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Abstract

The neoclerodane diterpenoid salvinorin A is a major secondary metabolite isolated from the

psychoactive plant Salvia divinorum. Salvinorin A has been shown to have high affinity and

selectivity for the κ-opioid receptor (KOR). To study the ligand–receptor interactions that occur

between salvinorin A and the KOR, a new series of salvinorin A derivatives bearing potentially

reactive Michael acceptor functional groups at C-2 was synthesized and used to probe the

salvinorin A binding site. The κ-, δ-, and μ-opioid receptor (KOR, DOR and MOR, respectively)

binding affinities and KOR efficacies were measured for the new compounds. Although none

showed wash-resistant irreversible binding, most of them showed high affinity for the KOR, and

some exhibited dual affinity to KOR and MOR. Molecular modeling techniques based on the

recently-determined crystal structure of the KOR combined with results from mutagenesis studies,

competitive binding, functional assays and structure–activity relationships, and previous salvinorin

A–KOR interaction models were used to identify putative interaction modes of the new

compounds with the KOR and MOR.
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1. Introduction

The neoclerodane diterpenoid salvinorin A (1; Figure 1) is a major metabolite isolated from

the leaves of Salvia divinorum [1]. It is a highly selective κ-opioid receptor (KOR) agonist

and is the most potent naturally-occurring hallucinogen [2]. It gained significant scientific

interest as the only non-nitrogenous KOR agonist with no apparent structural similarity to

other ligands. This has encouraged several research groups to study the structure–activity

relationships of 1, and a plethora of salvinorin A derivatives has been synthesized over the

past decade [3-8]. Some of these analogues exhibit interesting pharmacological profiles

from full KOR agonist to partial DOR or MOR agonist and antagonists. However, most of

these derivatives displayed decreased affinity or even no affinity for the KOR. Our current

objective was to use the knowledge about salvinorin A–KOR interactions to rationally

design salvinorin A derivatives with different pharmacological profiles and therapeutic

potential. In the course of our work on the molecular mechanism of interaction of salvinorin

A with the KOR, we reported the irreversible binding of 22-thiocyanatosalvinorin A (2)

(Fig. 1) with the sulfhydryl group of C315 at the κ-opioid receptor [9, 10]. Previous results

using the KOR model and crystal structure to predict the mode of binding of 2, combined

with mass spectrometric analysis of the enzymatically digested KOR–2 complex show that

Cys3157.35 in the orthosteric binding site is an anchoring amino acid for compounds bearing

a thioltrapping group [9, 10]. We therefore designed a series of salvinorin B-based (3) α,β-

unsaturated esters at the C-2 position with diverse stereoelectronic properties and whose

reactive nucleophilic center positions approximately matched those of the

previouslyreported thiol-trapping analogs [10] (Schemes 1 and 2).

In this work we describe the synthesis of various potential Michael acceptor-type derivatives

of salvinorin A and their affinity to KOR, as well as molecular models of their interaction

with the receptor. Michael acceptors are capable of forming irreversible bonds with

biological macromolecules such as proteins or DNA [11-15]. Thus, the ability of salvinorin

A-derived Michael acceptors to form covalent bonds may be advantageous for probing the

affinity to the KOR. Considering the fact that Michael acceptors may also react reversibly

with nucleophiles [15-19], such compounds may provide potential drug candidates for CNS

disorders. Herein, we report the synthesis of a new series of potential Michael acceptor-type

salvinorin A derivatives modified at C-2, a position that has been found to be crucial for a

high-affinity binding to the KOR [3]. Among the compounds synthesized and tested were a

set of cinnamic acid derivatives, which were selected with the knowledge that salvinorin

derivatives bearing an aromatic substituent at the C-2 position (the most noteworthy of

which is 2-O-benzoylsalvinorin B or herkinorin[20]) exhibit a marked change in the

compounds’ pharmacological profile compared to salvinorin A; in particular, these

compounds tended to exhibit reduced affinity for KOR and increased affinity for MOR [3].

At the same time we hypothesized that adding a conjugated bond to the aromatic system
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might further increase MOR affinity as the introduction of alkene moieties at the C-2

position showed a similar shift in pharmacological profile [21].

2. Results and discussion

2.1.1. Chemistry

The starting material, salvinorin A (1), was isolated from commercially available dried

leaves of Salvia divinorum, and then converted to salvinorin B (3) in high yield [22]. The

reaction of 3 with appropriate acryloyl chlorides under basic conditions afforded 4a–4h, and

with various substituted cinnamic acids the corresponding 5a–5n derivatives as shown in

Schemes 1 and 2.

The reaction of 3 with acryloyl chloride or methacryloyl chloride in dry DCM in the

presence of triethylamine afforded 4a or 4b [21] in 73 and 70% yield, respectively. The 1H

NMR data of acrylate 4a displayed typical acrylate protons as a doublet of doublets at δ 6.20

(J = 8.0, 16.4 Hz), and two doublets at δ 6.49 (J = 16.4 Hz), and 5.93 (J = 8.0 Hz). The

corresponding data of 4b [21] confirmed the presence of the methacrylate group [δ 6.23 (1H,

d, J = 1.6 Hz), 5.68 (1H, d, J = 1.6 Hz), and 1.99 (3H, s)]. Interestingly, when 3 was

subjected to 3,3-dimethylacryloyl chloride (senecioyl chloride) under the same conditions it

yielded two isomers 4c and 4d (Scheme 1). Compound 4c, the anticipated salvinorin 3,3-

dimethylacrylate displayed characteristic 1H- and 13C NMR signals at δ 5.80 [1H, s,

(CH3)2C=CH-CO2-], 2.17 and 1.92 [each 3H, s, (CH3)2C=CH-CO2-], δ 114.85 (C-2′), 27.35

and 20.46 (each CH3). The second product (4d) proved to be the non-conjugated isomer of

4c. Its 1H NMR spectrum displayed the side chain protons at δ 3.15 (H-2′, s), δ 1.85 (CH3,

s), and the olefinic methylene protons at δ 4.90 and 4.95 (both s). 13C NMR experiments

confirmed the C-2′ and C-4′ methylene carbons at δ 43.20 and 115.17, and the C-3′ methyl

carbon at δ 22.46. The formation of conjugated and non-conjugated isomers in esterification

of alcohols with 3,3- dimethylacryloyl chloride in the presence of triethylamine was

observed earlier [23, 24]. The elimination-addition and competitive substitution mechanisms

are responsible for the formation of both isomers. In the first case the reaction proceeds

through the formation of a ketene intermediate, in the second case through the acyl

quaternary ammonium intermediate. Participation of the elimination-addition mechanism

was further supported by using an excess of triethylamine. Changing the excess of Et3N

from 1.5 to 3.0 eq altered the ratio of conjugated (4c) to non-conjugated (4d) product from

1:4 to 1:1. Similarly, a mixture of conjugated and non-conjugated isomers 4e–4h were

obtained in the reaction of 3 with crotonyl- and 2,3-dimethylacryloyl chloride (Scheme 1).

