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Abstract

Introduction—An estimated 25 million Americans are living with rare diseases. Adeno-

associated virus (AAV)-mediated gene therapy is an emerging therapeutic option for the more than 

7,000 identified rare diseases. This paper highlights the benefits of AAV therapy compared to 

conventional small molecules, discusses current pre-clinical and clinical applications of AAV-

mediated gene therapy, and offers insights into cutting edge research that will shape the future of 

AAV for broad therapeutic use.

Areas covered—In this review the biology of AAV and our ability to generate disease-specific 

variants is summarized. Limitations of current therapy are reviewed, with an emphasis on immune 

detection of virus, viral tropism and tissue targeting, and limitations of gene expression. 

Information for this review was found using PubMed and clinicaltrials.gov.

Expert opinion—Currently the scope of clinical trials of AAV gene therapy is concentrated in 

an array of phase I/II safety trials with less than two dozen rare diseases featured. Pre-clinical, 

translational studies are expanding in number as developments within the last decade have made 

generation of improved AAV vectors available to more researchers. Further, one bottleneck that is 

being overcome is the availability of disease models, which will allow for improved preclinical 

testing and advancement of AAV to more clinical applications.
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1. Introduction to AAV-mediate gene therapy

The Orphan Drug Act of 1983 defined rare diseases as those affecting less than 200,000 

Americans. However, with more than 7,000 monogenic rare disease listed by the National 

Genetic and Rare Disease Information Center (GARD), more than 25 million Americans are 

affected illustrating the significance of these collective disorders. Historically 

pharmacological small molecule treatments have been the only option for managing a few 

rare diseases, but these efforts have a history of off target effects, need to be taken 

indefinitely, or have reduced efficacy over time as a result of dose tolerance. Protein therapy 

has filled a number of niches and continues to look promising. However with the advent of 

gene transfer technology, new options are on the horizon. Emerging as a promising 

therapeutic, adeno-associated virus (AAV) vectors provide a convenient packaging system to 

deliver disease-specific, long-term therapies based on virus-mediated delivery of corrected 

genes or endogenous gene knockdown to abrogate disease phenotypes. To date 

approximately 50% of the genes responsible for rare diseases have been identified, with 

genotyping being the limiting factor 1. However, next-generation sequencing is quickly 

identifying target genes and it is expected that the genetic mutations causing most rare 

diseases will be known in the next decade 1. This review is organized to first discuss the 

biology of AAV and current strategies to improve AAV gene therapy vectors, while the 

second half will discuss individual diseases and current AAV research, focusing on pre-

clinical studies and clinical trials (Table 1).

2.1 Biology of AAV

AAV is a non-autonomous single-stranded (ss) mammalian DNA virus (family Parvoviridae, 

genus Dependovirus) that requires helper functions, usually provided by associated viruses 

(such as adenovirus) to complete its life cycle. Thirteen major human and non-human 

primate (NHP) serotypes have been identified, with more than 100 serotypes identified from 

NHPs and several other species. The approximate 4.7kb AAV genome is flanked by 145 

nucleotide inverted terminal repeats (ITRs) and contains three identified open reading 

frames (ORFs) encoding eight proteins required for virus propagation 2. At 25nm, the 

mature AAV virion consists only of capsid proteins and a ssDNA genome, with both positive 

and negative DNA strands being incorporated equally 2. Although, AAV is ubiquitous in 

nature and it is estimated that more than 70% of humans are seropositive for one or more 

serotypes, AAV has not been directly implicated in human or animal diseases 3, 4.

More than 30 years ago it was demonstrated that the ORFs of AAV could be supplied in 

trans allowing the replication and capsid packaging of transgenic DNA flanked by the AAV 

ITR sequence (termed recombinant AAV or rAAV). In conjunction, with a helper virus free 

production system, rAAV has been exploited in the basic sciences and as a therapeutic drug 

in >100 clinical trials for diverse diseases 5. Most important for safety concerns and 

therapeutic applications, all recombinant AAV (rAAV) replication, capsid, and packaging 

protein sequences are replaced with expression cassettes encoding the therapeutic transgene 

of interest. This allows for generation of replication defective recombinant AAV (rAAV) 

vectors that have limited antigenic properties and low risk of host cell genome integration. 
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Significantly, production of research-grade rAAV has been optimized with a scalable format 

that achieves yields of purified rAAV of 1013 to 1015 DNase-resistant particles (DRP)/ml6-8.

2.2 rAAV vector development strategies

The ability of rAAV to deliver therapeutic genes for correction of rare disease phenotypes 

makes it an exciting vector for clinical use. Challenges for rAAV therapies are being 

addressed in current research, including: 1) evasion of immune detection (for both the vector 

capsid and transgene product), 2) manipulating rAAV tissue tropism, and 3) enhancing the 

transgenic expression cassettes. These research areas aim to overcome premature clearance/

immune response to treatment, restrictive targeting of rAAV to specific tissue types and/or to 

improve transduction of cells that are currently refractory, and to optimize therapeutic gene 

expression for increased efficacy at low vector doses in clinical applications.

