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Abstract

Introduction—Recent success in gene therapy of certain monogenic diseases in the clinic has 

infused enthusiasm into the continued development of recombinant adeno-associated viral (AAV) 

vectors as next-generation biologics. However, progress in clinical trials has also highlighted the 

challenges posed by the host humoral immune response to AAV vectors. Specifically, while pre-

existing neutralizing antibodies (NAbs) limit the cohort of eligible patients, NAb generation 

following treatment prevents vector re-dosing.

Areas covered—In this review, we discuss a spectrum of complementary strategies that can 

help circumvent the host humoral immune response to AAV.

Expert opinion—Specifically, we present a dual perspective, that is, vector versus host, and 

highlight the clinical attributes, potential caveats and limitations as well as complementarity 

associated with the various approaches.
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1. Introduction

Adeno-associated viruses (AAVs) are non-enveloped, single-stranded, DNA viruses with a 

4.7 kb genome encapsulated in a 25 nm icosahedral capsid. The capsid is composed of 60 
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copies of viral proteins 1, 2 and 3 (ratio of 1:1:10). Wild-type AAV (wtAAV) was first 

discovered as a contaminant in adenoviral preparations, but was later ascribed to a unique 

genus of Dependoparvovirus, belonging to the Par-voviridae family [1–3]. wtAAVs are 

unable to undergo a productive viral life cycle without a helper virus. As such, the wtAAV 

genome is normally dormant, integrated at a site-specific locus in human chromosome 19, 

AAVS1 site [1,4,5]. In the presence of helper viruses, such as adenovirus or herpes simplex 

virus; or genotoxic agents, such as UV irradiation; wtAAV genomes can reactivate and 

initiate a lytic life cycle and spread throughout the host [6–8]. The non-pathogenic nature 

and the ability to package different transgenes make AAV an ideal candidate for gene 

therapy [9]. Briefly, transgenes flanked by inverted terminal repeats are packaged efficiently 

inside the capsid, when Ad helper genes, AAV replication (rep) and structural (cap) proteins 

are provided in trans [7]. The resulting recombinant AAV vectors are excellent reagents for 

delivering transgenes that mediate sustained long-term gene expression in episomal form 

within the nucleus [10,11].

To date, hundreds of different natural AAV subtypes have been isolated from humans and 

animals, from non-human primates to avian species [12,13]. Despite their similarity at the 

genetic level, several AAV isolates have demonstrated unique tropisms in vitro and in vivo. 

As a result, multiple strains ranging from AAV serotypes 1 through 9 and Rh.10 are under 

active development as gene therapy vectors for different clinical indications [14]. In 2012, 

after several decades of research and development, the first AAV-based therapeutic, 

alipogene tiparvovec (Glybera), produced by UniQure was recommended for approval by 

European Medicines Agency. This treatment involves delivery of the lipoprotein lipase 

(LPL) transgene using AAV1 vectors to cure a rare genetic disorder resulting from LPL 

deficiency and characterized by severe hypertriglyceridemia in patients. Several other AAV-

based gene therapy treatments for diseases such as a1-anti-trypsin deficiency, Leber’s 

congenital amaurosis, hemophilia B, Parkinson’s disease, spinal muscular atrophy, muscular 

dystrophy, lysosomal storage disorders, Pompe disease and congenital heart failure are in 

clinical trials and expected to be marketed as drugs in the future [15].

Despite these early successes and promising future, AAV-based gene therapies face several 

challenges that remain to be effectively addressed. One such extrinsic factor that limits the 

clinical impact of AAV-based gene therapy is the prevalence of pre-existing neutralizing 

antibodies (NAbs) to AAVs in the human population due to natural infection or cross-

reactivity of NAbs between different AAV subtypes [16,17]. NAbs bind to antigens with 

high affinity, thereby blocking interactions required for normal function. In the case of viral 

infection, NAbs play a pivotal role in controlling or stopping initial virus infection at various 

step of the virus life cycle (pre- and post-entry). NAbs also opsonize viral particles and 

facilitate their uptake by phagocytic cells, thereby mediating their rapid clearance from the 

circulation. Multiple preclinical studies and clinical trials have shown conclusively that pre-

existing NAbs adversely affect the gene transfer efficiency of recombinant AAV vectors. 

