
Advancing PROMIS’s methodology: results of the Third Patient-
Reported Outcomes Measurement Information System
(PROMIS®) Psychometric Summit

Adam C Carle*, David Cella,
Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University,
Chicago, IL, USA

Li Cai,
Department of Education and Psychology, University of California Los Angeles, Los Angeles, CA
90095-1521, USA

Seung W Choi,
Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine,
710 N. Lake Shore Drive, Chicago, IL 60611, USA

Paul K Crane,
Internal Medicine, School of Medicine and Health Services, School of Public Health, University of
Washington, Box 359780, 325 Ninth Avenue, Seattle, WA 98104, USA

S McKay Curtis,
Department of Statistics, University of Washington, Seattle, WA 98104, USA

Jonathan Gruhl,
Department of Statistics, University of Washington, Seattle, WA 98104, USA

Jin-Shei Lai,
Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine,
710 N. Lake Shore Drive, Chicago, IL 60611, USA

Shubhabrata Mukherjee,
General Internal Medicine, University of Washington, Box 359780, 401 Broadway, Suite 5076,
V126, Seattle, WA 98104, USA

Steven P Reise,
Chair, Quantitative Psychology, University of California Los Angeles, 3587 Franz Hall, Los
Angeles, CA 90095, USA

Jeanne A Teresi,
Columbia University Stroud Center and New York State Psychiatric Institute, Research Division,
Hebrew Home at Riverdale, 5901 Palisade Avenue, Riverdale, NY 10471, USA

David Thissen,

© 2011 Expert Reviews Ltd
*Author for correspondence: University of Cincinnati School of Medicine and University of Cincinnati College of Arts and Sciences,
James M Anderson Center for Health Systems Excellence, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC
7014, Cincinnati, OH 45229, USA, Tel.: +1 513 803 1650, Fax: +1 513 636 0171, adam.carle.cchmc@gmail.com.

Financial & competing interests disclosure

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or
financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

NIH Public Access
Author Manuscript
Expert Rev Pharmacoecon Outcomes Res. Author manuscript; available in PMC 2012 October
01.

Published in final edited form as:
Expert Rev Pharmacoecon Outcomes Res. 2011 December ; 11(6): 677–684. doi:10.1586/erp.11.74.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Department of Psychology, University of North Carolina Chapel Hill, CB#3270, Davie Hall, Chapel
Hill, NC 27599-3270, USA

Eric J Wu, and
Psychology Department, University of California Los Angeles, 405 Hilgard Avenue, Los Angeles,
CA 90095, USA

Ron D Hays
Department of Medicine, University of California Los Angeles, 911 Broxton Avenue, Los Angeles,
CA 90095-1736, USA

Abstract
In 2002, the NIH launched the ‘Roadmap for Medical Research’. The Patient-Reported Outcomes
Measurement Information System (PROMIS®) is one of the Roadmap’s key aspects. To create the
next generation of patient-reported outcome measures, PROMIS utilizes item response theory
(IRT) and computerized adaptive testing. In 2009, the NIH funded the second wave of PROMIS
studies (PROMIS II). PROMIS II studies continue PROMIS’s agenda, but also include new
features, including longitudinal analyses and more sociodemographically diverse samples.
PROMIS II also includes increased emphasis on pediatric populations and evaluation of PROMIS
item banks for clinical research and population science. These aspects bring new psychometric
challenges. To address this, investigators associated with PROMIS gathered at the Third
Psychometric Summit in September 2010 to identify, describe and discuss pressing psychometric
issues and new developments in the field, as well as make analytic recommendations for
PROMIS. The summit addressed five general themes: linking, differential item functioning,
dimensionality, IRT models for longitudinal applications and new IRT software. In this article, we
review the discussions and presentations that occurred at the Third PROMIS Psychometric
Summit.

Keywords
computerized adaptive testing; dimensionality; factor analysis; item response theory; patient-
reported outcomes; PROMIS; psychometrics; structural equation modeling

To improve clinical research and health outcomes in the USA, the NIH developed its
‘Roadmap for Medical Research’. The Roadmap identified high-priority scientific
opportunities and needs that the NIH should pursue and that no institute could accomplish
singly [1]. The Patient-Reported Outcomes Measurement Information System (PROMIS®)
is one of the Roadmap’s key developments. To create the next generation of patient-reported
outcome (PRO) measures, PROMIS utilizes item response theory (IRT) [2] and
computerized adaptive testing (CAT) [3].

