream of promoters for hla, sbi,

efb, lukS-PVL, splA and saeP157. Additionally, expression of β-hemolysin, fibrinogen-

binding proteins, lactose catabolizing enzymes and the chromosomal arginine deiminase
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operon are all highly affected by Sae158. It has been shown that SaeRS expression is higher

in USA300 than in USA400 clones52,155_ENREF_52, which may be a result of overactive

Agr system (see above) since RNAIII is known to positively regulate Sae expression156.

Deletion of saeRS resulted in almost complete loss of Hla expression and a significant drop

in PVL levels as well151,157. Moreover, Δsae USA300 was attenuated in murine sepsis,

peritonitis, dermonecrosis and pneumonia models151,157–159. This was surprising given that

in USA400, Sae was only essential for sepsis and peritonitis and not for survival within skin

abscesses158,159. However, USA400 clones do not induce the same level of dermonecrosis

and do not express high levels of Hla as in USA300 infections51,52. Thus, it appears as

though some of the hypervirulence attributed to USA300 clones in skin/soft tissue infections

is likely due to Sae-mediated Hla overproduction. However, HA-MRSA USA500 clones

also exhibit severe dermonecrosis during skin infections and overproduce Hla and PSMs yet

have not disseminated as widely as USA300.

Source of overactive Agr

While it has not been directly tested, it is tempting to hypothesize that the overactive Agr

system inherent to USA300 results in excessive PSMs and Sae expression, the latter of

which leads to high Hla expression. However, the mechanism driving high Agr activity in

USA300 is not defined. Agr activity can be modulated through the actions of a number of

trans-acting regulators including SarA160, Stk1161, MgrA162, SigB143, CodY163, CcpA164,

Sar-family proteins other than SarA165–168, ArlRS169, Rsr161 and SrrAB170. Many of these

regulators are presumed to affect Agr expression indirectly, however some (CodY171,

SrrA172 and SarA173) have been shown to directly bind to the Agr locus. It is intriguing that

many of these regulators are involved in modulating metabolic adaptation to various

environments (CodY, CcpA, Rsr and SrrAB) given the apparent increase in fitness

associated with USA300174 (see below). Though any one of these or other unknown

regulatory systems may be responsible for enhanced Agr activity in USA300, therefore

investigations into strain-specific differences in activity among these regulators may prove

enlightening. For instance, SarA positively affects Agr expression160,175, and deletion of

sarA in USA300 lead to drastic reductions in Hla and PSM levels176,177. However, recently

it was demonstrated that the loss of cytolytic expoprotein expression in the ΔsarA mutant

was attributed to the resulting overproduction of extracellular proteases and not due to

altered exoprotein gene transcription177.

While trans-acting regulators may prove to be major influences on USA300 Agr activity,

cis-acting polymorphisms may also be involved. RNAIII transcripts among sequenced ST8

isolates are 100% conserved, but there is a single nucleotide polymorphism (SNP) 3 bp

upstream of a known AgrA binding site within the RNAIII promoter that is only found

among USA300 isolates. While this is the only SNP among ST8 and ST1 clones specific to

USA300, other sites of variation exist when compared to USA100 and USA200 promoter

sequences. SNPs in the Hla promoter were recently shown to drive its overexpression in

bovine isolates by modulating SarZ binding178. It remains to be determined whether SNPs in

the RNAIII promoter region of USA300 isolates affect expression leading to high Agr

activity. Regardless of the mechanism behind hyperactive toxin production in USA300, it is

important to remember that similar high-level expression is observed in the HA-MRSA
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progenitor clone, USA500. Thus, while the high virulence potentials of USA300 and

USA500 may result from overproduction of exoproteins, this phenomenon alone cannot

fully explain the enormous success of USA300 in human disease.

Non-synonymous Mutations in Core Genes

The evolutionary forces that drive diversification in S. aureus have been recently examined,

in part, due to the availability of more than 15 published S. aureus genome sequences. While

a significant level of divergence is achieved through acquisition of mobile genetic elements

(MGE), variability within the S. aureus core genome (~2000 orthologous genes shared

among most S. aureus strains) is primarily generated through mutation179,180. The most

common forms of mutation are single nucleotide polymorphisms (SNPs) or short insertion/

deletions (indels) that have been estimated to be ~15-fold more attributable to de novo

mutation than to recombination179. However, recent reports contend that the contribution of

homologous recombination to core diversity in S. aureus may be underestimated181.