2.3 Evasion of rAAV immune detection

Pre-existing as well as adaptive immunity against AAV is a significant challenge to current 

therapies and has been reviewed in detail 9-12. Briefly, development of AAV capsid specific 

memory B and T cells occurs in childhood in much of the population 13. Early response to 

AAV results in production of neutralizing antibodies (NAbs) and memory immune cells that 

can prevent later rAAV transduction and eliminate transduced cells, respectively. Clinical 

trials have offered many insights into the humoral responses to rAAV in addition to cell-

mediated clearance of transduced cells.

Understanding the NAb response to rAAV is especially important as therapeutic efficacy 

may depend on the treatment of rare diseases shortly after birth or in early childhood. There 

does appear to be an optimal treatment window during the first year following birth where 

maternal NAbs diminish prior to self-made NAbs increasing to a plateau in adolescence 3, 14. 

However, even with delivery of high concentrations of rAAV particles, clearance of virus by 

NAbs can greatly reduce therapeutic efficacy by preventing transduction and limiting long-

term gene expression 15. It should be noted that the prevalence of NAbs has not been 

examined for all AAV serotypes. One comprehensive study examined NAbs against some of 

the most common serotypes used for gene therapy, rAAV1, 2, 7, and 8, focusing on 

prevalence worldwide 4. The highest prevalence of NAbs was against AAV2, followed by 

AAV1, with lower NAb prevalence detected for AAV 7 and 8 4. Interestingly, another study 

with nonhuman primates (NHPs) suggests that even non-NAbs can result in premature 

clearance of AAV8 and that therapy is best in NHPs without pre-existing immunity 16—

unfortunately in humans, this is only 30% of the population.

As rAAV vectors encode no viral genes, the humoral and cell-mediated immune responses 

are directed against the vector capsid as well as expressed transgenes. Perhaps the most 

obvious solution would be co-therapy with immunosuppressive drugs, however this will not 

remove already circulating NAbs, may require extended application, and may not be 

applicable in rare disease patients with weakened immunity. Further, NAb depletion may 

result in the removal of antibodies that are cross-reactive for other pathogens, which also 

could be potentially harmful to immunosuppressed patients. Consequently, other methods of 

immune evasion are being researched.
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Different rAAV serotypes are being explored for gene therapy use, but capsid homology may 

limit this approach. Antibody cross reactivity was seen against rhesus monkey derived 

AAVrh10 compared to human serotypes AAV9 and 2 in mice 17. In another study, AAV2 

NAbs were cross-reactive for AAV 5 and 8, and limited the alternative serotype approach in 

pediatric patients with hemophilia 18. One group demonstrated the effectiveness of goat-

derived rAAV with 94% homology to human AAV5 that was able to evade NAbs, with 

epitope difference predicted at the capsid surface or spike-like protrusions 19.

Current research is developing additional NAb-resistant rAAVs mainly through capsid 

protein modification. Directed evolution using random mutagenesis generates capsid protein 

sequence libraries that require screening for NAb-resistance 20. More specific to the 

antigenic regions of the capsid proteins, site-directed mutagenesis is being explored to select 

for rAAV with reduced NAb binding 21-23. Further, the use of bioinformatics is allowing for 

generation of high-resolution maps of sequences required for structure versus NAb 

recognition sites that may lead to rational design of Nab resistant capsids 24. In addition to 

genetic modification, chemical immunoshielding of rAAV capsids with polyethylene glycol 

or immunoshielding with natural extracellular vesicles has been attempted, with the later 

showing 4000-fold increase in transduction efficiency 25-27. Even more, aptamer 

immunoshielding has shown promise for other viruses and may improve rAAV evasion of 

NAbs 28.

Following rAAV evasion of NAbs is a need to understand cell-mediated clearance of 

transduced cells. In fact, prior to early clinical trials, animal models failed to predict CD8+ 

T-cell as a limiting factor in rAAV therapy, possibly occurring because of pre-existing 

immunity to AAV 29. Proteasomal processing of vector capsids or expressed transgenes 

results in antigen presentation and recognition by cytotoxic T cells. As rAAV is non-

replicating, detection of capsid antigen in transduced cells should be limited following 

treatment. Surprisingly, depending on the vector or target tissue, capsid antigen was 

detectable weeks to years post treatment 29, 30. Here again, site-directed mutagenesis of the 

capsid has been attempted to evade the cell-mediated responses. Specific tyrosine residues 

were replaced to prevent ubiquitination, proteasomal degradation, and subsequent major 

histocompatibility complex (MHC) presentation 31. Regarding expressed transgenes, like the 

capsid, proteasomal degradation is followed by MHC presentation. However, many factors 

may influence the cell-mediated response. Of note from numerous clinical observations is 

prior exposure the therapeutic protein, the route of administration, the target tissue, and even 

the disease state of the organ, as reviewed previously 12. Important for clinical use, a direct 

correlation between dosage and cell-mediated immunity has been observed. Interestingly, 

the kinetics of T cell activation and clearance of transduced cells may be serotype 

dependent 29, 32.