Salvinorin B (3) treated with aromatic and heterocyclic α, β-unsaturated carboxylic acids in

the presence of DCC and DMAP yielded corresponding products 5a–5n in good yields (61–

92%), e.g., reaction of 3 with trans-cinnamic acid at room temperature afforded 2-O-

cinnamoylsalvinorin B (5a) in 92% yield (Scheme 2). The 1H- and 13C NMR data of 5a
showed the trans olefinic protons at δ 6.52 and 7.75 (each d, J = 16.8 Hz), and the C-2′ and

C-3′ olefinic carbons at δ 139.46 and 143.64, respectively.

To enhance our understanding of the binding mode between synthesized ligands and the

receptor (reversible vs. irreversible labeling), we performed the model Michael addition
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reactions between acrylate derivative (4a) and thiols like cysteamine and N-acetylcysteine

using the reported procedure [16]. Thus, 4a was dissolved in DMSO-d6, the 1H NMR

spectrum was recorded (Figure 2b), and then two equivalents of cysteamine were added and

the spectrum recorded after 5 min (Figure 2c). This spectrum showed the disappearance of

the olefinic protons of the acrylate moiety. An aliquot of the solution was transferred to

another vial, and diluted with CDCl3 (1:15 v/v). The 1H NMR spectrum (Figure 2d) of this

solution showed that the proton resonances of the olefinic system did not reappear, hence

indicating the irreversible formation of the covalent thioether bond. Similar results were

observed in the experiment with N-acetylcysteine.

2.1.2 Biological affinity and efficacy at opioid receptors

The synthesized analogues (4a–4h and 5a–5n) were evaluated for κ-, δ-, μ- opioid receptor

binding affinities at the NIMH-sponsored Psychoactive Drug Screening Program, University

of North Carolina at Chapel Hill. The assays were conducted according to the procedure

described earlier [2, 25] and the results are summarized in Table 1. Interestingly, none of the

compounds exhibited wash-resistant irreversible binding at KOR as was previously

observed for the 22-thiocyanatosalvinorin A analog RB-64 [10]. There may be several

reasons for this. First, although the acrylate 4a reacted readily with small thiols in solution

(vide supra), the relative position and orientation of the electrophilic center in the acceptor

moiety and the C315 sulfur nucleophile in the bound receptor–ligand complex may preclude

nucleophilic attack. The relatively rigid and planar character of the acrylate moiety differs

from that of the more flexible 22- thiocyanato moiety of RB-64 in which there are two

rotatable bonds between the carbonyl carbon atom and the thiocyanate sulfur atom. Second,

many of the acrylate derivatives are substituted at the electrophilic carbon; these substituents

may bind in separate subpockets of the receptor (vide infra), which may also serve to orient

the acceptor moiety away from the nucleophilic sulfur atom. Third, the alkene moiety of the

non-conjugated products (4d, 4f, 4h) may not be sufficiently reactive toward sulfur

nucleophiles to form a covalent linkage. Fourth, the reversibility of the addition reaction

may be too great to detect transient covalent linkages between receptor and ligand. Despite

their non-reactivity, however, many of the compounds showed high affinity for KOR. The

aliphatic conjugated and non-conjugated series of analogs (4a–h) are all of similar size but

with varying patterns of methyl group substitution and unsaturation; each showed significant

affinity for the κ-opioid receptor. In the conjugated series, the acrylate derivative 4a had a 6-

fold reduced but still appreciable affinity at the κ- receptor as compared to 1 (Ki = 18.1 nM

vs. Ki = 2.9 nM) (Table 1). Previously published methacrylate derivative 4b also showed

good affinity for the κ- receptor [21]. Owing to the presence of bulky methyl groups at the

α- and β-positions, the KOR affinities of 4c and 4g were reduced 21- and 8-fold,

respectively, as compared to 4a. The crotonate derivative 4e, however, exhibited almost

equal affinity as 4a (Ki = 25.3 nM vs. Ki = 18.1 nM). Interestingly, non-conjugated

derivatives 4d and 4f showed 3- and 2-fold increased affinities at the KOR, compared to

acrylate derivative 4a (Ki = 6 and 10 nM, respectively, vs. Ki = 18.1 nM). Again, derivative

4h having a methyl group α to the carbonyl had reduced affinity at the KOR as compared to

4a (Ki = 28.8 nM vs. Ki = 18.1 nM). The results show that the non-conjugated series of

analogues have higher binding KOR affinities than the corresponding conjugated series of

compounds, and that C-α substitution results in lower affinity. This may emphasize the
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importance of the presence of an intervening methylene group that effectively separates the

π-systems of the ester and alkene portions of the side chain over direct ester–alkene

conjugation on the affinity to the KOR. Of note is the retention of high KOR selectivity of

compounds 4a–4h with low or no affinity to the DOR and MOR, as observed for the smaller

analog, salvinorin A [2].