Nevertheless, mutation is a significant driving force in S. aureus diversification allowing for

evolutionary classification of strains into ST types (see above)22. Most SNPs are within

coding regions reflecting the fact that ~80% of the core genome encodes protein182.

Synonymous SNPs, those that do not result in amino acid changes, by far outweigh amino

acid substituting non-synonymous SNPs in S. aureus183–186. This is likely because

nonsynonymous mutations are more often detrimental and are therefore subject to

evolutionary loss via purifying selection. Consequently, the relative ratio of nonsynonymous

to synonymous substitution rate (dN/dS) among staphylococci is generally less than 1. In

contrast, a recent report comparing the complete genome sequences of 10 newly isolated

USA300 clones with the published FPRF3757 USA300 sequence revealed an unusually high

ratio of nonsynonymous:synonymous SNPs (as high as 2.6:1, much higher than reported in

comparisons of non-USA300 S. aureus lineages)43. This discrepancy can be rationalized by

assuming a recent clonal expansion of the USA300 lineage such that new isolates still

harbor nonsynonymous SNPs that have not yet undergone purifying selection187. To be sure,

the unusually high dN/dS ratio of USA300 clones is inconsistent with evolutionary

convergence among distantly related clones, an event that would only be consistent with

normal to low dN/dS ratios if the converging progenitors were of sufficiently diverse

origins43.

It is important to note that overall low dN/dS ratios are not necessarily constant across all

functional gene families. For instance, while housekeeping and metabolic genes generally

exhibit low dN/dS ratios, genes encoding surface associated or secreted proteins can often

have elevated dN/dS ratios188,189. This is indicative of forward selective pressures driving

variability in these genes either to promote functional differences (e.g. an adhesin adapting

to a host receptor molecule) or immune avoidance through changes in antigenicity. Indeed,

comparisons among divergent S. aureus clones reveal higher dN/dS ratios for genes

encoding components of the cell envelope and secreted proteins than genes encoding

housekeeping or metabolic enzymes182,184,185. USA300 clones however seem to be an

exception to this rule. A recent comparison of genome sequences from USA200, USA300

and a distantly related S. aureus strain revealed high dN/dS ratios indicative of forward

selection in a large number of USA300 metabolic genes190. The largest subset of USA300
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genes predicted to be under positive selection (45%) were involved with metabolism

whereas only 7% encoded components of the cell envelope. This phenomenon cannot be

explained by the fact that metabolic genes make up a large proportion of the core genome

because this same study showed that in USA200, the most prominent class of genes

undergoing positive selection were those encoding cell envelope components (a third of all

genes with elevated dN/dS)186,190. An independent study verified that all of the metabolic

genes in USA300 exhibiting forward selection were completely conserved among 10

sequenced USA300 genomes43. Moreover, data from this same study showed that, while

relatively few SNPs were found among ten different USA300 genomes, genes encoding cell

envelope proteins more commonly exhibited high dN/dS ratios (57% of all genes with

multiple nonsynonymous substitutions)43. Thus, the peculiar overrepresentation of S. aureus

metabolic genes among those undergoing positive selection is only evident when comparing

USA300 with non-USA300 genomes implying that USA300 clones in general seem to be

adapting to disproportionately high selective pressures at the metabolic level.

It is possible that the resulting adaptive mutations in the overall metabolism of USA300

directly contribute to the evolutionary success of this clone. For instance, it has been

observed that USA300 clones simply grow faster than any other tested S. aureus isolate174.