IRT uses probabilistic, mathematically based models to describe how people tend to respond
to questions. It models the relationship between individuals’ responses to questions about
their health and the underlying (i.e., latent) variable measured by an instrument. As a result,
it offers several advantages over classical test theory [4]. For example, IRT allows more
accurate and realistic estimates of reliability by allowing precision to vary across scores. It
can create shorter yet more reliable instruments (particularly when coupled with CAT). In
addition, it lets one compare different scales on a linked, common metric. All of these
advantages directly support PROMIS’s goals, which include developing the next generation
of PROs that (with minimum questions) provide meaningful, precise measurement, while
simultaneously requiring fewer respondents to achieve statistical power in research settings.
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To continue advancing PROMIS’s goals and achievements (described in detail at [101]),
NIH funded PROMIS’s second wave of studies (PROMIS II) in 2009. PROMIS II studies
continue to advance PROMIS’s general agenda, but also include new features (e.g.,
longitudinal data collection and more sociodemographically diverse samples). Additionally,
PROMIS II includes an increased emphasis on pediatric populations and on evaluation of
PROMIS item banks for clinical research and population science. These aspects bring new
psychometric challenges. To address this, investigators associated with each of the PROMIS
sites gathered in September 2010 at the Third PROMIS Psychometric Summit to describe
and discuss pressing psychometric issues and new developments in the field, as well as
make analytic recommendations for PROMIS generally. The 2010 summit aimed to address
5 general themes: linking, differential item functioning (DIF), dimensionality, IRT models
for longitudinal applications and new IRT software. In this article, we describe each of the
2010 Summit’s presentations, as well as the summary recommendations resulting from the
Summit.

Linking scores across scales
The focus on developing pediatric measures has resulted in increased attention to ensuring
comparable scores across pediatric and adult scale forms. Thus, the Summit started with a
discussion of linking. Generally, linking refers to statistical efforts to transform scores from
one measure into the metric of another [5]. David Thissen noted that recent advances allow
investigators to improve upon the two previously viable options (prediction and alignment)
when linking measures developed separately and to different specifications, as with
PROMIS pediatric and adult forms.

Investigators can now use a full-information factor analytic approach to linking, called
calibrated projection [6,7]. Calibrated projection eases the requirement of previous full-
information methods that the two tests measure a single construct. In calibrated projection,
one fits a multidimensional IRT (MIRT) model to the two measures’ item responses. The
model describes two distinct but correlated variables as representing the underlying
constructs measured by each scale. The approach also allows for additional latent variables
(e.g., nuisance variables) or correlated errors to address local dependence(s) that may exist.
Thissen recommended calibrated projection over previous methods that required that each
scale measure a single construct given its flexibility and the fact that it uses all of the
information in the item response matrix [8], as opposed to limited-information estimation
based on joint frequencies [9]. This provides an advantage because full-information
estimation is less sensitive to chance occurrence of large inter-item correlations, which can
excessively influence limited-information estimation. Thissen’s discussion ended with a
description of the planned linkage of the PROMIS pediatric and adult scales. Adolescents
and young adults will complete eight PROMIS pediatric short forms that have adult item
bank analogues. This project will evaluate whether the linkage appears useful (i.e., does
linking provide reliable score estimates?). If so, the project will then employ either
unidimensional IRT calibration and calibrated projection as appropriate to align the pediatric
and adult scales.

To make concrete PROMIS’s linking goals (and hurdles), David Cella and colleagues
described their efforts to calibrate new item banks that extend existing item banks. Jin-Shei
Lai described the preliminary results of a study seeking to link PROMIS measures with
related scales in order to expand the range of options for PROs. By linking new to existing
item banks, the project will allow an expanded range (e.g., larger item pool) of PRO
assessment options on a standardized metric. Lai’s examples included adult (n = 1316: 803
general population, 513 cancer patients) and pediatric (n = 513) examples; both used
Stocking–Lord [10] separate calibrations and fixed parameter calibration and included
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sufficient participants to meet sample size requirements [11]. Preliminary findings indicated
that in both examples, separate and fixed methods tended to produce similar parameter
results and linking did not provide new information across levels of the latent trait where
information was previously scarce. However, linking did yield a somewhat more peaked
information function in previously well-measured trait levels.