Less explored is a role for cellular innate immunity and its effect on adaptive immunity 

against rAAV. The cytosolic sensor, toll-like receptor 9 (TLR9), identifies the rAAV genome 

and promotes type I interferon antiviral signaling and inflammation that may enhance the 

adaptive immune response against rAAV 33, 34. Additionally, as TLR9 detects CpG 

sequences, depletion of CpG ligands from the rAAV genome reduces adaptive immune 

responses and improves transduction 35. Deficiency in MyD88, an effector molecule of 
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TLR9, results in decreased NAb responses to rAAV 36. Though it is unclear if other cellular 

proteins promote immune responses like TLR9, promyelocytic leukemia protein (PML) or 

the DNA damage complex Mre11/Rad50/Nbs1 (MRN) were shown to inhibit rAAV second 

strand synthesis and/or inhibit gene expression independent of rAAV DNA synthesis through 

an unknown mechanism 37-39. These studies highlight the need for continued investigation 

of cellular host anti-viral responses and a link to humoral and cell-mediated immunity 

against rAAVs.

2.4 rAAV capsid modification for targeted tropism

Cell surface attachment of rAAV is serotype dependent and numerous cell surface receptors 

have been identified. In general, cell surface receptors like heparin sulfate proteoglycan 40, 

O- and N-linked sialic acids 41, 42, galactose 43, and ganglioside GM1 44 contribute to rAAV 

serotype tropism. Mutagenesis of rAAV capsids allows for attachment to other cell 

receptors, like chondroitin sulfate 45 and αvβ8 integrin 46, which may help with targeting 

refractory cells. Importantly, rAAV must be able to infect and transduce target cells where 

therapy is required. Depending on the rare disease, the therapeutic need could be localized 

or systemic. The ability to generate designer rAAVs that home to specific tissue types has 

been describe in numerous reviews about gene therapy of the central nervous system 

(CNS) 47-50, eye 51, 52, heart 53, 54, lungs 55, 56, ear 57, liver 58, bones and joints 59, 

muscle 60, 61, or adipose 62, 63 tissue. Many of the ongoing clinical trials of rAAV are 

exploring rare diseases that require tissue specific treatment (Table 1).

Direct targeting involves inserting small peptide or ligand sequences into the capsid 

sequence 45. This approach has improved targeting to tissues including muscle 24 or 

lungs 39, but is limited in that it may inhibit binding of the rAAV to natural cell surface 

receptors or generate new epitopes for immune response. Another approach involves using 

capsid sequences from different serotypes to generate mosaic or chimeric capsid protein 

libraries. These libraries can be used to produce rAAVs with tropism different from the 

parental vector and can be easily screened to determine tissue specificity and examine 

transduction efficiency 64, 65.

Indirect targeting has also being explored. Here, a mediator molecule interacts with the 

rAAV vector and a specific cell receptor. Examples include bispecific antibodies 66 or 

biotin 67, 68. Additionally, chemically directed tropism can be achieved using chemicals that 

block natural rAAV receptors or prevent virus capsid ubiquitination and are reviewed for 

rAAV2 69. These approaches allow for targeting without modification to the capsid, which 

may inhibit transduction efficiency.

2.5 Gene expression from rAAV vectors

While the previous two sections focus on steps that are critical for the refinement of future 

rAAV application, long-term gene expression is the most important aspect of gene therapy 

vector. The limited packaging size of rAAV vectors is a major limitation when considering 

gene length options and has been reviewed 70. Additionally, the rAAV ITR sequences (which 

have natural promoter activity or contain cellular transcription factor binding sites) can 

influence transduction efficacy and gene expression levels. Different methods are being 
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examined to improve rAAV packaging size as well as identify promoter and cellular 

transcription factor binding sequences within the rAAV genome.

Most therapies are based on single stranded rAAV genomes where a transgene cassette is 

placed between 2 ITR sequences, but other vectors exist. For instance, the self-

complementary AAV (scAAVs) genome was intentionally produced based on a replication 

intermediate that allows self-annealing of the ssDNA, thus producing a duplex molecule 

capable of transcription 71. When tested, scAAV mediates faster and more robust transgene 

expression. Unlike ssAAV, host mediated second-strand synthesis of the scAAV genome is 

not required for transgene production. However, due to the requirement for self-annealing of 

scAAV genomes, scAAV-based cassettes need to be less than half of the approximate 5kb 

capsid capacity restricting their use to the treatment of diseases requiring large DNA 

delivery 72. This method is useful for smaller transgenes and can be applied to rare diseases 

that require knockdown of mutant genes through shRNA, miRNA, or similar methods.

Expression of larger transgene cassettes is possible using several genetic strategies relying 

on host-mediated reconstruction of the larger, desired, cassette. Currently, rationally 

designed overlapping vectors and several types of concatemerization dependent vectors have 

been described which mediate large gene transduction. In addition, the attempted packaging 

of cassettes >5kb results in encapsidated rAAV genome fragments (termed fragment AAV or 

fAAV) that are reconstructed into the intended larger cassette. In the literature, the efficiency 

of these different approaches is inconsistent, although, it is generally agreed upon that 

transduction efficiency is substantially decreased when compared to intact ssAAV. No AAV 

large gene delivery strategies have been approved for clinical application. Importantly, as the 

efficiency of transgenic DNA reconstruction likely correlates to tissue type and cell cycle 

status, further investigation is needed to refine AAV large gene delivery. Furthermore, as 

host replication and DNA repair machinery may be affected in some rare diseases, particular 

large gene strategies may prove ineffective.