Serum NAb titers as low as 1:5 are sufficient to abolish transduction in the liver of mice and 

non-human primates [18–20]. Furthermore, serological studies reveal a high prevalence of 

NAbs in the human population worldwide with about 67% of people having antibodies 

against AAV1, 72% against AAV2 and about 40% against AAV5 – 9 [15]. As a result, 
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patients are now pre-screened for pre-existing NAbs against AAV before enrollment into 

clinical trials. Contingent on the AAV subtype to be used in the clinical trial, such screens 

can prevent as much as 50% of patients from being eligible [21–23]. The epidemiology of 

NAbs to different AAV subtypes in different patient cohorts has been reviewed in detail 

elsewhere [16].

Another significant and related challenge is the potential need for AAV vector re-

administration in some indications. This situation might be particularly relevant in case of: i) 

patients receiving low-dose vector treatment in a Phase I trial; ii) in case of children/

neonatal patients who will experience growth and proliferation of tissues and iii) patients 

with degenerative disorders (e.g., muscular dystrophy). The latter two situations are likely to 

result in dilution or loss of vector genomes accompanied by a decrease in transgene 

expression to subtherapeutic levels. Taken together, NAbs clearly present a significant 

barrier to the broad application of AAV-based gene therapies. In the current review, we 

discuss the advantages and disadvantages of different strategies being developed to evade 

the pre-existing humoral immune response to AAV vectors as well as allow vector re-dosing 

in gene therapy clinical trials (Table 1).

2. The vector perspective

2.1 Route of administration

The route of AAV administration can influence the impact of NAbs on transduction 

efficiency [24,25]. Intravenous (i.v.) injection of recombinant AAV exposes the vector to 

significantly more NAbs than local administration with a target organ/tissue. For instance, 

NAbs have been shown to exert minimal effects on transduction efficiency of 

intramuscularly administered AAV vectors in early clinical trials for α1-anti-trypsin 

deficiency and hemophilia B [26–28]. In one study, contact of vector and NAbs is 

minimized by saline flushing of the liver followed by direct injection in portal vein. Such a 

strategy allows efficient human Factor IX (FIX) transduction by AAV8 in the liver of 

macaque when NAb titer is up to 1/28 [24]. Other routes of administration are currently 

being evaluated for delivery of AAV vectors into different tissues by bypassing the 

circulating system, such as intrathecal delivery to target the CNS [29–31]. At least one study 

has shown that cerebrospinal fluid (CSF) may carry less NAbs, when compared with serum 

and intra-CSF administration of rAAV9 in dogs is not completely affected by pre-existing-

NAbs [32]. In clinical trials of Leber’s congenital amaurosis, AAV-mediated delivery of the 

RPE65 gene by subretinal injection and successful correction of vision with no adverse 

effect after 5 years has been reported [33–36].

Although promising, it should first be noted that these approaches do not provide 

alternatives for gene therapy modalities requiring gene expression in systemic organs such 

as the liver or heart. Second, such alternative routes of administration can elicit more robust 

immune responses targeting the transgenes. For instance, intramuscular inoculation of 

AAV2/hFIX elicits a strong T-cell-dependent antibody response against the FIX transgene 

product in contrast to hepatic portal vein administration [37–39]. Furthermore, intramuscular 

injection of AAV1 delivering LPL induces both CD4+ and CD8+ immune reaction to AAV 

capsid in 50% of tested subjects of human clinical trial [40]. In addition, such a scenario 

Tse et al. Page 3

Expert Opin Biol Ther. Author manuscript; available in PMC 2015 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



poses additional challenges and complications in case vector re-administration becomes 

essential in certain clinical indications as outlined earlier. Certain recent studies have 

demonstrated the presence of circulating NAbs as a potential barrier to effective 

transduction in primate models regardless of the route of administration, either cisterna 

magna infusion or i.v. injection [41–43].

2.2 Discovery of new AAV isolates

The past decade has witnessed the discovery of over 100 AAV variants isolated from 

different mammalian and non-mammalian species [14]. Of these, only about 10% of the 

total numbers of AAV strains have been evaluated in preclinical and clinical gene therapy 

efforts. One potential approach to reach the full potential of AAV-based gene therapies is to 

carry out a comprehensive evaluation of the epidemiology of NAbs against different natural 

isolates. Early studies indicate that only 2% of the human population carry NAbs against 

certain rhesus isolates, AAVrh32.33 [16]. However, the latter strain is also highly 

immunogenic, which could restrict applications in the gene therapy context [44]. It should 

also be noted that human IgG prevalence as high as 49% accompanied by a lower NAb 

seroprevalence of 21% has been reported against certain promising rhesus isolates such as 

AAVrh.10 [45]. Moreover, cross-reactivity between different AAV isolates regardless of the 

species of origin, for example, AAV2/AAV9 versus AAVrh.10, has been reported [45]. 