Given these findings, some questioned the utility of expanding existing item banks if the
results did not substantially increase the ability to measure different construct level. In
response, several participants noted that an assessment of a linking procedure depends partly
on the intended use of the item bank. Linking improved the amount of information in the
existing range, leading to more accurate estimates. Importantly, while the examples may not
have shown substantial improvements or differences, that need not be the case. Expanding
the existing PROMIS item banks by linking additional items could lead to notable
improvements for other constructs by including more content and coverage of the measured
constructs.

Differential item functioning
PROMIS seeks to generate items that produce equivalent measurement across diverse
sociodemographic groups (e.g., race/ethnicity). DIF, sometimes referred to as measurement
bias and item bias, refers to the possibility that two individuals with equivalent health tend
to respond to questions about their health differently as a function of another variable. For
example, DIF would exist if (on average) two people with the same level of physical
functioning rated their physical functioning differently as a function of their age. DIF limits
the ability to make reliable and valid cross-group comparisons. Introducing the DIF
presentations, Jeanne Teresi emphasized the importance of examining DIF [12] and noted
that increased sociodemographic diversity in the PROMIS II samples will increase DIF
analyses opportunities. She then presented general DIF analyses guidelines [13]. These
include: qualitative analyses and cognitive interviews; generating DIF hypotheses;
examining items and raw scales to detect distributional skew and sparse data (combining
categories as necessary); selecting anchor items in advance if possible (excluding items with
DIF when necessary); examining model fit and assumptions; performing DIF analyses and
sensitivity analyses; examining DIF’s impact at aggregate and scale levels; and performing
DIF adjustments if possible and feasible.

The Summit included detailed presentations of three DIF methods. Using a common dataset,
each presentation focused on DIF across age on the short form of the PROMIS Physical
functioning items in a sample of older adults. The data included three assessments of
physical functioning at baseline (n = 521), 6 months and 1 year [14].

Analyzing the baseline data, Adam Carle presented multiple-indicator multiple-cause
(MIMIC) models [15,16]. MIMIC models describe a measurement model (in the factor
analytic tradition) to describe how people tend to respond to questions. MIMIC models
include a covariate (i.e., source of DIF) to examine the direct and indirect effects of the
covariate on measurement. Direct effects describe DIF as traditionally considered: the
covariate directly leads to differential likelihood of item endorsement at the same trait level.
Indirect effects refer to the possibility that, because the covariate may influence the
measured variable itself, it may indirectly influence responses. Results found DIF across
several items. For four items, DIF analyses indicated that, at the same level of the latent
trait, older individuals tended to report worse physical functioning than younger individuals.
For one item asking about the ability to wash and bathe one’s self, analyses indicated that
older individuals (relative to younger) tended to endorse better physical functioning at the
same level of the latent trait.

Carle et al. Page 4

Expert Rev Pharmacoecon Outcomes Res. Author manuscript; available in PMC 2012 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Emphasizing the need to evaluate the extent to which identified DIF influences substantive
conclusions, Carle showed the results of models ignoring and incorporating DIF. Prior to
accounting for DIF, older adults endorsed significantly poorer physical functioning. Yet,
after adjusting for item-level DIF, the two groups did not differ significantly, suggesting that
DIF had a meaningful impact. Surprisingly, this adjustment would result in a conclusion
opposite expectations (i.e., that older individuals do not differ from younger individuals in
physical functioning). To provide a simple example of MIMIC, Carle noted that he had not
included multidimensionality in the MIMIC model, which could have led to the surprising
conclusion. He and others used this to emphasize the importance of developing the most
accurate model possible in order to make appropriate DIF conclusions.

Carle noted several of MIMIC’s strengths. MIMIC does not require categorizing a
continuous variable in order to examine DIF across groups. Additionally, because MIMIC
analyses work with a pooled covariance matrix, they can examine DIF in smaller sample
sizes. However, MIMIC also has weaknesses. Chiefly, one typically cannot examine DIF in
the loadings/discriminations (nonuniform DIF). Other methods overcome this limitation.