The aromatic series of compounds 5a–5n generally displayed lower affinity for the KOR

than the smaller conjugated compounds 4a–c, 4e and 4g. Interestingly, the unsubstituted

cinnamate derivative 5a displayed dual affinity at the KOR and MOR, exhibiting 2- and 18-

fold increased affinity, respectively, compared to 4a. Compounds with electron withdrawing

or donating substituents at different positions of the phenyl ring (5b–5l) showed reduced or

no affinity at the KOR and no appreciable affinity for MOR or DOR. For the KOR, several

trends could be identified. Substitution at the ortho position is tolerated more than

substitution at the para position (compare 5b with 5c, 5h with 5i, and 5j with 5k). The 2,5-

dimethoxy analog 5d exhibited a much lower affinity than the 2-methoxy analog 5b,

indicating that substitution at the meta position also adversely affects binding affinity. The

electron-donating methoxy group is tolerated more than the electron-withdrawing nitro or

trifluoromethyl groups (compare 5b with 5h and 5j; also 5c with 5i and 5k). The 3,4,5-

trimethoxy compound 5f showed no appreciable affinity for any of the three opioid

receptors. Introduction of heteroaromatic ring moieties such as 3-pyridyl (5m) and 3-

thiophenyl (5n) groups resulted in a significant increase of the MOR and DOR affinities in

comparison to all analogues in the substituted aromatic series, including the phenyl analog

5a. Intriguingly, substitution of the phenyl group with the isosteric 3-pyridyl group

completely reverses the KOR–MOR selectivity profile, with analog 5m showing no affinity

for KOR but with significant affinity for MOR (Ki = 334 nM). The isosteric thiophenyl

derivative 5n also showed high MOR selectivity (Ki = 18 nM) but also had affinity for KOR

(Ki = 304 nM) and DOR (Ki = 228 nM).

The efficacy of salvinorin A (1) and analogs 4a–h and 5a–n at the KOR was also evaluated

using an assay that measures cAMP inhibition (Table 1). None of the analogs 4a–h or 5a–n
were as efficacious as salvinorin A (1; IC50 = 0.36 nM). Many of the tested analogs showed

an inhibition level that was ~100× less than that produced by 1, the most efficacious of

which (5a; IC50 = 7 nM) showed an inhibition level that was 20× lower than 1. The

compounds showing the poorest efficacy (5f, 5l, 5m) also had no substantial affinity for the

KOR. Although there was not a strong correlation between affinity and efficacy for the

tested compounds (see Figure S1), those of the aromatic series (except 5a) tended to show

efficacy similar to those of the non-conjugated series but with lower binding affinity.

Interestingly, compound 4a, whose binding affinity is only 6× less than 1, was 380× less

efficacious.

2.1.3. Molecular Modeling

We have used the crystal structure of the KOR complexed with the antagonist JDTic (PDB

ID = 4DJH) to model the interaction of various agonists with the receptor. Although

technically in an inactive state, it has been shown that large-scale movements of amino acid

residues in the orthosteric binding site of class A GPCRs are not requisite for activation of
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the receptor [26]. In addition, it has been found that virtual screening for ligands using

inactive-state GPCRs can produces agonist leads (see for example Negri et al.) [27]. We

have previously described a putative binding mode for salvinorin A representing an initial

recognition mode based on an extensive amount of experimental data [9, 28]. This binding

mode was reproduced in the current docking studies and is shown in Figure 3a. In the

proposed binding mode, the fused tricyclic core is oriented toward TM2 and interacts

primarily with the side chains of V1082.53, T1112.56, Q1152.60, V1182.63, 1343.28, 1353.29

and D1383.32, which form a highly complementary stereoelectronic binding site for the

salvinorin core structure (numbers in parentheses indicate Ballesteros–Weinstein indexes

[29]). The furanyl moiety interacts with V1182.63, W124EL1 and C210EL2, and in a slightly

different pose, may also possibly form hydrogen bonds with Y3137.36.9 The C4 methyl ester

is situated in a small pocket formed by V1082.53, T1112.56, W2876.48 and Y3207.43 and

engages in hydrogen bonding interactions with T1112.56 and Y3207.43. The C2 acetoxy

group engages a small subpocket delineated by D1383.32, Y1393.33 and M1423.36.

For each of the compounds 4a–h and 5a–n, a docked pose analogous to 1 was obtained for

the KOR, although the various substituents at the C2 position bound in somewhat different

orientations. These varying orientations were able to provide insights regarding the possible

interaction modes of the compounds at the KOR. For the compounds reported here, the

electrophilic Michael acceptor atom of the C2 substituent was never closer than ~7 Å from

the Sγ atom of C315 in any of the solutions (taking into account C315 side chain rotameric

flexibility). As discussed in Section 2.1.2 above, there may be multiple reasons for this,

providing a rationale for why these compounds do not form covalently-bound adducts with

KOR.

The putative binding mode for the most affine analog from the conjugated/nonconjugated

series (4d) is shown in Figure 3b and is analogous to the putative binding mode for

salvinorin A (1), except that the olefinic side chain of the C2 substituent is able to

effectively fill the small hydrophobic subpocket formed by D1383.32, Y1393.33 and

M1423.36 (Figure S2). The model shows how the presence of an intervening methyl group

between the ester and olefin functionalities, as in 4d, allows the olefinic portion to be

directed into the small subpocket. Other analogs in the conjugated and non-conjugated series

were not predicted to bind completely into the subpocket, presumably due to steric

incompatibilities with methyl groups in the R2 and R3 positions (See Scheme 1) of the C2

substituent. Interestingly, methyl substitution at the R1 position is tolerated (see 4b and 4h)

and the model shows that there is a region of steric tolerance at this locus.

The added steric bulk associated with compounds of the aromatic series 5a–n placed the C2

substituent beyond the Y1393.33/M1423.36 subpocket into a hydrophobic pocket bounded by

side chains from TM helices 3, 5, and 6 including M1423.36, K2275.39, V2305.42 and

I2946.55. The putative binding mode for the cinnamoyl analog 5a, the most potent and

efficacious of the tested compounds in the aromatic series at KOR, is shown in Figure 3c.

For 5a, the olefin portion serves as a hydrophobic linker, allowing the phenyl group to

effectively engage the hydrophobic regions of its putative binding site.
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The addition of small substituents to the phenyl ring (either electron donating or

withdrawing) resulted in significantly decreased affinity for KOR, and the model suggests

that this is due to steric intolerance within the binding site. Phenyl substitution at the ortho

position is the most well tolerated, and the models show that there is a region of steric

tolerance at that position where a substituent may be placed. For analogs with meta and para

substitutions, no docked solutions were found that placed the aromatic portion directly into

the aforementioned site. The trisubstituted analog 5f has no significant affinity for any of the

three opioid receptors, probably due one again to steric intolerance within the orthosteric

binding site.

