
Myosin-X and Disease

David S. Courson1,2 and Richard E. Cheney1,2

1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel 
Hill, NC 27599

2Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel 
Hill, NC 27599

Abstract

Myosin-X (Myo10) is a motor protein well known for its role in filopodia formation. New 

research implicates Myo10 in a number of disease states including cancer metastasis and pathogen 

infection. This review focuses on these developments with emphasis on the emerging roles of 

Myo10 in formation of cancer cell protrusions and metastasis. A number of aggressive cancers 

show high levels of Myo10 expression and knockdown of Myo10 has been shown to dramatically 

limit cancer cell motility in 2D and 3D systems. Myo10 knockdown also limits spread of 

intracellular pathogens marburgvirus and Shigella flexneri. Consideration is given to how these 

properties might arise and potential paths of future research.
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Introduction

Myosin-X (Myo10) is an unconventional myosin that is expressed widely in vertebrate 

tissues and is especially prominent in developing brain, endothelia, and many epithelia (1). 

Myo10 is best known for its ability to localize to the tips of filopodia (2), finger-like cellular 

protrusions containing a core of bundled actin filaments (3,4). Myo10 has crucial functions 

in the formation of filopodia, with Myo10 overexpression inducing hundreds of filopodia 

per cell and knockdown decreasing endogenous filopodia (5–7). Importantly, new work 

indicates that Myo10 has central roles in cancer invasion and metastasis. The purpose of this 

review is to summarize the key features of Myo10’s structure and function, and to review 

recent research on the roles of Myo10 in cancer. We will also briefly highlight developing 

work implicating Myo10 in infectious diseases. Since Myo10’s structure has been reviewed 

recently (8), it will only be summarized here.
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Myo10 Structure

Members of the myosin superfamily are typically composed of 1) a head domain capable of 

binding actin, hydrolyzing ATP, and generating force, 2) a neck consisting of one or more 

IQ motifs, each of which binds to a calmodulin or calmodulin-like light chain, and 3) a tail 

that endows class specific properties such as dimerization or cargo binding. Myo10 is a 

member of the MyTH4-FERM family of myosins, an evolutionarily ancient family with key 

functions in membrane-cytoskeleton interactions (8,9). The ~240 kDa Myo10 heavy chain 

consists of three regions: a myosin motor domain, a neck consisting of three IQ motifs, and 

a ~140 kDa tail. The initial ~110 amino acids of the tail consist of an α-helical region, the 

first part of which forms a single α-helix (SAH) (10). The second part of the α-helical 

region includes a region that can form a coiled coil and allows the Myo10 heavy chain to 

dimerize (11). Following the α-helical region are three PEST motifs. PEST motifs are 

enriched in the amino acids P, E, S, and T and are implicated in cleavage by the Ca++ 

dependent protease calpain (1). A unique feature of the Myo10 tail is its three pleckstrin 

homology (PH) domains, one of which binds to the key signaling lipid, phosphatidylinositol 

(3,4,5)-trisphosphate (PIP3) (12–15). The MyTH4-FERM supramodule contains a MyTH4 

(myosin tail homology 4 domain) and a FERM (band 4.1, ezrin, radixin, moesin) domain. 

The MyTH4 domain binds to microtubules (16,17), so Myo10 is unusual among actin-based 

motor proteins in that its tail can provide a direct link to microtubules. Consistent with this 

role as a linker between actin filaments and microtubules, Myo10 is required for proper 

orientation of meiotic and mitotic spindles (16,18,19). The Myo10 FERM domain binds to 

the netrin receptor Deleted in Colorectal Cancer (DCC) (17,20,21) and to β-integrins (22). 

Binding to β-integrins is hypothesized to allow Myo10 to link the internal actin cytoskeleton 

with the extracellular matrix. Although this review will focus on full-length Myo10, a 

“headless” form that lacks most of the motor domain is also expressed. This “headless 

Myo10” is expressed in stem cells and developing brain, where it may act in part as a natural 

dominant negative (23).

Myo10 Form and Function

Myo10 is a motor whose structure, regulation, and function are all under active 

investigation. The initial sequence analysis of Myo10 identified a putative coiled-coil 

region, so the heavy chains were predicted to dimerize due to formation of a parallel coiled 

coil. Indeed, all other myosins known to form coiled coil dimers do so as parallel dimers. In 

the case of Myo10 this model has been called into question by Mingjie Zhang and 

colleagues, who demonstrated that the isolated α-helical region dimerizes with a Kd of ~0.6 

μM to form an anti-parallel coiled coil (11).