A general latent variable approach offers greater flexibility in DIF analyses than MIMIC.
Rich Jones expanded the MIMIC model to a multiple group (MG)-MIMIC model that
described separate physical functioning measurement models for each age group and
included time points as covariates. This model examined DIF across age and time. These
analyses found nonuniform DIF in five items, only two of which were in common with the
MIMIC results. Unlike the MIMIC impact analyses, MG-MIMIC did not indicate that DIF
caused erroneous conclusions. Thus, Jones highlighted the importance of interpreting DIF
within the framework of the chosen and other potential models.

Jones identified the flexibility in models as one of the general latent variable modeling
approaches’ strengths. Strengths also included the ability to incorporate multiple variables
simultaneously and handle longitudinal data. However, flexibility also serves as a weakness.
One must carefully consider the data, likely causes of DIF, and develop specific a priori
hypotheses. Importantly, the interpretation of DIF (as with any approach) depends upon the
model specified. One must acknowledge that other models and methods might result in
substantively different (and perhaps more valid) conclusions.

To offer another method, Mukherjee and Crane presented a longitudinal analysis based upon
a hybrid ordinal logistic regression (OLR)/IRT framework [17]. This approach compares a
hierarchically nested series of three OLR models that predict an item’s response. OLR
Model 1 predicts an item’s response probability using IRT latent trait estimates, a term
describing group membership, and a term describing the group by trait estimate interaction.
OLR Model 2 estimates item response probability using only the latent trait estimates and
the group term. OLR Model 3 estimates the probability solely from the IRT trait estimate.
One then compares the differences in log likelihoods from Models 1 and 2 to a χ2

distribution to identify nonuniform DIF (DIF in the discrimination parameters), and from
Models 2 and 3 to identify uniform DIF (DIF in the location parameters). One does this for
each of the set’s items to probe for DIF in the item set.

Using the same data as the other DIF presenters, Mukherjee and Crane first performed cross-
sectional analyses at each time point. At each time point, items identified with DIF differed.
Subsequently, the authors extended the cross-sectional OLR/IRT approach to the
longitudinal setting by accounting for covariance within individuals by clustering on person.
When doing this, the authors found both uniform and nonuniform DIF, which manifested
across different items across time. Like the MG-MIMIC analyses, the results suggested that,
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while statistically significant DIF existed, it did not appear to substantively influence
conclusions, suggesting the DIF was trivial.

The longitudinal OLR/IRT approach has several important features. It can account for the
average effect of DIF across time, essentially adjusting for DIF at each time point to provide
an unbiased estimate of change across time. It can also examine and describe changes in
how DIF manifests across time. In addition, the approach does this making use of all the
available data (allowing missing data across time) and using widely available software (e.g.,
PARSCALE).

Considerable discussion occurred regarding the choice of DIF method, given that each
resulted in different conclusions. The presenters and participants noted that the choice of a
‘best’ DIF detection method depended on several factors, including the type of data,
question of interest, reason for DIF and goal of detection. As with linking, the group
concluded that one single approach would not prevail. Instead, a convergence of results
using different approaches should be sought. One could view different methods as
sensitivity analyses. Analysts will need to use and compare and contrast the results of
several approaches, weighing the implications of each in light of the results and the
methodological differences across the methods. Importantly, analysts should evaluate the
practical impact of DIF.

Dimensionality
In psychometrics, dimensionality refers to the number of constructs data appear to measure.
Multidimensionality (measuring multiple constructs) can profoundly affect IRT model
parameters. Steve Reise noted that, although many IRT models assume unidimensional data,
insufficient understanding exists regarding the assumption’s implications, how to best assess
unidimensionality and the implications of unidimensionality violations on IRT model
parameters. Reise’s discussion focused on the tension that exists when data fail to fit a truly
unidimensional model. Both broad and narrow constructs exist, responses may measure a set
of separable and important constructs, but even multidimensional data may yield scores
influenced primarily by a single common factor [18].