The remarkable observation that the 3-pyridyl analog 5m has no affinity for the KOR

suggests that the polarity introduced by the heterocyclic nitrogen atom cannot be tolerated in

the KOR binding site occupied by 5a. The putative binding site for the phenyl group in

Figure 3c is indeed very hydrophobic. On the other hand, 5m has substantial MOR affinity

(Ki = 334 nM). A comparison of the residues in the putative aromatic binding pocket of

KOR and MOR reveals that one of the amino acids is different (KOR, I2946.55; MOR,

V3026.55). However, this conservative change does not explain the KOR/MOR selectivity of

5m. Thus, an alternate binding mode was proposed for 5m in MOR; this model is shown in

Figure 3d. Here, the pyridine nitrogen of 5m hydrogen bonds with the non-conserved

N1272.63 (position 2.63: KOR = V; MOR = N; DOR = K) and the furan substituent is

sandwiched via π-stacking interactions between Y3267.43 and W2936.48 (mMOR

numbering). The isosteric 3-furanyl analog 5n has excellent MOR affinity (Ki = 18 nM) and

may interact in the same way, although in this case the interaction may be of a more

hydrophobic/aromatic nature, as thiophene is a poorer hydrogen bond acceptor that pyridine.

The greater hydrophobicity of thiophene compared to pyridine may also explain the greater

affinity of 5n for the KOR (Ki = 304 nM), and as such may also adopt a binding mode

analogous to that proposed for 5a in Figure 3c.

3. Conclusion

A series of potential Michael acceptor-type analogues of salvinorin A were synthesized in an

effort to explore the effects of C-2 substitution at opioid receptors. Binding assay results

showed that none of the synthesized analogues were able to irreversibly bind to the κ-opioid

receptor. Aliphatic conjugated and non-conjugated series of analogues showed high binding

affinity to the κ-opioid receptor. Introduction of a cinnamoyl and thiophenylacryloyl group

at C-2 had significant impact on affinity, resulting in discovery of new ligands with dual

affinity to κ- and μ-opioid receptors. Molecular modeling techniques were employed to

determine potential binding modes for the compounds. According to molecular modeling

data, the electrophilic center of the studied compounds was distant from the Sγ atom of

C315, with a distance of 7 Å or more, confirming the lack of close proximity necessary for

covalent binding.
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4. Materials and methods

4.1. Experimental section

All commercially available reagents were used without further purification unless otherwise

noted. The reactions were performed under an argon atmosphere in anhydrous

dichloromethane (DCM) purchased from Sigma-Aldrich. The 1H NMR spectra were

recorded on a Bruker Avance–400 spectrometer using CDCl3 as solvent, δ values are in ppm

and coupling constants in Hz. Melting points were determined on an MEL-TEMP® 3.0

apparatus and are uncorrected. Thin-layer chromatography (TLC) was performed on 250 μm

layer (Whatman PE SIL G/UV silica gel) polyester plates using n-hexane/EtOAc (1:1) as

solvent. TLC spots were visualized with anisaldehyde/H2SO4 in methanol. Column

chromatography was performed on silica gel (230×400 mesh) purchased from Sorbent

Technologies (Atlanta, GA). Analytical HPLC was performed on a Waters 2487 apparatus

with dual λ absorbance detector system using a Phenomenex Luna-C18 column (4.6×250

mm, 5 μm) with gradient elution at a flow rate 0.5–1.0 mL/min. Isolation of salvinorin A

was performed according to the earlier reported procedure [30].

4.2. Synthesis and chemistry

4.2.1. General Procedure A: The procedure for the synthesis of compounds
4a-4h—Compound 3 (15 mg, 1 eq) and triethylamine (1.5–3 eq) were dissolved in DCM (3

mL). An appropriate acryloyl chloride (1.5–3 eq) was added, and the reaction mixture was

stirred for 3 h. After TLC indicated completion of the reaction, the mixture was quenched

with water and the organic layer separated. The organic phase was washed with dilute

aqueous HCl (0.01 mol/L, 2 mL) followed by saturated NaHCO3 (2 mL). The organic layer

was dried over anhydrous Na2SO4, evaporated, and the residue was purified by column

chromatography (SiO2; eluent: n-hexane/EtOAc) to obtain the target product.

4.2.2. Genera8/11/2014l Procedure B: The procedure for the synthesis of
compounds 5a-5n—To a solution of compound 3 (15 mg, 1 eq) in DCM (3 mL), a

catalytic amount of 4-(dimethylamino)pyridine (DMAP) and 1,4-dicyclohexylcarbodimide

(DCC) (3 eq), and an appropriate cinnamic or heterocyclic acrylic acid (3 eq) were added.

The mixture was stirred at room temperature for 2–5 h. After TLC indicated completion of

the reaction, the mixture was concentrated under reduced pressure and the residue was

purified by column chromatography (SiO2; eluent: n-hexane/EtOAc) to yield the target

product.

2-O-Acryloylsalvinorin B (4a): Compound 4a was synthesized from 3 and acryloyl

chloride (procedure A) to afford 13 mg (73%) of 4a as a white solid, mp 169–171 °C; 1H

NMR (400 MHz, CDCl3): δ 7.41 (s, 1H), 7.39 (s, 1H), 6.49 (d, J = 16.4 Hz, 1H), 6.38 (s,

1H), 6.20 (dd, J = 8.0, 16.4 Hz, 1H), 5.93 (d, J = 8.0 Hz, 1H), 5.52 (dd, J = 5.2, 11.4 Hz,

1H), 5.23 (dd, J = 7.6, 12.6 Hz, 1H), 3.73 (s, 3H), 2.78 (dd, J = 8.6, 8.6 Hz, 1H), 2.54 (dd, J

= 5.2, 13.4 Hz, 1H), 2.37–2.33 (m, 2H), 2.22 (s, 1H), 2.19–2.10 (m, 2H), 1.80 (ddd, J = 3.0,

3.0, 10.4 Hz, 1H), 1.68–1.56 (m, 3H), 1.45 (s, 3H), 1.15 (s, 3H). 13C NMR (100 MHz,

CDCl3): δ 201.84, 171.75, 171.21, 164.71, 143.57, 139.30, 132.29, 127.36, 125.21, 108.40,

75.21, 72.01, 63.91, 53.67, 51.91, 51.37, 43.33, 42.06, 38.08, 35.06, 30.75, 17.93, 16.17,
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15.18. HRESIMS (m/z): [M+H]+ calculated for C24H29O8, 445.1784; found, 445.1761.

HPLC tR = 10.974 min; purity = 98.69%.