Myo10 is a low abundance protein, which has made tissue purification very difficult. 

Purification of full-length Myo10 via other approaches, such as baculovirus expression, has 

also proved difficult due to Myo10’s size and instability. The initial research to characterize 

the biophysical properties of Myo10 thus used baculovirus constructs consisting of the head, 

neck, and α-helical region, which were thought to resemble the parallel dimer formed by the 

heavy meromyosin (HMM) fragment of myosin II. At the sub-micromolar concentrations 

used in these studies, however, the “HMM-like” Myo10 constructs did not dimerize. To 
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overcome this problem, dimerization was forced by inserting a sequence that forms a 

parallel coiled coil after the putative coiled-coil region. These studies found that there was a 

strong selective bias for Myo10 to walk processively on bundled actin filaments as opposed 

to single filaments (24,25). These constructs showed a relatively short step size of ~18 nm in 

forward displacement, but did so while walking on two filaments that were space roughly 10 

nm apart (25). This was the first report of a dimeric myosin consistently straddling two 

different filaments as it walked along a bundle. However, different forced dimer constructs 

and approaches yielded motors that were not selective and walked with a step size similar to 

the actin helical repeat (36 nm) (26,27). This stepping pattern closely mimicked that of 

myosin-V, whose neck of 6 IQ motifs creates a lever arm long enough to generate 36 nm 

steps. Since the Myo10 neck only has 3 IQ motifs, the SAH domain after the IQ domains is 

thought to extend the lever arm, allowing for a step size of ~36 nm (28). If Myo10 forms 

anti-parallel dimers in its native state, forced parallel dimers may hold little direct relevance 

to Myo10’s in vivo behavior. It is fascinating, however, that in the case of the bundle-

selective constructs, a forced dimer is able to actively direct the motor towards bundled 

actin, the primary localization site of Myo10 in cells. Research around the native state and 

function of this motor continues in earnest.

Importantly, Myo10 can exist as a monomer where the tail folds back onto the head and 

neck to form a compact and auto-inhibited “off” state (15). Binding to PIP3 at the membrane 

(13–15) is thought to open up the monomer and release its auto-inhibition so that it can 

dimerize and form an active motor. Once activated by this regulated dimerization, Myo10 

can undertake its biological roles including transporting cargo and forming filopodia 

(2,5,29).

Myo10 and Cancer

There is growing evidence that cytoskeletal proteins and actin-based protrusions have 

central roles in cancer biology, particularly in metastasis. This section will discuss how 

Myo10 and three classes of actin-based protrusions: filopodia, invadopodia, and filopodium-

like protrusions, function in cancer metastasis.

One of the first observations implicating filopodia in cancer biology was the discovery that 

high levels of the canonical filopodial crosslinking protein fascin provide a marker for 

aggressive metastatic disease and poor patient prognosis (30–32). Invasive cancer cells have 

also been reported to be highly filopodial and upregulation of fascin has been shown to 

increase in the number of filopodia (33), implicating filopodia as machinery of interest in 

aggressive metastatic disease. To escape the primary tumor, cancer cells also build 

structures called invadopodia, which are actin-rich protrusions with proteolytic activity (34) 

capable of digesting surrounding extracellular matrix. The Vignjevic lab has shown that both 

fascin and Myo10 are key components of invadopodia, with Myo10 localizing to the tips of 

invadopodia (34). Myo10 knockdown provided one of the strongest blocks of invadopodia 

function observed, with Myo10 knockdown inhibiting matrix digestion by 70%, versus 45% 

for fascin (34). Myo10 silencing also decreases expression of genes related to invadopodia 

formation and matrix metalloproteinase production (35), suggesting that Myo10 may have a 

role in metastasis that reaches beyond simple mechanics. The authors of that study 
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hypothesize that since Myo10 itself does not appear to be a transcription factor, blocking 

invadopodia formation and morphology by Myo10 silencing may also block positive 

feedback from invadopodia that normally increases expression of invadopodium-related 

genes.