Reise highlighted the importance of correctly accounting for violations of unidimensionality
in order to correctly estimate IRT parameters. To date, analysts have traditionally evaluated
the data to determine whether it demonstrated ‘sufficient unidimensionality’ and, if so,
applied unidimensional IRT models. Analysts have used various indices of dimensionality to
support this. However, forcing multidimensional data into unidimensional models will
generally result in a mis-specified latent variable and spurious IRT parameters. As Reise
illustrated, none of the fit indices used to ‘justify’ the unidimensional approach actually
evaluate the degree to which an inappropriate unidimensional model results in distorted
parameters. When faced with multidimensionality, investigators should compare the
difference in the IRT parameters that result across unidimensional and bifactor models.
Bifactor models generally describe models that specify a common general factor that
influences all item responses, while also explicitly modeling ‘grouping’ or ‘nuisance’ factors
[19] that influence small sets of item responses. By estimating exploratory bifactor models
and comparing results to unidimensional IRT results, investigators can empirically evaluate
multidimensionality’s influence. At the very least, researchers should report
multidimensional solutions so that readers can assess the tenability of a unidimensional
model’s results.

Discussion turned to handling multidimensionality in cross-sectional and longitudinal data
and CAT. Most CAT applications assume and employ unidimensional IRT models [3] and
measure individual traits one at a time. To achieve unidimensionality, researchers often
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remove questions that lead to multidimensionality, leading to content under-representation.
However, even after achieving unidimensionality, investigators often administer a battery of
measures. Current CAT methods ignore multidimensionality and the information that would
result from modeling multidimensionality. Seung Choi argued that a multidimensional and/
or hierarchical CAT would provide a flexible modeling framework, content breadth, and
capitalize on CAT’s ability to reduce respondent burden.

Choi described a general multidimensional CAT (M-CAT) framework based on Cai’s [7]
two-tier full-information factor analysis approach, as implemented in IRTPRO (see below)
[20]. M-CAT allows for multidimensionality and hierarchical structures, encompassing
correlated traits, bifactor and two-tier hierarchical models. Initial results based on simulated
and empirical data suggest: M-CAT performs at least as efficiently as unidimensional CAT
but with enhanced validity (e.g., addresses conditional dependency issues); greater gains in
efficiency occur with more highly correlated dimensions; and M-CAT requires content
balancing to represent the dimensions more systematically and consistently using a priori
target proportions. Choi showed that M-CAT captures nuisance dimensions relatively poorly
and that it achieves maximal efficiency when focusing on hierarchical dimensions. While
some issues remain unresolved, researchers wishing to measure several traits simultaneously
or include hierarchical measures should consider M-CAT. However, the ability to employ
M-CAT requires the ability to confidently identify the multidimensional structure.

McKay Curtis encouraged IRT analysts to adopt a Bayesian-averaging approach when
attempting to model nuisance/grouping factors, residual covariation between items and
secondary domains. Many tests, despite intending to measure a single construct, result in
data that depart from unidimensionality and/or include local dependence. As described by
Reise et al. [19], bifactor models can provide a parsimonious way to model these features.
However, researchers rarely have clarity when selecting a bifactor model’s secondary
structure. Often investigators fit a variety of models, choosing the model that simultaneously
provides the best fit and theoretical justification. Unfortunately, selecting and using a single
model ignores uncertainty regarding the secondary factor structure.

Curtis proposed a Bayesian approach to account for secondary structure uncertainty.
Bayesian approaches use probability distributions to model uncertainty. For example, in a
bifactor analysis, an investigator would assign a prior probability distribution to model
parameters. The prior distribution reflects uncertainty about the values before observing the
data. Subsequently, the posterior distribution reflects updated knowledge about parameter
values after observing the data. Bayesian approaches make inferences using the posterior
distribution.

Curtis’ method incorporated uncertainty about the secondary structure using a process [21]
that generates a probability distribution (of structures) on a space of probability
distributions. Given their discrete nature, random draws from the process will likely have
repeated values [21]. In Curtis’ approach, the repeated values form the secondary structure’s
basis, leading to his description of the model as a “random bifactor model”. In his example,
which used WinBUGS software [22] and data (n = 819) measuring cognitive functioning,
Curtis showed that, while the random bifactor model assigned fairly large posterior
probabilities to the model selected using the traditional approach, it also assigned relatively
large probabilities to other feasible secondary structures. By including these probabilities in
the posterior distribution, a researcher would arrive at more precise inference regarding the
resulting item parameters and their standard errors.
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IRT models for longitudinal applications
Meeting discussion included presentation of new IRT models for longitudinal data. Jonathan
Gruhl described hierarchical Bayesian approaches to longitudinal item response models. As
noted earlier, Bayesian methods acknowledge uncertainty about parameter values by
specifying a prior distribution for parameters and updating the prior distribution by combing
expectations with what the data reveal via a posterior distribution. As an additional and
important advantage, Gruhl described how Bayesian models extend to hierarchical
formulations, particularly beneficial to longitudinal data [23]. In these models, data are
nested at several levels, which allows analysis at multiple levels and for the
acknowledgement of uncertainty at each level.