2-O-Methacryloylsalvinorin B (4b): Compound 4b was synthesized from 3 and

methacryloyl chloride (procedure A) to obtain 16 mg (70%) of 4b as a white solid, mp 196–

198 °C. The 1H NMR spectrum of 4b was consistent with that previously reported.[21] 13C

NMR (100 MHz, CDCl3): δ 201.97, 171.67, 171.24, 166.15, 143.61, 139.47, 135.30,

126.88, 125.12, 108.45, 75.23, 72.03, 63.95, 53.50, 51.96, 51.34, 43.19, 42.08, 38.10, 35.43,

30.84, 18.19, 16.36, 15.16. HRESIMS (m/z): [M+H]+ calculated for C25H31O8, 459.1941;

found, 459.1935. HPLC tR = 19.306 min; purity = 99.01%.

2-O-(3′,3′-Dimethylacryloyl)salvinorin B (4c): Compound 4c was synthesized from 3 and

3,3–dimethylacryloyl chloride (procedure A) to afford 9 mg (51%) of 4c as a white solid,

mp 183–185 °C; 1H NMR (400 MHz, CDCl3): δ 7.41 (s, 1H), 7.38 (s, 1H), 6.38 (s, 1H),

5.79 (s, 1H), 5.51 (dd, J = 5.2, 11.5 Hz, 1H), 5.20 (dd, J = 7.6, 12.6 Hz, 1H), 3.71 (s, 3H),

2.78 (dd, J = 8.6, 8.6 Hz, 1H), 2.51 (dd, J = 5.2, 13.4 Hz, 1H), 2.32–2.28 (m, 2H), 2.20 (s,

1H), 2.16 (s, 3H), 2.13–2.07 (m, 2H), 1.92 (s, 3H), 1.80 (ddd, J = 3.0, 3.0, 10.4 Hz, 1H),

1.67–1.55 (m, 3H), 1.44 (s, 3H), 1.14 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 202.33,

171.68, 171.23, 164.99, 159.16, 143.64, 139.49, 125.13, 114.85, 108.38, 73.96, 71.60,

63.87, 53.34, 51.58, 51.30, 43.07, 41.76, 37.90, 35.33, 30.93, 27.35, 20.46, 18.13, 16.29,

14.99. HRESIMS (m/z): [M+H]+ calculated for C26H33O8, 473.2097; found, 473.2063.

HPLC tR = 21.211 min; purity = 98.91%.

2-O-(3′-Methylbut-3′-enoyl)salvinorin B (4d): Compound 4d (8.5 mg, 49%) was obtained

as a by-product from the reaction of 3 and 3,3-dimethylacryloyl chloride (procedure A) as a

white solid, mp 168–170 °C; 1H NMR (400 MHz, CDCl3): δ 7.41 (s, 1H), 7.39 (s, 1H), 6.38

(s, 1H), 5.51 (dd, J = 5.2, 11.6 Hz, 1H), 5.16 (dd, J = 7.6, 12.6 Hz, 1H), 4.94 (s, 1H), 4.90 (s,

1H), 3.71 (s, 3H), 3.15 (s, 2H), 2.76 (dd, J = 8.6, 8.6 Hz, 1H), 2.52 (dd, J = 5.2, 13.4 Hz,

1H), 2.30–2.28 (m, 2H), 2.21 (s, 1H), 2.16–2.07 (m, 2H), 1.85 (s, 3H), 1.82 (ddd, J = 3.0,

3.0, 10.4 Hz, 1H), 1.68–1.56 (m, 3H), 1.44 (s, 3H), 1.14 (s, 3H). 13C NMR (100 MHz,

CDCl3): δ 201.70, 171.52, 171.07, 170.38, 143.75, 139.53, 137.99, 125.21, 115.17, 108.49,

75.13, 71.80, 63.79, 53.50, 51.94, 51.32, 43.20, 42.90, 42.07, 38.17, 35.43, 30.73, 22.46,

18.16, 16.40, 15.10. HRESIMS (m/z): [M+Na]+ calculated for C26H32O8Na, 495.1996;

found, 495.1959. HPLC tR = 11.457 min; purity = 97.54 %.

2-O-Crotonoylsalvinorin B (4e): Compound 4e was synthesized from 3 and crotonyl

chloride (procedure A) to obtain 8 mg (49%) of 4e as a white solid, mp 163–165 °C; 1H

NMR (400 MHz, CDCl3): δ 7.41 (s, 1H), 7.39 (s, 1H), 7.13–7.04 (m, 1H), 6.38 (s, 1H), 5.93

(d, J = 7.8 Hz, 1H), 5.51 (dd, J = 5.2, 11.5 Hz, 1H), 5.22 (dd, J = 7.6, 12.6 Hz, 1H), 3.73 (s,

3H), 2.79 (dd, J = 8.6, 8.6 Hz, 1H), 2.51 (dd, J = 5.2, 13.4 Hz, 1H), 2.35–2.28 (m, 2H), 2.25

(s, 1H), 2.13–2.07 (m, 2H), 1.91 (d, J = 7.0 Hz, 3H), 1.80 (ddd, J = 3.0, 3.0, 10.4 Hz, 1H),

1.65–1.55 (m, 3H), 1.45 (s, 3H), 1.12 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 202.13,

171.62, 171.23, 165.00, 146.67, 143.64, 139.48, 125.22, 121.54, 108.45, 74.79, 72.00,

63.84, 53.43, 51.91, 51.27, 43.19, 42.06, 38.09, 35.41, 30.84, 18.11, 16.39, 15.14.

Polepally et al. Page 9

Eur J Med Chem. Author manuscript; available in PMC 2015 October 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



HRESIMS (m/z): [M+H]+ calculated for C25H31O8, 459.1941; found, 459.1928. HPLC tR =

15.681 min; purity = 98.81%.