Nevertheless, it is conceivable that antigenically distinct strains that will expand the patient 

cohort in clinical trials exist within the pool of previously discovered natural isolates or 

new(er) AAV that continue to be discovered in different animal species.

While a comprehensive evaluation of the epidemiology of NAbs against all known natural 

AAV isolates might be challenging, recent advances suggest that in silico approaches might 

be promising. The latter strategies hinge on phylogenetic analysis of AAV genome 

sequences and structural approaches to define antigenic diversity. For instance, due to the 

likely history of AAV infection during the course of human evolution, potential 

reconstruction of functional AAV genomes from ancestral strains has recently been 

proposed [46]. Another approach is to utilize structural modeling tools to select antigenically 

distinct AAV strains for further epidemiological analysis [47–49]. Thus, the discovery and 

continued evaluation of novel AAV vectors derived from natural isolates that can evade pre-

existing NAbs in the human population is likely to remain a promising strategy for 

expanding patient enrollment in clinical trials.

2.3 Engineering new AAV variants

A goal-oriented approach towards tackling the hurdles posed by anti-AAV NAbs is to 

engineer synthetic AAV strains by modifying antigenic epitopes on the AAV capsid [15,49]. 

Regions of the AAV capsid important for antibody binding have been identified by multiple 

approaches, including peptide scanning or insertion, in silico modeling and structural 

analysis. Peptide scanning involves the use of ELISA to identify linear epitopes (short 

peptides) that binds to NAbs [50] while peptide insertion identifies conformation epitopes 

by disrupting the NAb epitopes with short amino acid insertions [51]. In silico docking of 

murine-IgG2a to AAV2, and further confirmation through systematic mutagenesis and 
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disruption of NAb binding, lead to the identification of residues that are accessible to 

antibodies [48].

Structural analysis has also been used to map out regions of the capsid that are important for 

NAb binding. In particular, cyro-electron microscopy of AAV capsids bound by monoclonal 

antibodies has revealed several shared epitopes present in multiple AAV subtypes [47]. 

These shared regions are present within the threefold protrusion and the two/fivefold wall on 

AAV1, 5 and 6 [47,52,53]. As structures of different AAV–NAb complexes continue to be 

solved, our knowledge of immuno-dominant as well as cross-reactive antigenic footprints on 

the AAV capsid continues to evolve. Using this information, specific regions of the capsid 

can then be mutated using different protein engineering approaches to potentially create 

NAb evading AAV variants. In addition to these rational approaches, combinatorial 

strategies that hinge on applying evolutionary pressure using human sera to evolve NAb 

escape mutants from diverse AAV capsid libraries have been proposed [54,55]. These 

approaches have also been reviewed in detail elsewhere [47,56,57].

While capsid engineering shows promise towards developing next-generation AAV vectors 

that can escape pre-existing NAbs, several important caveats associated with this approach 

should be noted. First, it is possible that certain antigenic/immunodominant epitopes on the 

AAV capsid overlap with domains essential for AAV-receptor interactions, cellular uptake, 

uncoating or other viral trafficking events. This aspect can make engineering/evolving NAb 

evading AAV mutants particularly challenging. Second, as with natural isolates, it is likely 

that engineered AAV capsids might still be recognized by cross-reactive NAbs in some 

patient sera. Third, the current path guiding AAV vectors to the clinic is expensive and 

lengthy, often requiring toxicity and biodistribution studies in different preclinical models. 

The latter aspect is particularly relevant when substitution of one AAV strain for a less 

immunogenic strain is being considered and could require additional toxicity/biodistribution 

bridging studies from a regulatory perspective.