In an example, Gruhl used longitudinal data and considered item responses nested within
individuals nested within assessment occasions. The model considered item parameters
invariant over time, but allowed the latent variable’s mean to vary across time as a function
of time-varying covariates and individual-specific effects. This formulation led to a time-
varying mean structure for the latent trait and dependence among estimates of the latent trait
for an individual over time. By extension, one could allow the mean function for the
individual-specific coefficients to vary as a function of individual specific covariates and
population parameters. One could also introduce individual-specific and item-specific
random effects, which would induce additional within-individual within-item correlations;
autoregressive terms in the mean function for the latent trait; and, finally, nonparametric
terms. Bayesian analysts can use the widely available and free software program WinBUGS
[22] (or any other general Markov Chain Monte Carlo software program). However, while
Bayesian approaches offer potential, challenges remain in their implementation (e.g., how to
specify the prior distribution; appropriate summaries of the posterior distribution; and
computationally intensive Markov Chain Monte Carlo methods).

In a related vein, Li Cai described the application of a two-tier full-information factor
analysis approach to longitudinal data. The two-tier item factor analysis approach represents
a confirmatory (i.e., restricted) factor model. Essentially, the two-tier model imposes
specific restrictions on the factor pattern and latent variable distributions that result in
substantial computational advantages [7] but still allow sufficient flexibility to estimate
numerous models. Importantly, the general two-tier model includes MIRT [24], bifactor
models [25] and testlet models [26], and it generalizes bifactor and testlet models to include
dichotomous, ordinal and nominal items. Because it allows two or more correlated primary
factors in bifactor models, one would not have to break a larger scale into two separate
bifactor models and estimate biased IRT parameters.

Cai noted that even in a simple longitudinal context, with the same scale used to measure a
single unidimensional trait at two time points, the data’s longitudinal nature creates a
multidimensional structure. The model reflects a unidimensional structure within a given
structure, but it requires at least two dimensions (one for each time point) to simultaneously
model the data’s longitudinal aspect and examine change in the means and variances of the
constructs across time, as well as correlation across time. The two-tier model can capture
these and model the conditional dependence that results from measuring the same
individuals longitudinally. Moreover, the two-tier model allows other advances over more
traditional approaches beyond those described in the longitudinal example (see [7] for
details). Both the two-tier full-information factor analysis and Bayesian approaches will
substantially open the field to new and exciting opportunities.
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New IRT software
IRT software advances enable an improved ability to fit and test IRT models. The Summit
included a detailed presentation of two: EQSIRT and IRTPRO. EQSIRT will address several
important needs. First, structural equation modeling and IRT overlap. However, structural
equation modeling typically uses means and covariances in estimation, while IRT
traditionally uses full-information, response pattern-based estimation. Each approach has
strengths and weaknesses. However, few IRT programs offer both approaches within a
single program. This will increase the ease with which analysts can apply either. Moreover,
this should expand the scope of IRT models to more readily include longitudinal and
multilevel IRT models, as well as models with covariates. Second, EQSIRT will allow
analysts to easily fit MIRT models, filling an important need in the IRT software field.
Third, most currently available IRT programs (e.g., PARSCALE, BILOG and MULTILOG)
are not user-friendly, nor do they incorporate many recent methodological advances in the
field. EQSIRT will be packaged along with EQS and deliver a user-friendly interface. It will
offer users a variety of methods in a convenient manner and provide graphical and tabular
output easily integrated in research reports.