Focusing on current vectors, it is not surprising that transduction efficacy and gene 

expression can be influenced at the rAAV genome level. Numerous promoters of constitutive 

gene expression have been studied and compared for rAAV transgene expression: human β-

actin, human elongation factor-1α, a chicken β-actin variant, cytomegalovirus (CMV), 

simian virus 40, and herpes simplex virus thymidine kinase 19. While this approach is 

excellent for systemic delivery and expression, in rare disease that may require targeted 

expression, tissue specific promoters are being explored. In just one of many examples, the 

use of liver specific promoters can influence gene expression profiles 73. Here 

bioinformatics was utilized to identify cis-acting regulatory modules (CRMs) that enhance 

liver specific gene expression 10 to 100-fold74.

Interestingly the rAAV genome flanking ITR sequences have very low promoter activity 75. 

Even more, the ITRs contain sequences that may act as binding sites for host suppressor 

proteins. In one instance, a 20-nucleotide ITR sequence that contained homology to a NF-

kB-repressing factor binding site was substituted with a sequence for transcription factor 

binding and resulted in enhanced transduction 76. Future identification of other regulatory 
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sequences in the rAAV genome, ITR or otherwise, will allow for rational design of 

promoters or sequence modification for disease specific application.

3. Rare disease and current rAAV pre-clinical and clinical studies

Gene therapy has been explored for more than 40 years, but to date only one rAAV vector, 

Glybera, for treatment of the rare disease lipoprotein lipase deficiency (LPL), is approved 

for use in the European Union. Following a rocky start to clinical trials in 1999, gene 

therapy is finding its stride and currently rAAVs account for 5.6% of the approximate 2076 

gene therapy trials (http://www.abedia.com/wiley/vectors.php) 77. The list of rare diseases 

being studied in clinical trials with rAAV therapies in table 1 is promising, with several even 

in phase III trials. Additionally, rare diseases currently being addressed by other gene 

therapy vectors may be treatable with rAAV. Combined data from preclinical and clinical 

investigations are generating an abundance of information to guide researchers in choosing 

optimal vector-disease combinations. It is clear that the rAAV serotype as well as the dose 

and route of administration impact therapeutic outcomes. Current clinical trials (Table 1) 

inject rAAV via many routes: intravenous, intramuscular, intrapleural, into specific brain 

regions during surgery, subretinal, intranasally, intrahepatic, peripheral vein infusion, or 

convection-enhanced delivery (CED) to the putamen, intravitreal, or intracerebral. The 

vectors most often used are based on the most characterized serotype AAV2, but vectors 

designed from rAAV1, rAAV8, rAAV9, and rAAVrh.10 have also entered the clinic due to 

broader or enhanced transduction. Results of preclinical and clinical trials offer insights into 

safety, immune reactions, disease response to treatment, and length of therapeutic efficacy.

An abundance of reviews describe rAAV rare disease gene therapy, including psychiatric 

disorders, neurodevelopmental disorders, lysosomal storage diseases (LSDs), amyotrophic 

lateral sclerosis, glycogen storage diseases, inborn metabolism errors, Duchenne muscular 

dystrophy, and epilepsy to name a few of the most recent in the literature. Several major 

approaches for using rAAV-mediated gene therapy of rare diseases are being explored: 1) 

expression of wild type proteins to correct for mutant genes, 2) expression of smaller, 

functional variants of wild type proteins not amendable to the restrictions of rAAV 

packaging, or 3) gene silencing through expression of small RNAs. Due to the recent 

explosion of rAAV research and rare disease, this review groups the rare disease below and 

highlights important historic milestones as well as the most recent findings in pre-clinical 

research and clinical trials.

3.1 Retinal diseases

3.1.1 Choroideremia (CHM)—Mainly affecting males, X-linked CHM results in loss of 

photoreceptors, retinal pigment, and choroidal vessels and leads to blindness by middle age. 

Because rAAV8 can be used in a ten-fold lower dose than rAAV2 and transgene expression 

reaches maximal levels sooner 78, the authors explored rAAV8 encoding the Rab escort 

protein 1 (REP1), demonstrating safety and significant stalling of degeneration and long 

term rescue of retinal-cortical function in Chmnull/WT mice 79. Optimistic results with gain 

of visual acuity came from a phase I/II trial with rAAV2 encoding the REP1 protein for 
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treatment of choroidermia. Patients administered subretinal rAAV2 exhibited improved rod 

and cone function with a direct correlation of dosage to improved retinal sensitivity 80.

3.1.2 Leber congenital amaurosis (LCA)—This group of heritable retinal dystrophies 

is characterized by loss of visual function in childhood caused by mutations of more than 15 

known genes. Significantly, following reversal of blindness in animal models, clinical trial 

results have demonstrated long-term safety and markedly increased visual sensitivity in 

multiple patients with LCA2, caused by retinal pigment epithelium-specific-65-kDa 

(RPE65) deficiency 81. Of the current ongoing rare disease clinical trials, Rep65 rAAVs 

make up the largest cohort, with 10 studies in phase I, II, or III. Additionally, in preclinical 

studies of LCA12, administration of scAAV8 Y733F capsid mutant expressing retinal 

degeneration protein 3 (RD3) from a photoreceptor-specific promoter results in 

photoreceptor cell survival. Rd3 expression from the scAAV8 vector is seen 1 week 

following treatment in mice, compared to 4 to 6 weeks for previously studied rAAV5 82, 83.