Once cancer cells have escaped from the primary tumor site they must interact with the 

extracellular matrix in order to survive and spread. Work from the Weinberg group has 

shown that a potential third type of protrusion from cancer cells, termed filopodium-like 

protrusions (FLPs), are required for these cells to spread and colonize (36) placing added 

importance on the role of actin-based protrusions in all phases of metastasis. Whether and 

how FLPs differ from canonical filopodia is not clear. Perhaps the most provocative result 

from this study was that when Myo10 is knocked down the metastatic potential of the cells 

is dramatically reduced in three ways: 1) the number of FLPs is reduced, 2) proliferation of 

the cells in tumor-like microenvironments (covered with matrigel) is decreased, and 3) the 

overall invasiveness of the cells is decreased (36). These data are further reinforced by 

recent in vitro experiments demonstrating that suppression of Myo10 almost completely 

blocked cancer cell outgrowth in both 2D and 3D systems (37).

Given that actin-based protrusions are important for metastatic cancer progression, it is 

exciting that recent studies report that Myo10 is upregulated in several aggressive metastatic 

cancers, including melanomas and basal-like breast carcinoma (38), and that high levels of 

Myo10 expression are associated with aggressiveness and metastasis in patients with breast 

cancer (35). These studies also reported that Myo10 is required for cancer cell invasion and 

dissemination using both cancer cell lines and mouse models (35,38). Other reports of high 

levels of Myo10 expression in cancers have been sprinkled through the literature for some 

time, including in acute lymphoblastic leukemia (39), and primary glioblastoma (40,41), 

further reinforcing the importance of Myo10 in cancer biology and expanding the apparent 

range of cancers that might be susceptible to Myo10 targeted therapeutics.

The loss of metastatic character caused by Myo10 silencing and subsequent disruption of 

filopodia, FLPs, and invadopodia may be related to the ability of these protrusions to form 

integrin-based adhesions. Filopodial adhesion is thought to act via β1-integrin-mediated 

linkage of the extracellular matrix to the internal actin cytoskeleton. Based on its domain 

composition, Myo10 is an excellent candidate for facilitating this interaction. Furthermore, 

Myo10 is implicated in transport of integrins within filopodia (22,38) and integrin signaling 

in FLPs is linked to cancer cell outgrowth and survival of micrometastases (36,42). 

Expression of a Myo10 mutant that is deficient in binding integrins is sufficient to 

recapitulate the arrest of cancer cell invasion seen during silencing of full-length Myo10 

(38), directly showing that the integrin-Myo10 interaction is a key player in invasion.

Myo10’s importance in cancer cell biology is not limited to protrusion and migration. A 

hallmark of many cancers is the formation of excess centrosomes, a condition that in normal 

cells would be expected to result in multipolar spindles, aneuploidy, and cell death. Cancer 

cells must therefore cluster their excess centrosomes to allow proper spindle formation and 

proliferation. Myo10 has been implicated in actin-dependent centrosome clustering, and loss 

Courson and Cheney Page 4

Exp Cell Res. Author manuscript; available in PMC 2016 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of Myo10 leads to an increase in cancer cells with multipolar spindles (43). These data 

demonstrate yet another way that loss or inactivation of Myo10 might limit cancer spread.

The importance of Myo10 in cancer progression is becoming clearer but the signaling in 

cancer cells that leads to its upregulation is still murky. Cancer transformation is aided by 

activating mutations in PI3 Kinase and/or inactivating mutations in PTEN (44). Myo10 

binds and is activated by PIP3 (13,15,45), thus Myo10 functions as an effector of PI3 kinase. 

It is believed that upregulation of Myo10 in some aggressive carcinomas occurs via an early 

growth response-1 (EGR1)-dependent signaling pathway. The Myo10 gene has been 

reported to be a target of EGR1 regulation (46). EGR1 expression can be upregulated in 

mutant-EGFR (47) and mutant-p53 cancers (38). Myo10 appears to be required for p53-

driven cancer cell invasion, and mutant p53 leads to upregulation of Myo10 and more 

aggressive cancer (48). Taken together these data show that the level of Myo10 expression 

affects cancer aggressiveness and that Myo10’s regulation in cancer is complex and likely 

differs depending on specific disease type.

Myo10 and Infectious Disease

The motor protein Myo10 and actin-based cellular protrusions known as filopodia are 

located at a convergence point of adhesion, motility, and signaling, and are important topics 

for cancer research. They are also increasingly of interest for their roles in some forms of 

infectious disease. For example, filoviruses, filamentous viruses with single-stranded 

negative-sense RNA genomes whose family members include Ebola and Marburg, may rely 

on Myo10 during their infection cycle. Filovirus replication takes place in the host cell 

cytoplasm before the viral nucleocapsids can bud out of the host cell. Myo10 and viral 

nucleocapsids in Marburg infected cells have been reported to co-localize during actin-

dependent transport (49) and viral budding takes place through the filopodia or filopodium-

like structures of infected cells (50). Further, expression of a dominant-negative Myo10 

construct caused a significant reduction in virus-like particle production (50).