2.4 Chemical approaches

PEG has been used extensively to increase the half-life and reduce the immunogenicity of 

drugs in pharmacology [58]. Chemical modification of AAV can successfully mask AAV 

from NAbs [59,60]. Unlike drugs, considerable attention must be paid to linkage chemistry 

and stoichiometry of PEG onto AAV to maximize protection while minimizing the adverse 

effects on transduction efficiency. For instance, linking PEG on AAV using tresyl chloride 

reactive group provides more effective protection from NAbs than linking chemistry using 

succinimidyl succinate chemistry and cyanuric chloride [61]. Moreover, when the ratio of 

lysine:PEG is too high (1:1000) during conjugation, PEG is believed to sterically hinder 

AAV receptor engagement and reduce AAV transduction efficiency [59]. Other kinds of 

polymers such as polysaccharides and poly-N-(2-hydroxypropyl) methacrylamide have also 

been conjugated onto adenovirus vectors to shield from NAbs [62,63].

As an alternative, instead of directly grafting polymer onto the capsid, strategies have also 

developed to encapsulate viral vectors inside a polymer gel that degrades progressively [60]. 

This method increases the half-life of viral vectors in circulation without hindering receptor 

engagement on target cells. For example, 60% of adenoviruses are still infectious in the 
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present of NAb when encapsulated inside poly-lactic glycolic acid [64]. Another polymer, 

alginate has also been shown to protect intranasally and intraperitoneally delivered 

adenoviruses from NAbs in mice [65]. Another approach for evading NAbs is to encapsulate 

AAV vectors in extracellular vesicles. The latter approach enabled the generation of AAV 

vector formulations that were over 100-fold more resistant to NAbs without adversely 

affecting transduction efficiency [66].

Although pilot studies indicate that chemical modification or encapsulation of AAV vectors 

is feasible, several major challenges remain. First, although established in the context of 

other therapeutic proteins, scale up of polymer – capsid conjugation chemistry could require 

additional quality control measures with regard to viral infectivity. Second, variability in 

polymer type/length and chemistries as well as capsid protein chemistry might prevent 

development of standardized procedures for multiple AAV formulations. Third, the presence 

of anti-PEG antibodies in some patients might pose additional concerns and challenges in 

the development of PEG-based conjugates [67]. Fourth, encapsulation of AAV vectors in 

polymer or lipid formulations eliminates the advantages afforded by different capsids and 

their respective tissue tropisms. Additional/alternative surface modifications of the 

formulation might be essential to compensate for this potential drawback.

2.5 Capsid decoys

Another promising approach to evade NAbs is to develop decoys that competitively inhibit 

capsid neutralization. For instance, co-administration of receptor binding/cell entry-deficient 

and ‘empty’ AAV2 capsids as decoys along with the therapeutic vector has recently been 

demonstrated [68]. In this scenario, increasing amounts of empty virions that competitively 

blocked circulating NAbs resulted in a dose-dependent restoration of transgene expression in 

non-human primates. Although amenable to scale up, the latter approach poses some 

concerns. First, empty virions in AAV vector formulations have been shown to reduce 

transduction efficiency, increase antigenic burden and exacerbate vector-related 

immunotoxicity presumably indicated by increase in serum levels of liver transaminases 

[69]. In this regard, an earlier study has shown that both empty virions and full AAV capsids 

are capable of flagging hepatocytes for cytotoxic T-lymphocyte (CTL)-mediated 

destruction, thereby underscoring the importance of reducing antigenic burden by removing 

empty virions from the formulation [70]. Third, it is unclear whether truly empty AAV 

virions can be generated due to their inherent ability to package non-viral genomic 

fragments [71–73]. Nevertheless, these studies serve as a model for developing strategies 

that focus on blocking or removing NAbs as an orthogonal approach towards expanding the 

patient cohort eligible for gene therapy clinical trials.

3. The host perspective

3.1 Plasmapheresis

In addition to modifying vectors to evade NAbs, attempts have been made to limit the 

immune response within the host. One such example is plasmapheresis, a clinical procedure 

involving removal of patient blood, treatment for NAb removal and infusion back into the 

patient. Briefly, this procedure involves separation of blood into plasma and blood cells, 
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followed by the removal of a majority of antibodies from the plasma by centrifugation or 

filtration. The antibody-depleted plasma then returns back to the patient’s body, 

supplemented with albumin and saline to compensate for the loss of protein [74]. This 

method has been validated for treatment of patients with acute buildup of pathologic 

antibodies in autoimmune diseases such as Guillain-Barré syndrome and lupus [75,76]. 