Taken together, it would appear that USA300 is more metabolically fit and/or adaptable than

other S. aureus lineages. This may provide an advantage when competing for limiting

nutrients with endogenous microflora as well as contribute to severe disease given a rapid

growth rate within sterile sites of the body. Further inspection in our laboratory revealed that

USA300 clones have growth advantages when metabolizing many different carbon sources

(Table 1). In general, USA300 clones exhibited higher growth rates than other clones when

cultivated on nutrients that are abundant in human sweat and skin191, consistent with the

high prevalence of skin/soft tissue infections associated with USA300 clones. But, can a

relatively small set of amino acid changes in metabolic genes really account for such drastic

growth differences? Laboratory adaptation of E. coli to growth on lactate resulted in strains

that exhibited nearly twice the growth rate on lactate alone192. These adapted strains

exhibited major alterations in metabolic flux capacity through gluconeogenic and pyruvate

catabolic pathways, yet none of these changes were due to altered gene expression. This

would be consistent with subtle changes in protein sequence (nonsynonymous SNPs) that

alter enzyme activity or response to allosteric regulation. Furthermore, a laboratory adapted

clone of Caulobacter crescentus exhibited a ~20% greater growth rate than its progenitor

strain and this entire phenotype was explained by a single SNP altering the expression of

glucose-6-phosphate dehydrogenase (zwf)193. This enzyme controls the primary flux

between energy generating glycolysis and the precursor generating pentose-phosphate

pathway (PPP). It was shown that lower flux through PPP with concomitant increased

glycolytic activity lead to higher growth rates in lab-adapted C. crescentus193. Interestingly,

one of the very genes exhibiting signs of positive selection in USA300 was zwf along with

two glycolytic genes (pgm and pfkA) potentially linked to the USA300 growth advantage on

numerous carbon sources190. Whether or not SNPs within these metabolic genes account for

enhanced USA300 growth rates and whether that contributes to the success of this clone

remain to be proven, however the unusual SNP distribution among metabolic genes in
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USA300 combined with its enhanced growth rate suggest there may be more to USA300

virulence than newly acquired or overexpression of virulence genes.

Conclusions

The overwhelming success of USA300 in North America as the dominant source of CA-

MRSA infections represents a fascinating example of a pathogenic variant emerging as a

new threat to human health. The adaptations acquired by USA300 clones in the form of

novel genetic components, altered gene regulation and sequence polymorphisms likely act in

concert to provide these strains with a selective advantage. It appears as though USA300

hypervirulence, as assayed in animal models of infection, correlates with increases in

virulence gene expression and is apparent in HA-MRSA progenitors as well as other

unrelated CA-MRSA lineages. Whether this is due to hyperactive Agr resulting in elevated

PSM production and Sae expression (which in turn could lead to excess Hla and other

exoprotein excretion) remains to be proven. In contrast to overt virulence, traits that affect

transmission and colonization efficiency are inherently difficult to model in the laboratory. It

may prove, however that this aspect of USA300 biology is as critical to its success as is high

virulence potential. It remains to be determined whether newly acquired genetic components

(e.g. ACME) and/or sequence polymorphisms contribute to the rapid transmission and

success of USA300 in the community. In the end, we may appreciate that none of the three

evolutionary events (gene acquisitions, altered gene regulation, protein sequence

divergence) outlined here can alone explain the success of USA 300. Rather, the

amalgamation of all these events created the highly successful pathogen that we must

contend with today.
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Figure 1. Schematic representation of the evolution of MRSA
Sequence Types (STs) belonging to established Clonal Complexes (CCs) are colored as

follows: CC1, purple; CC5, green; CC8, red; CC22, orange; CC30, blue; CC45, black. ST59

has not been assigned to a CC. Roman numerals reflect acquired SCCmec type. Commonly

used S. aureus strains are depicted around their relevant ST symbol.

Thurlow et al. Page 25

FEMS Immunol Med Microbiol. Author manuscript; available in PMC 2014 July 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. Association between arc gene cluster and speG in ACME. TOP
ACME type I, found in USA300 S. aureus and also found in many S. epidermidis isolates,

and ACME type II, found primarily in S. epidermidis, both harbor arc gene clusters as well

as speG. ACME type III (not shown) lacks an identifiable arc gene cluster but does contain

an opp-3 locus. BOTTOM: Fate of host arginine depends on competition between iNOS

and Arginase-1 enzyme activities. The net production of ornithine by Arc-expressing S.

aureus may skew the fate of host arginine down the polyamine synthesis pathway thereby

necessitating speG.
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