2-O-(3′-Butenoyl)salvinorin B (4f): Compound 4f (9 mg, 51%) was obtained as by-product

from the reaction of 3 and crotonyl chloride (procedure A) as a white solid, mp 157–159

°C; 1H NMR (400 MHz, CDCl3): δ 7.43 (s, 1H), 7.40 (s, 1H), 6.50–6.44 (m, 1H), 6.39 (s,

1H), 5.92 (s, 1H), 5.90 (s, 1H), 5.54 (dd, J = 5.2, 11.5 Hz, 1H), 5.22 (dd, J = 7.6, 12.6 Hz,

1H), 3.74 (s, 3H), 3.40–3.31(m, 2H), 2.78 (dd, J = 8.6, 8.6 Hz, 1H), 2.53 (dd, J = 5.2, 13.4

Hz, 1H), 2.36–2.29 (m, 2H), 2.21 (s, 1H), 2.17–1.97 (m, 2H), 1.81 (ddd, J = 3.0, 3.0, 10.4

Hz, 1H), 1.65–1.56 (m, 3H), 1.47 (s, 3H), 1.14 (s, 3H). 13C NMR (100 MHz, CDCl3): δ

202.43, 171.65, 171.54, 170.36, 143.69, 139.48, 137.96, 125.23, 115.23, 108.42, 75.13,

72.00, 64.03, 53.66, 51.95, 51.36, 43.41, 42.88, 42.12, 38.33, 35.45, 30.94, 18.14, 16.40,

15.16. HRESIMS (m/z): [M+Na]+ calculated for C25H30O8Na, 481.1839; found, 481.1804.

HPLC tR = 23.537 min; purity = 98.88%.

2-O-(2′,3′-Dimethylacryloyl)salvinorin B (4g): Compound 4g was synthesized from 3 and

2,3–dimethylacryloyl chloride (procedure A) to afford 8.8 mg (49%) of 4g as a white solid,

mp 161–163 °C; 1H NMR (400 MHz, CDCl3): δ 7.41 (s, 1H), 7.40 (s, 1H), 7.14– 7.05 (m,

2H), 6.38 (s, 1H), 5.52 (dd, J = 5.2, 11.5 Hz, 1H), 5.22 (dd, J = 7.6, 12.6 Hz, 1H), 3.74 (s,

3H), 2.77 (dd, J = 8.6, 8.6 Hz, 1H), 2.55 (dd, J = 5.2, 13.4 Hz, 1H), 2.34– 2.28 (m, 2H), 2.20

(s, 1H), 2.16–2.07 (m, 2H), 1.92 (d, J = 5.6 Hz, 3H), 1.81 (ddd, J = 3.0, 3.0, 10.4 Hz, 1H),

1.79 (s, 3H), 1.67–1.56 (m, 3H), 1.46 (s, 3H), 1.14 (s, 3H). 13C NMR (100 MHz, CDCl3): δ

202.07, 171.78, 170.84, 165.22, 146.69, 143.52, 139.72, 125.02, 121.56, 108.27, 75.28,

72.25, 63.78, 53.32, 52.26, 51.04, 43.55, 41.82, 35.17, 30.71, 29.52, 27.82, 23.57, 17.86,

16.22, 14.54. HRESIMS (m/z): [M+H]+ calculated for C26H33O8, 473.2097; found,

473.2059. HPLC tR = 17.950 min; purity = 98.08%.

2-O-(2′-Methyl-3′-butenoyl)salvinorin B (4h): Compound 4h (9.5 mg, 51%) was obtained

as a by-product from the reaction of 3 and 2,3-dimethylacryloyl chloride (procedure A) as a

white solid, mp 168–170 °C; 1H NMR (400 MHz, CDCl3): δ 7.40 (s, 1H), 7.38 (s, 1H), 6.37

(s, 1H), 6.00–5.88 (m, 1H), 5.48 (dd, J = 5.2, 11.6 Hz, 1H), 5.23–5.11 (m, 3H), 3.71 (s, 3H),

3.35–3.25 (m, 1H), 2.76 (dd, J = 8.6, 8.6 Hz, 1H), 2.49 (dd, J = 5.2, 13.4 Hz, 1H), 2.35–2.26

(m, 2H), 2.21 (s, 1H), 2.16–2.05 (m, 2H), 1.81 (dd, J = 3.0, 3.0, 10.4 Hz, 1H), 1.67–1.54 (m,

3H), 1.43 (s, 3H), 1.34 (d, J = 5.0 Hz, 3H), 1.11 (s, 3H). 13C NMR (100 MHz, CDCl3): δ

201.77, 173.47, 171.56, 171.17, 143.59, 139.53, 136.56, 125.08, 116.37, 108.49, 74.78,

71.96, 63.88, 53.70, 51.93, 51.25, 43.24, 41.98, 38.12, 35.36, 30.69, 18.17, 16.82, 16.41,

15.12. HRESIMS (m/z): [M+H]+ calculated for C26H33O8, 473.5275; found, 473.5254.

HPLC tR = 30.242 min; purity = 98.97%.

2-O-Cinnamoylsalvinorin B (5a): According to general procedure B, the title compound

(24 mg, 92%) was obtained as a white powder from 3 and cinnamic acid. mp 202–204

°C; 1H NMR (400 MHz, CDCl3): δ 7.77 (d, J = 16.0 Hz, 1H), 7.55–7.53 (m, 2H), 7.42– 7.39

(m, 5H), 6.52 (d, J = 16.0 Hz, 1H), 6.38 (s, 1H), 5.53 (dd, J = 5.2, 11.4 Hz, 1H), 5.30 (dd, J

= 7.6, 12.6 Hz, 1H), 3.74 (s, 3H), 2.80 (dd, J = 8.6, 8.6 Hz, 1H), 2.56 (dd, J = 5.2, 13.4 Hz,

1H), 2.42–2.37 (m, 2H), 2.23 (s, 1H), 2.20–2.08 (m, 2H), 1.82 (ddd, J = 3.0, 3.0, 10.4 Hz,
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1H), 1.72–1.59 (m, 3H), 1.47 (s, 3H), 1.15 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 202.23,

171.53, 171.13, 165.61, 146.46, 143.64, 139.46, 134.11, 130.64, 129.01, 128.18, 125.24,

116.66, 108.45, 75.14, 71.99, 64.00, 53.56, 51.97, 51.41, 43.21, 42.21, 38.18, 35.48, 30.93,

18.16, 16.45, 15.20. HRESIMS (m/z): [M+H]+ calculated for C30H33O8, 521.2097; found,

521.2069. HPLC tR = 29.642 min; purity = 99.14%.

2-O-(2″-Methoxycinnamoyl)salvinorin B (5b): According to general procedure B, the

compound 5b (13 mg, 63%) was obtained as a white solid from 3 and 2-methoxycinnamic

acid. mp 153–155 °C; 1H NMR (400 MHz, CDCl3): δ 8.06 (d, J = 16.0 Hz, 1H), 7.52 (d, J =