Although the transient nature of plasmapheresis hinders its use in treating autoimmune 

diseases, this limitation does not preclude use in conjunction with gene therapies. This 

approach is feasible, since a short window of low NAb concentration is sufficient for vector 

administration and transduction. In a non-human primate model, after six plasma volumes of 

plasmapheresis over a 2-day period, sero-positive animals had similar transduction 

efficiencies as sero-negative animals. In contrast, non-pheresed sero-positive animals 

showed fourfold reduction of transgene expression [77]. However, removal of IgG from 

circulation by plasmapheresis suffers from ‘rebound’, a phenomenon where IgG level 

returns to or above the original level in a short period of time after treatment. A clinical 

study found multiple sessions of plasmapheresis required to reduce NAbs to a threshold 

level for gene therapy due to this ‘rebound’ phenomenon of IgG [78]. Nonetheless, 

plasmapheresis provides an effective method for enhancing the effectiveness of gene therapy 

vectors.

As with all other medical procedures, there are potential risks and complications that can 

occur with plasmapheresis. First, the effectiveness of plasmapheresis is inversely related to 

the initial amount of NAbs present within a patient [78]. Thus, it is conceivable that multiple 

rounds of plasmapheresis in patients will be required to reduce NAb levels for effective gene 

therapy. Second, complications arising from bacterial infections of the i.v. catheter due to 

prolonged insertion are possible. Third, it is difficult to implement plasmapheresis on a 

global scale, especially in developing countries, where resources to perform the procedure 

on a regular basis might be limited. Last but not least, after plasmapheresis, patients are 

transiently immunocompromised and susceptible to secondary infection(s) due to the loss of 

circulating antibodies.

3.2 Targeting B-cell activation and apoptosis

Understanding and manipulating the mechanisms underlying NAb generation by activated B 

cells might provide insights into how to evade the humoral immune response. B-cell 

activation is a complex process that takes place within the germinal center and requires 

multiple steps and signals [79]. The first signal required for B-cell activation is binding of an 

antigen. Although both soluble and membrane-bound (complexed with MHC class II 

molecule) antigens are able to bind to the transmembrane immunoglobulin or the B-cell 

receptor (BCR), AAV-mediated B-cell activation is primarily triggered by membrane-bound 

AAV fragments displayed by antigen-presenting cells [80]. Binding of antigen to the BCR 

initiates downstream signal transduction [81]. After initial engagement of antigen by the 

BCR, aggregation of BCRs recruit intracellular signaling molecules that allow formation of 

a BCR microcluster [82,83]. When enough microclusters condense, contraction of the B-cell 

surface allows endocytosis of the antigen via cytoskeleton rearrangement. The antigen is 

then digested and complexed with MHC II on the B-cell surface for presentation to CD4 

helper T cells. Subsequent steps in B-cell activation trigger proliferation and migration to 
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the germinal center resulting in isotype switching and somatic hypermutation. The majority 

of the activated B cells proliferate into effector plasma cells and secrete large amount of 

NAbs, while a small portion will become long-lived, memory B cells and for response to 

future infections. In the sections below, we discuss certain pharmacological interventions 

that interfere with the NAb production process and can potentially be adapted to tailor gene 

therapy modalities. It should be noted that a subset of these approaches might be more suited 

for addressing challenges associated with AAV vector re-administration rather than evade 

pre-existing humoral immunity. The topic has also been reviewed in detail by Basner-

Tschakarjan et al. [84].

Disruption of any step prior to B-cell activation could lead to a collapse of the humoral 

immune response, which in turn would be beneficial for AAV vector re-administration. For 

instance, bortezomib is a US FDA-approved protease inhibitor that targets plasma B cells 

and is used for treating multiple myeloma. Administration of bortezomib after vector 

injection has been shown to decrease NAb titer by 8 – 10 folds in naive mice, when 

compared with mock treatment [85]. This decrease in NAb titer is likely caused by 

inhibiting antigen processing by the proteasome, which potentially reduces subsequent 

presentation on B cells and contributes to increased transduction efficiency [86–88]. 

However, this decrease in NAb titer does not reach sufficiently low levels to support vector 

re-administration.