3.1.3 Retinitis pigmentosa (RP)—RP is a general term for a group of inherited diseases 

that exist as autosomal-recessive, autosomal-dominant, or X-linked diseases, with multiple 

causative genes. In a rare autosomal-recessive form of RP, mutation of the human receptor 

tyrosine kinase MER (MERTK) gene causes a loss of photoreceptors. Subretinal injection of 

AAV2-CMV-Merkt into Royal College of Surgeons (RCS) rats resulted in a 2.5-fold higher 

number of functional photoreceptors compared to controls up to 9 weeks post treatment 84. 

Similar results were seen in treatment of an autosomal dominant RP where disease arises 

from mutation to the rhodopsin (RHO) gene. RHO augmentation using rAAV2/5 in Rho−/− 

mice preserves the survival of rod cells 85. Addressing a dominant RP cone-rod dystrophy 

caused by mutated guanylate cyclase-activating protein 1 (GCAP1), scAAV2/8 encoding 

allele specific shRNA against GCAP1 was injected subretinally in mouse models. 

Expression of the shRNA was strong1 week post injection and gene silencing lasted 1 year 

with treatment enhancing photoreceptor survival and delaying onset of degeneration 86. 

Lastly, a common X-linked form of RP (XLRP) is caused by mutation to the RP GTPase 

regulator (RPGR) gene. No treatment is available to date, but in two canine models 

rAAV2/5-mediated expression of RPGR in rods and cones rescues photoreceptor blindness 

and prevents disease onset at an early age 87.

3.1.4 Age related macular degeneration (AMD)—Unlike the retinal diseases above, 

there is no causative mutation known for AMD. However, rAAV therapy may still prove 

effective. Here, localized inflammation induced by interleukin (IL)-17 may be retinotoxic 88. 

Use of rAAV2 encoding the soluble IL-17 receptor prevented retinopathy in mice and fewer 

lesions and reduced photoreceptor atrophy were observed 88. One phase I clinical study is 

ongoing and is based on rAAV2 expressing a chimeric soluble Fms-Related Tyrosine Kinase 

1 (Flt1) receptor that suppresses the proangiogenic vascular endothelial growth factor 

(VEGF). Preclinical data with intravitreal injection of the same vector in mice, rats, and 

monkeys demonstrated inhibition of pathological neovascularization as well as tolerated 

therapy and long-term gene expression 89.
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3.2 Nervous system related diseases

3.2.1 Spinal muscular atrophy (SMA)—At least four different mutated genes are 

known to cause neuron degeneration, progressive paralysis, and childhood death in SMA. 

When expressed at low levels, the survival of motor neuron 1 (SMN1) protein is a causative 

agent and has been studied in rAAV therapies. Delivery of scAAV9 encoding SMN1 to mice 

and NHPs results in widespread transgene expression in spinal cord motor neurons and 

complete rescue of SMA phenotype in mice. Even more, the study noted that a ten-fold 

lower dose was required for the same expression profile in NHPs when delivered to cerebral 

spinal fluid compared to intravenous injection 90. It has also been noted that phosphatase and 

tensin homolog (PTEN) protein depletion leads to increased neuron survival in SMA. 

Treatment of mice with rAAV6 encoding shRNA against PTEN or scAAV9 encoding 

siPTEN resulted in a 3-fold increase in lifespan, suggesting that continued investigation may 

be beneficial 91. One phase I trial using scAAV9 encoding an enhanced CMV-chicken beta 

actin hybrid promoter and SMN has not reported any results.

3.2.2 Aromatic L-amino acid decarboxylase (AADC) deficiency—Mutation to the 

AADC gene impairs biosynthesis of neurotransmitters like serotonin or dopamine that are 

required for signaling between cells of the central nervous system. In neonatal mice, 

following intracerebroventricular injection of rAAV9 encoding human ADDC, dopamine 

and serotonin levels rose from 25% and 15% to 100% and 40%, respectively, with improved 

growth rate and survival as well as partially corrected behavioral abnormalities 92. Currently 

one clinical trial is exploring the use of rAAV2 encoding AADC for AADC therapy.

3.2.3 Alternatively, a 2010 phase I clinical trial used rAAV2 encoding AADC for 
treatment of Parkinson's disease and patients have demonstrated improved 
motor performance 93—Parkinson's can be caused by multiple gene mutations, but 

progressive loss of AADC occurs in most cases. Another phase I trial with the rAAV2-

hAADC-2 vector is ongoing. Additionally, two clinical trials in phase I and I/II are using 

rAAV2 to express neurotropic growth factors, glial cell derived neurotrophic factor (GDNF) 

and neurturin (NRTN), respectively, in an effort to support dopamine producing cells. 

Further as oral therapies L-DOPA may show some benefits, long-term treatment has 

unwanted side effects. Recently, it was demonstrated that rAAV5 encoding the tyrosine 

hydroxylase (TH) or GTP cyclohydrolase 1 (GCH1), enzymes that overcome a rate-limiting 

step in dopamine production, can be used to produce dopamine in Sprague-Dawley rats 94. 

Significantly, the group demonstrated that a destabilized dihydrofolate reductase (DD) 

domain on the N terminus of GCH1 could be used to control expression in a patient specific 

manner. In this method, addition of activating ligand trimethoprim (TMP), that crosses the 

blood-brain barrier, prevents GCH1 expression and, in a dose dependent manner, inhibits 

dopamine production in rAAV-transduced cells 94.