8.0 Hz, 1H), 7.42–7.34 (m, 3H), 6.96–6.91 (m, 2H), 6.63 (d, J = 16.0 Hz, 1H), 6.39 (s, 1H),

5.51 (dd, J = 5.2, 11.4 Hz, 1H), 5.30 (dd, J = 7.6, 12.6 Hz, 1H), 3.88 (s, 3H), 3.73 (s, 3H),

2.80 (dd, J = 8.6, 8.6 Hz, 1H), 2.54 (dd, J = 5.2, 13.4 Hz, 1H), 2.41–2.36 (m, 2H), 2.27 (s,

1H), 2.17–2.09 (m, 2H), 1.82 (ddd, J = 3.0, 3.0, 10.4 Hz, 1H), 1.68–1.56 (m, 3H), 1.45 (s,

3H), 1.14 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 202.22, 171.70, 171.27, 166.35, 158.45,

143.69, 141.85, 139.48, 131.90, 129.21, 125.26, 123.01, 120.73, 117.22, 111.20, 108.50,

75.06, 72.08, 63.90, 60.39, 55.41, 53.61, 51.99, 51.34, 43.26, 42.11, 38.19, 35.45, 30.92,

18.14, 16.42, 15.24. HRESIMS (m/z): [M+H]+ calculated for C31H35O9, 551.2203; found,

551.2235. HPLC tR = 32.453 min; purity = 97.98%.

2-O-(4″-Methoxycinnamoyl)salvinorin B (5c): According to general procedure B, the

compound 5c (15 mg, 65%) was yielded as a white solid from 3 and 4-methoxycinnamic

acid. mp 191–193 °C; 1H NMR (400 MHz, CDCl3): δ 7.72 (d, J = 16.0 Hz, 1H), 7.49 (d, J =

8.0 Hz, 1H), 7.42 (s, 1H), 7.40 (s, 1H), 6.91 (d, J = 8.0 Hz, 2H), 6.41 (d, J = 16.0 Hz, 1H),

6.37 (s, 1H), 5.52 (dd, J = 5.2, 11.4 Hz, 1H), 5.30 (dd, J = 7.6, 12.6 Hz, 1H), 3.85 (s, 3H),

3.74 (s, 3H), 2.81 (dd, J = 8.6, 8.6 Hz, 1H), 2.54 (d, J = 5.2, 13.4 Hz, 1H), 2.41–2.37 (m,

2H), 2.24 (s, 1H), 2.19–2.08 (m, 2H), 1.83 (ddd, J = 3.0, 3.0, 10.4 Hz, 1H), 1.72–1.58 (m,

3H), 1.47 (s, 3H), 1.16 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 202.25, 171.68, 171.24,

166.10, 161.63, 146.17, 143.69, 139.41, 129.89, 126.93, 125.13, 114.38, 114.06, 108.47,

74.92, 72.08, 64.10, 55.38, 53.65, 51.96, 51.42, 43.40, 42.10, 38.19, 35.49, 30.94, 18.19,

16.44, 15.23. HRESIMS (m/z): [M+Na]+ calculated for C31H35O9Na, 573.2203; found,

573.2169. HPLC tR = 30.539 min; purity = 96.13%.

2-O-(2″,5″-Dimethoxycinnamoyl)salvinorin B (5d): According to general procedure B,

the title compound 5d (13 mg, 60%) was afforded as a white solid from 3 and 2,5-

dimethoxycinnamic acid. mp 217–219 °C; 1H NMR (400 MHz, CDCl3): δ 8.05 (d, J = 16.4

Hz, 1H), 7.43 (s, 1H), 7.40 (s, 1H), 7.06 (s, 1H), 6.95 (d, J = 8.0 Hz, 1H), 6.92 (d, J = 8.0

Hz, 1H), 6.60 (d, J = 16.4 Hz, 1H), 6.40 (s, 1H), 5.54 (dd, J = 5.2, 11.4 Hz, 1H), 5.32 (dd, J

= 7.6, 12.6 Hz, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.75 (s, 3H), 2.82 (dd, J = 8.6, 8.6 Hz, 1H),

2.54 (dd, J = 5.2, 13.4 Hz, 1H), 2.43–2.37 (m, 2H), 2.24 (s, 1H), 2.19–2.08 (m, 2H), 1.80

(ddd, J = 3.0, 3.0, 10.4 Hz, 1H), 1.71–1.58 (m, 3H), 1.48 (s, 3H), 1.16 (s, 3H). 13C NMR

(100 MHz, CDCl3): δ 202.17, 171.62, 171.18, 166.18, 153.45, 153.02, 143.68, 141.64,

139.43, 125.22, 123.58, 117.67, 117.26, 113.32, 112.44, 108.40, 75.00, 72.08, 64.11, 56.03,

55.78, 53.67, 51.96, 51.41, 42.26, 38.21, 35.53, 33.94, 30.97, 18.20, 16.45, 15.21.

HRESIMS (m/z): [M+H]+ calculated for C32H37O10, 581.2308; found, 581.2287. HPLC tR
= 29.079 min; purity = 98.12%.
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2-O-(2″,4″-Dimethoxycinnamoyl)salvinorin B (5e): According to general procedure B, the

compound 5e (14 mg, 61%) was obtained as a white solid from 3 and 2,4-

dimethoxycinnamic acid. mp 178–180 °C; 1H NMR (400 MHz, CDCl3): δ 7.98 (d, J = 16.0

Hz, 1H), 7.46–7.40 (m, 3H), 6.55–6.44 (m, 3H), 6.39 (s, 1H), 5.52 (dd, J = 5.2, 11.4 Hz,

1H), 5.31 (dd, J = 7.6, 12.6 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 3.74 (s, 3H), 2.81 (dd, J =

8.6, 8.6 Hz, 1H), 2.54 (dd, J = 5.2, 13.4 Hz, 1H), 2.41–2.36 (m, 2H), 2.24 (s, 1H), 2.19–2.08

(m, 2H), 1.83 (ddd, J = 3.0, 3.0, 10.4 Hz, 1H), 1.71–1.58 (m, 3H), 1.46 (s, 3H), 1.15 (s,

3H). 13C NMR (100 MHz, CDCl3): δ 202.51, 171.80, 171.32, 166.67, 163.04, 159.96,

143.73, 141.65, 139.36, 130.96, 125.13, 116.41, 114.36, 108.38, 105.32, 99.39, 74.83,

72.08, 64.07, 55.56, 53.76, 51.91, 51.39, 43.31, 42.02, 38.19, 35.51, 30.94, 18.19, 16.43,

15.16. HRESIMS (m/z): [M+H]+ calculated for C32H36O10Na, 603.2342; found, 603.2389.

HPLC tR = 23.628 min; purity = 98.69%.