Another way to inhibit humoral immune response is to reduce the number of activated B 

cells. By inducing B-cell apoptosis immediately prior to gene therapy, the amount of 

circulating NAbs can be reduced, potentially allowing for vector re-administration. B-cell 

apoptosis is a naturally occurring process for both immature (bone marrow) and mature B 

cells (secondary lymphoid organ) that target self-antigens [89]. Transient 

immunosuppression by targeting B cells is a way to reduce the number of NAbs in 

circulation. For instance, the anti-CD20 antibody, rituximab is used extensively in 

rheumatoid arthritis (RA) patient to reduce patient CD20+B-cell populations (pre-B cell and 

mature B cell) that play a central role in RA pathogenesis [90]. Rituximab can induce 

CD20+ B-cell apoptosis directly or through indirect mechanisms. These indirect methods 

involve either antibody-dependent recruitment of natural killer cells and macrophages that 

kill the antibody-bound B cells or complement-dependent B-cell lysis through C1q binding 

and activation of the complement cascade [91]. Rituximab has been shown to effectively 

reduce circulating antibodies in the blood, including AAV NAbs, for at least 24 weeks after 

two i.v. infusions of rituximab treatments in small portion of patients [92]. A primate study 

showed rituximab treatment in combination with cyclosporine A (CsA), a calcineurin 

inhibitor which blocks T- and B-cell activation can reduce NAbs against both AAV vector 

and FIX (transgene), which enables long-term transgene expression and vector re-

administration [93]. However, immunosuppression is likely to be much less efficient in pre-

immunized animals carrying high levels of circulating NAbs.

In a clinical case study of AAV-mediated gene therapy, administration of rituximab has 

been shown to transiently reduce the number of antibody producing B cells [94]. In this 

study, rituximab was used in conjunction with long-term daily administration of sirolimus 

(rapamycin), which binds to mTOR, a protein kinase important for T- and B-cell activation 
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[95]. The study involved a 40-month treatment of rituximab- and sirolimus-depleted B cells 

in a 45-month patient with Pompe disease and successfully mitigated an immune response to 

the AAV capsid [94]. Although a promising approach, it should be noted that triggering B-

cell apoptosis has certain potential disadvantages in the context of clinical gene therapy 

applications. For instance, after rituximab treatment, an average of 6 – 12 months can be 

needed for B cells to be replenished to normal levels [96]. As a result, patients are 

immunocompromised for an extended period of time and can be vulnerable to opportunistic 

pathogens. For instance, such a scenario has been reported in case of two rituximab-treated 

patients who developed progressive multifocal leukoencephalopathy after activation of 

normally dormant human polyomavirus John Cunningham virus [97]. Another possible 

caveat is that rituximab only reduces levels of CD20+ B cells where plasma effectors B cells 

are not affected [98]. Therefore, rituximab treatment might require plasmapheresis in 

conjunction to subsequently reduce the amount of NAbs in circulation. Ongoing preclinical 

studies in non-human primates are likely to further guide the application of such 

immunodepletion strategies for AAV-mediated gene therapy. Further, it should be noted that 

such strategies are potentially more relevant for clinical trials that require vector re-

administration and might not specifically address the issue of pre-existing circulating NAbs.

Induction of B-cell tolerance can also potentially be applied to prevent a humoral response 

towards AAV capsids and allow vector re-administration. One such example is antigen-

specific immunotherapy, which is used to treat allergy and, to a lesser extent, autoimmune 

disease [99]. Such approaches can decrease B-cell activation indirectly by inducing 

regulatory T cells (Treg) for a specific antigen [100,101]. Another approach to induce 

immune-tolerance is to directly target B-cell activation. This approach can hinge on 

targeting CD22 or sialic acid binding Ig-like lectin, which are inhibitory co-receptors for B-

cell activation [102]. Under normal circumstances, CD22 is excluded from the BCR 

microcluster. However, forcing CD22 to stay inside BCR microcluster by crosslinking it 

with antigen inhibits B-cell activation [103]. In such a scenario, inhibition of B-cell 

activation has been achieved by immunizing mice using beads crosslinked with both an 

antigen of interest and a CD22 ligand, resulting in immune tolerance to the crosslinked 

antigen [104]. In another example, immunization of mice with nanoparticles conjugated to 

human FVIII and CD22 ligand has been demonstrated to induce tolerance to FVIII and 

suppression of anti-FVIII antibody production [105]. Whether these approaches can be 

extended to the gene therapy clinic and enable vector re-administration remains to be seen.