3.2.4 Fragile X syndrome (FXS)—Mutation to the FMR1 gene encoding the fragile X 

mental retardation protein (FMRP) results in delayed neurodevelopment and a range of 

intellectual disability. In the first proof of principle study of rAAV and FXS, 

intracerebroventricular injection with rAAV9 encoding a major isoform of FMRP improved 
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neonatal mouse behavior. Physiologically, FMRP expression reached approximately 50% of 

wild type levels at 56 days post injection 95.

3.2.5 Friedreich's ataxia (FRDA)—A mitochondrial disease, FDRA is characterized by 

neurodegeneration as well as diabetes and hypertrophic cardiomyopathy, with the later being 

the primary cause of mortality. FRDA is cause by reduced levels of frataxin (FXN), a protein 

required for synthesis of iron-sulfur clusters. Intravenous application of AAVrh10, a rhesus 

monkey derived vector, encoding FXN demonstrates high levels of FXN expression in 

cardiac tissue and prevents onset of cardiac disease in mice 96. Significantly, when the vector 

was used after the onset of heart failure, cardiomyopathy was completely reversed within a 

few days.

3.2.6 Familial amyloidotic polyneuropathy (FAP)—Mutation of the transthyretin 

(TTR) gene causes extracellular deposition of amyloid fibrils in the peripheral nervous 

system and currently, the only treatment is liver transplantation. Treatment of TTR V30M 

mice with scAAV8 encoding the TTR T119M variant with trans-suppressor activity leads to 

less destabilized monomers of TTR, more functional TTR tetrameric protein, and reduced 

non-fibrillar aggregates 97.

3.2.7 Huntington disease (HD)—The autodsomal dominant HD is caused by expansion 

of the CAG repeat in exon 1 of the huntingtin (HTT) gene and results in neuron 

degeneration as a result of increased polyglutamine residues in the Htt protein. The disease 

is fatal and presents at 35 years or older, with patients living approximately 15 years 

following diagnosis. Intracranial injection of mice with rAAV2/1 encoding miRNA against 

the Htt transcript results in more than 80% transduction of striatum cells with significant 

improvements in behavior and reduction of striatal Htt aggregates 98.

3.3 Lysosomal storage diseases

3.3.1 Metachromatic leukodystrophy (MLD)—Accumulation of fats in cells of the 

nervous system occurs as a result of mutation to the arylsulfatase A or B (ARSA/B) or 

prosaposin (PSAP) genes. Jugular injection of rAAV9 encoding ARSA and GFP into 

newborn MLD mice resulted in significant inhibition of accumulation of sulfatide fat in the 

brain and spinal cord. Importantly, mice had improved balancing abilities, where affected 

individuals lose motor skills and become unresponsive over time 99. Also encoding ARSA, 

AAVrh.10cuARSA is in a phase I/II clinical trial for MLD. Results in MLD mice 

demonstrated that within 2 months following intrastriatal injection correction of brain 

sulfatide storage. Interestingly, axonal transport as well as transduction in neurons and 

oligodendrocytes was improved compared to rAAV5 encoding ARSA that was shown to 

alleviate most long-term disease manifestations in mice 100.

3.3.2 Mucopolysaccharidosis type I (MPS I)—Deficiency in the lysosomal enzyme α-

liduronidase (IDUA) causes glycosaminoglycans accumulation in tissues and results in 

neurological disease as well as ocular, skeletal, and cardiac diseases. A MPS I feline model 

treated with cephalic vein injection of rAAV8 encoding feline IDUA caused enzyme activity 

at approximately 30% to an excess of normal levels, with the affect lasting for 6 months 101. 
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In a mouse model of MPS VI, retro-orbital injection of rAAV2/8 encoding thyroxine binding 

globulin (TBG) fused to the human ARSB gene, as in MLD above, results in improved 

motor performance 102. This study compared AAV to conventional enzyme replacement 

therapy (ERT) and noted similar outcomes and reduced animal stress with rAAV gene 

therapy.

3.3.3 Pompe disease—Also called Glycogen storage disease type 2, Pompe disease is an 

LSD characterized by a lack of α-1,4 glucosidase (GAA) and an inability to break down 

glycogen. Cardiopulmonary failure leads to death in infancy and ERT therapy with GAA has 

shown improved survival. Cotherapy of rAAV9 or rAAV8 encoding GAA and non-depleting 

CD4 antibodies suppress anti-GAA responses and results in significant reduction of 

glycogen accumulation 103. In a phase I/II trial for chronic respiratory failure, treatment with 

rAAV1 encoding α-glucosidase (GAA) results in a 425% increase in periods of unassisted 

breathing, with no detectable T-cell mediated immune response to the vector 104.

3.4 Muscle related diseases

3.4.1 Limb-girdle muscular dystrophy (LGMD)—Affecting males and females 

equally, LGMD results from different recessive, as well as dominant, inheritance patterns. 

To address the dominant mutation of myotilin (MYOT) in LGMD type 1A, rAAV6 encoding 

micro RNAs targeting MYOT was administered in the lower limbs of mice. Increased 

muscle strength and significant functional correction was seen up to 9 months after 

treatment 105. In a phase I trial of LGMD type 2D, rAAV1 encoding the alpha-sarcoglycan 

(αSG) gene with a muscle specific promoter was injected into patient's extensor digitorum 

brevis (EDB) muscle 106. Persistent αSG expression was seen for at least 6 months in two 

out of three patients. Currently an ongoing phase I/II trial is using a scAAVrh74 vector 

encoding the same promoter-transgene combination for treatment of LGMD type 2C and 

results have been reported.