Similar stories are developing around the role of Myo10 and filopodia in bacterial infection 

as well. Shigella flexneri is an intracellular pathogen that primarily infects mammalian 

epithelial cells. In order to enter eukaryotic cells, Shigella can be captured by filopodia, 

which then retract bringing the bacteria to the cell body (51). Once inside a host epithelial 

cell, Shigella can spread laterally from cell to cell via membranous protrusions, avoiding 

further exposure to the host immune system. Myo10 directly associates with Shigella as it 

forms these protrusions and spreads into neighboring cells (52). This Myo10 association is 

critical for the bacterial infection to spread, as siRNA silencing of Myo10 reduces Shigella 

plague formation (52), a measure of bacterial spread in cell culture systems, by over 80%. 

The importance of Myo10 in these viral and bacterial infection examples demonstrate its 

relevance to infectious disease, and as this field expands Myo10 will likely be shown to be 

important in infections from many other organisms and viruses.

Perspectives and the Path Forward

Loss of function of MyTH4-FERM myosins has already been linked to human disease. 

Mutations in myosin-VIIa cause Usher Syndrome Ib, a disease that leads to deafness and 
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blindness early in life (53). Mutations in myosin-XV lead to unusually short stereocilia 

(actin-based protrusions required for hearing) and cause hereditary deafness (54,55). Based 

on morpholino experiments in Xenopus, it is likely that complete loss of Myo10 is 

embryonically lethal (56). This suggests that Myo10 is essential for survival and is 

consistent with its critical roles in motility, adhesion, spindle orientation (19), cell-cell 

junction formation (57), and endothelial cells (58). Analysis of Myo10 loss of function in 

specific tissues, through a conditional knockout animal model, would add greatly to our 

understanding of the varied and important roles of this motor. CRISPR technologies could 

also be useful for production of cell lines that are true Myo10 knockouts or cell lines that 

replace wild-type Myo10 with mutant or deletion Myo10 constructs under endogenous 

promoters, allowing for mechanistic analysis of Myo10 function in its critical processes. 

Elucidating the cellular and tissue level roles of Myo10 is an area where more work is 

needed. Understanding the functions of this low abundance protein and how it can play roles 

in such a diverse set of processes will be interesting and illuminating.

The story of Myo10 in disease is the story of cellular protrusions and how cells interact with 

their environment. The rapidly growing body of evidence linking Myo10 to cancer 

metastasis is exciting and points to Myo10 as a potential target for anti-metastatic 

therapeutics. Current cancer therapeutics target signaling components in cells, but the 

physical machinery of cellular migration has been largely ignored. Myo10 and filopodia thus 

provide promising targets for the development of drugs to block invasion and for the 

investigation of fundamental cell biology underlying both health and disease.
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Figure 1. 
(A) Bar diagram of Myo10. The bar diagram highlights the domains of the Myo10 heavy 

chain. It has a head domain containing the motor, a neck domain containing three IQ motifs, 

and a tail domain containing numerous binding domains. The region containing 3 PH 

domains binds PIP3. The MyTH4-FERM domain is response for binding to microtubules 

and integrins. (B) Hypothetical models of Myo10 structure based on structure of individual 

domains. Myo10 monomers can form a folded “off” state where the tail domain folds over 

onto the head domain. Binding to PIP3 allows the folded monomers to form active dimers. 

Dimeric myosins were previously thought to form parallel heavy chain dimers, but recent 

data indicates that Myo10 can form anti-parallel dimers.
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Figure 2. 
Myo10 is hypothesized to be the molecular link between the actin cytoskeleton and integrin-

based adhesions to the extra-cellular matrix in cellular protrusions like filopodia and cancer 

cell filopodium-like protrusions. Integrin patches have been observed in cellular protrusions. 

Myo10 is shown linking filopodial actin to integrin patches that engage with the 

extracellular matrix. Filopodial adhesion can form and release rapidly, so the relative 

simplicity of this model is appealing. Studies of cells expressing Myo10 mutants that lack 

integrin binding have shown decreased filopodial adhesion and migration, further 

corroborating this model.
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