3.3 Targeting T-cell activation

Another approach is to target T cells, which can indirectly affect the humoral immune 

response to the AAV vector. As a key player in B-cell activation, CD4 helper T cells are the 

primary target for immunosuppression. Depletion of CD4+ T cells through the use of anti-

CD4 antibodies can abolish NAbs production against AAV capsids [106]. Alternatively, 

non-depleting CD4 antibodies can be useful towards targeting CD4+ T cells and facilitate 

survival of Tregs to induce antigen-specific immune tolerance [107]. A recent study showed 

non-depleting CD4 mAbs can prevent antibody formation against AAV capsids and the 

transgene product up to 6 weeks after i.v. administration in mice [108]. A more specific 

strategy to enrich Tregs population is the use of tregitopes, an Fc fragment of IgG which 
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specifically activates natural Tregs [109]. A study showed that co-incubation of tregitopes 

and AAV epitopes can modulate the CTL response against AAV capsids and induce Treg 

expansion [110]. Further, blockage of T-cell-dependent B-cell activation signals, such as 

CD40-CD40L or CD28-CD80/86 interactions using antibodies or fusion proteins has been 

shown to induce immuno-logical hyporesponsiveness against AAV vectors delivered to the 

mouse lung and consequently allow re-administration [111]. Another T-cell 

immunosuppressive drug, CsA, has been utilized to decrease AAV-vector-mediated humoral 

responses. When co-administered with AAV8 vectors, CsA and non-depleting anti-CD4 

antibodies can prevent induction of the primary humoral immune response and decrease 

NAb production by 20-fold [112]. Several challenges are associated with T-cell depletion in 

the context of gene therapy clinical trials. First, the usefulness of prolonged antibody-

mediated depletion of CD4+ T cells as with B cells in the clinic can be limited, as patients 

will be immunocompromised for an extended period of time. Second, although capable of 

decreasing NAb production, it is unclear whether such strategies can indeed reduce pre-

existing anti-AAV NAbs to levels that would help expand the clinical cohort of eligible 

patients.

4. Expert opinion

Recombinant AAV vectors delivering therapeutic transgenes are poised to expand the 

spectrum of biologics/drugs available for treating monogenic diseases in the clinic. As 

clinical trials continue to advance the field, two key challenges i) preexisting humoral 

immunity to the AAV capsid and ii) the potential need for vector re-administration have 

been identified. A spectrum of approaches both from the vector development perspective as 

well as modulating the host immune profiles are currently being evaluated/developed 

towards tackling the aforementioned challenges. For instance, the route of vector 

administration is a simple parameter that can influence the impact of NAbs on AAV 

transduction. Thus, it is likely that AAV-mediated gene transfer to immune-privileged sites 

such as the eye and CNS will continue to progress rapidly in the clinic. Exploitation of 

immune-privileged sites for AAV-mediated expression of secreted transgene products in this 

regard might be feasible. However, systemic, multi-organ diseases will require additional 

solutions. For instance, development of next-generation AAV capsids that can evade NAbs 

might help expand the eligible patient cohort. These approaches can involve isolation of new 

strains or reengineering existing AAV strains by rational or combinatorial engineering. 

While several vector candidates have been evaluated successfully in a preclinical setting, the 

NAb profile for new strains in the human population is still largely unknown. Further, it is 

noteworthy to mention that evaluation of such vectors in later stage trials is likely to require 

bridging studies that address toxicity/biodistribution profiles. As an alternative strategy, 

chemically modified AAV with PEG and other polymers using established methods might 

enable efficient NAb evasion. However, challenges pertaining to formulation, heterogeneity 

and quality control of chemically modified AAV vectors manufactured on a clinical scale 

would need to be addressed. A more recent approach focused on employing capsid decoys to 

‘sponge’ NAbs presents an interesting paradigm. However, antigenic overload of AAV 

capsids is a significant concern that requires to be carefully addressed.
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At the other end of the spectrum, clinical interventions such as plasmapheresis and 

pharmacological modulation of the immune system offer promising, alternative solutions to 

address pre-existing immunity and/or vector re-administration. Plasmapheresis has proven 

useful in autoimmune disease to remove pathogenic antibodies from patients and might be 

beneficial in cases of low NAb titer. Pharmacological modulation of the host immune 

response might prevent generation of NAbs and hence enable vector re-administration. 