3.4.2 Limb-girdle myasthenia (LGM)—A familial disease, mutation to the downstream 

of kinase 7 (DOK7) gene results in formation of smaller than normal neuromuscular 

junctions (NMJs). Intravenous administration of rAAV encoding human DOK7 fused to 

green fluorescent protein (GFP) in Dok-7 transgenic mice caused larger NMJs and longer 

lifespan 107.

3.4.3 Duchenne muscular dystrophy (DMD)—Mutation to the dystrophin (DMD) 

gene causes progressive muscle wasting and death and mainly affects males. A golden 

retriever model of DMD was treated with rAAV8 encoding U7 small nuclear (sn) RNA that 

promotes exon skipping to restore a functional in-frame DMD transcript. Treatment was 

tolerated, with approximately 80% of myofibers expressing truncated, yet functional, 

dystrophin at the highest dose 108. A phase I trial with rAAV2.5 (a chimeric AAV2 capsid 

with 5 mutations from AAV1) injected into the patient's bicep demonstrated no immune 

response to the vector as well as a safe and tolerated therapy 109. For Becker muscular 
dystrophy (BMD), a variant of DMD, the same absence of a T-cell mediated immune 

response to rAAV1 was observed in a phase I/II trial. Significantly, rAAV1 encoding an 
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alternatively spliced follistatin demonstrated improvement in 4 out of 6 BMD patients in a 

six-minute walk test 110.

3.5 Others rare diseases

3.5.1 Smith-Lemli-Opitz syndrome—Mutation to the 7-dehydrocholesterol reductase 

(DHCR7) gene greatly reduces cellular production of cholesterol and causes systemic issues 

including learning disabilities, malformed organs, weakened muscles, and many physical 

abnormalities. Use of rAAV2 or rAAV8 encoding DHCR7 results in disease improvement in 

mice, with greater efficacy in the rAAV28 treated animals. Significantly, greater therapeutic 

outcomes were seen in newborn mice versus juvenile animals 111, highlighting again that 

timing may be crucial for treatment of rare diseases that present in childhood.

3.5.2 Lipoprotein lipase deficiency (LPLD)—Following the European Medicines 

Agency approval of Glybera (rAAV1 encoding human lipoprotein lipase (LPL) for LPLD 

treatment in 2012, the use of AAV for gene therapy moved into reality. In a recent phase II 

study of LPLD it was found that treatment with rAAV1 encoding a gain of function LPL 

variant (S447X) did not elicit immune responses following intramuscular administration. 

The therapy did not impact safety and found that preexisting antibodies did not effect 

transgene expression up to 52 weeks after treatment 112.

3.5.3 α-1 antitrypsin (AAT)—Results from a phase II trial (NCT0105433) for AAT 

disease show transgene expression for more than 1 year without immunosuppression 113. In 

this trial, following rAAV1 encoding the α-1 antitrypsin gene (SERPINA1, AAT) treatment, 

it was found that intramuscular delivery induces regulatory T-cells that attenuate cell-

mediated clearance of transduced cells and allows for ongoing transgene expression. 

Interestingly, immunomodulation may affect initial transduction levels, but may not 

significantly impact transgene expression afterward 113. Ongoing phase I and II clinical 

trials are using rAAV1 encoding AAT with a CB promoter (a cytomegalovirus immediate 

early enhancer/chicken β-actin promoter with a hybrid chicken β-actin/rabbit β-globin 

intron), while a phase I trial is using rAAV2 with the same construct. The phase II study 

reported that all subjects developed anti-AAV antibodies and no subjects developed 

antibodies against AAT 114. The authors noted that serum levels of AAT > 20 ug/ml were 

achieved, but that further development will be needed to achieve the required therapeutic 

levels 114.

3.5.4 Hemophilia B—Impressively, in a phase 1 trial, it was found that intravenous 

treatment with scAAV8 encoding a codon optimized coagulation factor IX (FIX, F9) with a 

liver-specific promoter resulted in patient FIX expression for more than 3 years with more 

than 90% reduction in bleeding episodes 115. Additionally, a long term follow up study is 

ongoing and will examine patients treated with intrahepatic injection of rAAV2 encoding 

FIX with an AAT liver-specific promoter in a phase I trial between 2001 and 2004 29. The 

study is to be completed in 2019. Importantly, previous trials demonstrated a vector dose-

dependent inflammation and loss of transduced hepatocytes by cell-mediated immunity. A 

phase I/II using rAAV8 encoding FIX aims to overcome the dose-dependent inflammation 

seen in other trials, where rAAV8 at lower doses allows for FIX expression sooner and 
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stronger than other serotypes 116. Also promising is preclinical data showing that the use of 

the scAAV8 encoding FIXR338L, a gain-of-function FIX variant, produced a greater than 6-

fold FIX activity compared to wild type FIX without generation of anti-FIX antibodies or 

CD8+ T cell infiltrates in the liver 117. These data demonstrate a safety and efficacy and 

support an ongoing scAAV8.FIXR338L phase I/II clinical trial.