IRTPRO [20] implements the two-tier full-information factor analysis approach [7]. In
addition, it also implements adaptive quadrature estimation [27] and the Metropolis–
Hastings Robbins–Monro [28,29] algorithm to handle truly high- dimensional IRT models.
IRTPRO will easily handle missing data (cross-sectionally and longitudinally), model
multidimensionality and bifactor models, and address longitudinal questions. The program
computes several model evaluation indices and has features to conduct DIF testing. The
program allows user-defined restrictions on item parameters. This enables researchers to
conduct likelihood ratio DIF tests, as well as Wald DIF tests. The likelihood ratio test
mimics the IRTLRDIF anchoring method [30], which results in an item-by-item assessment
of DIF. The Wald DIF test uses an ‘anchor-all’ ‘test-all’ method developed by Langer [102]
in addition to anchored DIF. IRTPRO will compute EAP or MAP scores and standard
errors. Like EQSIRT, IRTPRO should be available in 2012.

Conclusion
The PROMIS Psychometric Summit covered several key issues and hurdles that PROMIS
investigators and IRT analysts will generally face in the coming years. Although not
intended as a ‘cookbook’ for conducting psychometric analyses, several summary
recommendations resulted from the Summit. First, analysts should always evaluate the
extent to which data meet the assumptions of the selected IRT model, particularly in terms
of the data’s dimensionality. When evidence for multidimensionality exists, investigators
should recognize that ‘unidimensional enough’ does not address whether the failure to
incorporate multidimensionality into the model would influence estimated item parameters.
Researchers must evaluate the extent to which forcing multidimensional data into a
unidimensional model causes meaningful distortion in the estimated item parameters.
Second, while the two-tier and bifactor IRT methods do not solve all multidimensionality
problems, analysts should take advantage of the computationally efficient shortcuts provided
by the two-tier/bifactor models when the dimensionality structure is close to hierarchical.
Relatedly, Bayesian random bifactor models, once fully vetted, offer analysts an excellent
method for developing bifactor models when good a priori reasons do not exist for choosing
a particular bifactor model. Bayesian models for longitudinal data offer similar strengths.

Third, with respect to linking, analysts should carefully consider the relation between scores
on any pair of scales planned for linking to decide whether linked scores would be
sufficiently precise to be useful for the planned purpose. Additionally, when linking,
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analysts should always use an appropriate model (e.g., unidimensional or multidimensional).
Fourth, when conducting DIF analyses (whether across age or other variables), investigators
must acknowledge that multiple approaches exist. Given that the strengths and weaknesses
of each differ, analysts should use more than one method and compare and contrast the
results of each, interpreting heterogeneity (if any) in the results in light of the
methodological differences across the methods.

In summary, the PROMIS cooperative group structure has enabled us to focus on advancing
the measurement of health-related quality of life. A new generation of IRT analysis and
software options is now available to study linking, DIF, dimensionality and longitudinal
applications. While unresolved challenges remain (e.g., evaluating DIF with bifactor
models), PROMIS investigators will continue to address challenging methodological and
analytical issues as they present themselves along the way and, importantly, by doing so, the
advances resulting from the PROMIS initiative will improve the quality, integration and
application of PROs in the medical field.

Five-year view
Within 5 years, well-developed, psychometrically sound PROs resulting from the PROMIS
initiative will have continued to become key outcome variables in clinical trials and practice.
This will result through the application of IRT and the methods described in our paper.
Within 5 years, investigators will routinely and more robustly evaluate IRT assumptions
(e.g., dimensionality). They will regularly establish the validity of measures across
heterogeneous groups. They will consistently utilize advances in the field that now solve
many (though not all) dimensionality problems when they exist. They will employ Bayesian
techniques that will have become more fully integrated into IRT and, as a result, they will
more routinely use CAT to precisely and concisely measure PROs.

Key issues

• Numerous analytical challenges exist when seeking to precisely and concisely
measure patient-reported outcomes across the demographically heterogeneous
pediatric and adult health populations.

• Among them, analysts must better evaluate and model the extent to which data
do or do not violate fundamental item response theory (IRT) assumptions.

• Investigators should use two-tier, bifactor and/or Bayesian IRT methods to solve
assumption violations that can arise.

• When attempting to compare scores from disparate instruments, researchers
should carefully consider whether linked scores would provide sufficient
precision for this purpose.

• Additionally, they should always use an appropriate IRT model when linking
scores across instruments.

• Investigators should establish the validity of instruments across heterogeneous
groups using multiple approaches.

• The Patient-Reported Outcomes Measurement Information System initiative
collaboratively uses and creates advances in IRT to meet these challenges.
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