Although clinical caveats are well documented, strategies to deplete both B and T cells can 

prove effective. In addition to the aforementioned aspects, efforts to dissect the host immune 

response to AAV and assess the NAb profile face significant challenges. Specifically, 

variability in the host immune response and NAb profile against AAV between different 

preclinical animal models as well as the distinct transduction profiles displayed by AAV 

strains on different cell/tissue types pose significant hurdles to assay development. Efforts to 

standardize NAb assays and comprehensive assessment of preclinical as well as clinical data 

are likely to address the latter issues. With regard to circumventing the humoral immune 

response, each approach described above offers certain advantages and faces distinct 

drawbacks or additional challenges. However, it is important to realize that they clearly 

complement each other and have the potential to expand the patient population that can 

benefit from next-generation gene therapy products.
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Highlights

• The host immune response to adeno-associated viral (AAV) vectors poses a 

significant clinical challenge.

• Pre-existing neutralizing antibodies (NAbs) preclude vector administration and 

generation of NAbs following AAV vector administration precludes vector re-

dosing.

• Strategies to circumvent the humoral immunity to AAV can be classified from 

the perspective of the vector development or modulation of host immune 

response.

• Vector development approaches include routes of administration, isolation of 

novel strains, reengineering existing capsid templates, chemical modifications of 

AAV capsids and the use of decoys to evade pre-existing NAbs.

• Plasmapheresis and pharmacological modulation of B and T cells can assist with 

removal of pre-existing NAbs and mitigate generation of NAbs following vector 

administration, respectively.

• Strategies from the vector and the host perspective are complementary and 

likely to help address challenges pertaining to both pre-existing NAbs as well as 

vector re-dosing, if employed together.
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Table 1

Comparison of different strategies to circumvent humoral immunity to AAV vectors.

Strategy Advantages and clinical attributes Potential clinical caveats

Vector perspective

Alternative route
of vector
administration

Allows immediate translation; can address the issue of
pre-existing Nabs

Only certain peripheral administration routes are
viable; focused on immune-privileged organs; not
suitable for systemic administration

Discovery of new
AAV natural
isolates

Feasible through next-generation sequencing technologies;
can address pre-existing NAbs

Can be labor intensive and time consuming; change
in clinical vector candidate/re-dosing will require
toxicity/biodistribution data for every new isolate
discovered

AAV capsid
engineering

Goal-oriented; can address both pre-existing NAbs Can be labor intensive and time consuming;
potential changes in tissue/host tropism and
transduction efficiency should be taken into account;
change in clinical vector candidate/re-dosing will
require toxicity/biodistribution data for every new
engineered variant

Chemically
modified AAV

Viable formulation approach; previously established for
several approved biologics; can potentially address both
pre-existing NAbs and vector re-dosing issues

Quality control, potential variability in scale up
conditions for different AAV strains; potential effects
on tropism and transduction efficiency; pre-existing
NAbs against polymers such as PEG

AAV capsid
decoys

Easy scale up; broadly applicable to multiple AAV strains;
can address both potentially pre-existing NAbs and vector
re-dosing issues

Empty AAV shells tend to package host DNA
fragments; potential antigenic overload in humans
leading to immunotoxicity; potential effects on
transduction efficiency

Host perspective

Plasmapheresis Established clinical procedure; can potentially address both
pre-existing NAbs and vector re-dosing issues

Transient immunosuppression; prolonged clinical
procedure that requires multiple rounds of
treatment; efficacy dependent on Nab levels in
different patients

Targeting B-cell
activation and
apoptosis

Adjuvant therapy type approach with the US FDA-
approved drugs; can potentially address vector re-dosing
issues

Immunosuppression; might not effectively reduce
pre-existing NAbs; does not reduce plasma effectors
or memory B cells

Targeting T-cell
activation

Adjuvant therapy type approach with FDA-approved drugs;
can potentially address vector re-dosing issues

Indirectly affects humoral response;
immunosuppression; might not effectively reduce
pre-existing NAbs

Inducing tolerance
to capsid antigen

Selective for each capsid; can potentially address vector re-
dosing issues

Requires additional clinical intervention and pre-
clinical validation; does not reduce pre-existing NAbs

AAV: Adeno-associated viral; NAbs: Neutralizing antibodies.
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