3.5.5 Phenylketonuria (PKU)—An autosomal recessive inheritable phenylalanine 

hydroxylase (PAH) deficiency results in toxic levels of phenylalanine (Phe) in the blood that 

leads to severe brain damage. Current treatments include diet modification and sapropterin 

dihydrochloride that helps break down phenylalanine. Significantly, intraperitoneal injection 

of scAAV8 encoding murine PAH into a PKU mouse model caused reduction in blood Phe 

to near normal levels. Importantly, this complete phenotypic correction was seen in mice of 

both genders and lasted more than one year 118.

3.5.6 Glycogen storage disease type Iα (GSDIα)—Buildup of glycogen in the cells 

of the body impairs function of many tissue types including: liver, kidneys, and small 

intestines and results in severe hypoglycemia. A naturally occurring canine model of GSDIα 
was treated with rAAV2/8 and rAAV2/1. Results demonstrated a transient effect with 

rAAV2/8, with the dogs showing improvement two weeks post treatment, but no longer able 

to maintain glucose homeostasis two months post treatment. Using the same animal, portal 

vein injection of rAAV2/1 resulted in maintained glucose homeostasis two months post 

treatment, lasting up to 23 months. Measurement of lactate levels indicated that a complete 

phenotype reversal was not achieved, but that a significant improvement encouraged 

continued investigation for future treatments 119.

3.5.7 Very long-chain acyl-coA dehydrogenase (VLCAD)—Lethargy, muscle 

weakness, and hypoglycemia result from an autosomal recessive inheritance of VLCAD that 

prevents fat to energy conversion, specifically mitochondrial fatty acid oxidation. VLCAD-

deficient mice were treated via tail vein injection with rAAV9 encoding VLCAD. A 

significant drop in long-chain fatty acyl accumulation was observed from 2 weeks to 20 

weeks post injection. Correction was not achieved in liver tissue, but cardiac tissue showed 

significant reduction in long-chain metabolites. Following a fasting cold challenge, treated 

mice maintained body temperature and euglycemia compared to controls that became 

lethargic and hypoglycemic and had to be euthanized 120.

4. EXPERT OPINION

Gene therapy using AAV for treatment of rare disease is rapidly emerging as a major 

therapeutic option. Advances in vector generation and purification allows for scalable, 

economic production of clinical quality vectors. Additionally, identification of limiting 

factors like neutralizing antibodies, vector genome length, and transgene expression are 

being overcome with multiple solutions. One of the biggest limitations to the study of rAAV 

gene therapies for rare disease is rooted in a lack of animal models. Pre-clinical testing with 

in vitro models is commonplace, but translation to animals has not kept up with the rate of 

disease identification. Beyond the traditional Cre/LoxP method to generate disease models 

in animals, the recent creation of CRISPR-Cas9 mice is a novel method for targeted genome 
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editing 121. Coupled with next-generation sequencing to identify disease specific genes and 

the scientific community is empowered with a system to facilitate generation of rare disease 

models. With promising clinical data suggesting that FDA approval of rAAVs is imminent, 

the issue of tumorigenicity must be addressed. While numerous trials have demonstrated 

safety, future research must focus on methods of understanding and preventing nonspecific 

rAAV genome integration, as the tumorigenicity of the vector in a clinical setting is still not 

completely understood. However, the recent demonstration that rAAV-mediated 

promoterless gene targeting without nucleases generates site specific integration in the 

albumin locus may allow for safe integration in future therapies 122. Additionally, further 

research into cellular host responses and rAAV transduction levels may allow for improved 

therapies. For example, the recently described cyclic GMP-AMP synthase (cGAS) molecule 

also detects DNA in the cytoplasm and has not been explored in regard to rAAV detection 

and influence on gene therapy. Additionally, RNA polymerase III (Pol III) is known to link 

cytosolic DNA detection via DNA-dependent activator of interferon regulatory factor (DAI) 

to the RNA detection retinoic acid-inducible gene 1 (RIG-I) pathway and promote induction 

of type interferon antiviral responses. Inhibition of Pol III has not been explored in a rAAV 

therapeutic context. It is unclear if other host cell proteins might also be targeted to improve 

rAAV gene therapy.

The continued research of rAAV for rare disease gene therapy will no doubt bring improved 

quality of life to the millions of affected individuals if vectors are approved for use. 

However, in some cases where less than 2,000 persons are affected, it may be difficult to 

find human patients for clinical trials. Additionally, as with any new therapeutic, it is unclear 

what long term transgene expression may do to an individual, though some trials have seen 

expression for more than 6 years with no adverse outcomes. Without a doubt, AAV 

treatment of rare disease is no longer in its infancy and will soon be a useful tool to improve 

the lives of countless individuals in the future.
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highlights

• Overview of adeno-associated virus (AAV) biology

• Strategies to generate recombinant AAV vectors to evade immune 

clearance, improve tissue tropism, and enhance transgene expression

• Historical and current pre-clinical and clinical challenges for AAV-

mediated gene therapy

• Ongoing clinical trials with AAV for treatment of rare diseases

• Highlighted pre-clinical and clinical results from AAV studies of 

retinal, nervous system, lysosomal storage, muscle, and other rare 

diseases

This box summarizes key points contained in the article
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