2-O-(3″,4″,5″-Trimethoxycinnamoyl)salvinorin B (5f): According to the general

procedure B, the compound 5f (16 mg, 64%) was yielded as a white solid from 3 and 3, 4,5-

trimethoxycinnamic acid. mp 222–224 °C; 1H NMR (400 MHz, CDCl3): δ 7.68 (d, J = 16.0

Hz, 1H), 7.42 (s, 1H), 7.39 (s, 1H), 6.77 (s, 2H), 6.43 (d, J = 16.0 Hz, 1H), 6.39 (s, 1H), 5.53

(dd, J = 5.2, 11.4 Hz, 1H), 5.30 (dd, J = 7.6, 12.6 Hz, 1H), 3.88 (s, 9H), 3.73 (s, 3H), 2.81

(dd, J = 8.6, 8.6 Hz, 1H), 2.52 (dd, J = 5.2, 13.4 Hz, 1H), 2.41–2.37 (m, 2H), 2.24 (s, 1H),

2.18–2.09 (m, 2H), 1.82 (ddd, J = 3.0, 3.0, 10.4 Hz, 1H), 1.73–1.58 (m, 3H), 1.46 (s, 3H),

1.15 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 202.22, 171.61, 171.07, 165.66, 153.38,

146.32, 143.71, 140.31, 139.29, 129.61, 125.26, 115.93, 108.40, 105.45, 75.07, 72.04,

60.88, 56.16, 53.55, 51.99, 51.34, 43.31, 42.11, 38.19, 35.51, 30.89, 18.18, 16.41, 15.22.

HRESIMS (m/z): [M+H]+ calculated for C33H39O11, 611.2414; found, 611.2403. HPLC tR
= 28.904 min; purity = 99.08%.

2-O-(3″,4″-Dioxymethylenecinnamoyl)salvinorin B (5g): According to the general

procedure B, the title compound (13 mg, 61%) was yielded as a white solid from 3 and 3,4-

dioxymethylenecinnamic acid. mp 177–179 °C; 1H NMR (400 MHz, CDCl3): δ 7.67 (d, J =

16.0 Hz, 1H), 7.42 (s, 1H), 7.39 (s, 1H), 7.08–7.01 (m, 2H), 6.82 (d, J = 8.0 Hz, 2H), 6.39

(s, 1H), 6.34 (d, J = 16.0 Hz, 1H), 6.02 (s, 2H), 5.53 (dd, J = 5.2, 11.4 Hz, 1H), 5.29 (dd, J =

7.6, 12.6 Hz, 1H), 3.74 (s, 3H), 2.82 (dd, J = 8.6, 8.6 Hz, 1H), 2.53 (dd, J = 5.2, 13.4 Hz,

1H), 2.41–2.37 (m, 2H), 2.24 (s, 1H), 2.20–2.08 (m, 2H), 1.83 (ddd, J = 3.0, 3.0, 10.4 Hz,

1H), 1.72–1.58 (m, 3H), 1.46 (s, 3H), 1.15 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 202.27,

171.60, 171.17, 165.88, 149.89, 148.40, 146.11, 143.62, 139.45, 128.56, 125.28, 124.90,

114.43, 108.58, 106.57, 101.66, 74.86, 72.64, 64.08, 53.76, 52.05, 51.40, 43.38, 42.15,

38.19, 35.48, 30.81, 18.16, 16.44, 15.27. HRESIMS (m/z): [M+H]+ calculated for

C31H33O10, 565.2029; found, 565.2057. HPLC tR = 23.401 min; purity = 98.06%.

2-O-(2″-Nitrocinnamoyl)salvinorin B (5h): According to general procedure B, the title

compound 5h (16 mg, 71%) was afforded as a white solid from 3 and 2-nitrocinnamic acid.

mp 195–197 °C; 1H NMR (400 MHz, CDCl3): δ 8.21 (d, J = 16.0 Hz, 1H), 8.06 (d, J = 8.0

Hz, 1H), 7.68–7.66 (m, 2H), 7.59–7.56 (m, 1H), 7.42 (s, 1H), 7.39 (s, 1H), 6.46 (d, J = 16.0

Hz, 1H), 6.39 (s, 1H), 5.53 (dd, J = 5.2, 11.4 Hz, 1H), 5.31 (dd, J = 7.6, 12.6 Hz, 1H), 3.74

(s, 3H), 2.82 (dd, J = 8.6, 8.6 Hz, 1H), 2.52 (dd, J = 5.2, 13.4 Hz, 1H), 2.42–2.36 (m, 2H),
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2.26 (s,1H), 2.16–2.09 (m, 2H), 1.82 (ddd, J = 3.0, 3.0, 10.4 Hz, 1H), 1.70–1.56 (m, 3H),

1.46 (s, 3H), 1.15 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 201.82, 171.47, 171.07, 164.52,

148.36, 143.73, 141.55, 139.48, 133.56, 130.61, 130.19, 129.17, 125.17, 121.83, 108.44,

75.45, 72.07, 64.07, 53.57, 52.00, 51.38, 43.31, 42.19, 38.18, 35.45, 30.87, 18.18, 16.47,

15.23. HRESIMS (m/z): [M+H]+ calculated for C30H32NO10, 566.1951; found, 566.1989.

HPLC tR = 21.901 min; purity = 96.93%.

2-O-(4″-Nitrocinnamoyl)salvinorin B (5i): According to the general procedure B, the title

compound 5i (13 mg, 59%) was yielded as a white solid from 3 and 4-nitrocinnamic acid.

mp 217–219 °C; 1H NMR (400 MHz, CDCl3): δ 8.27 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 16.0

Hz, 1H), 7.70 (d, J = 8.0 Hz, 2H), 7.43 (s, 1H), 7.41 (s, 1H), 6.65 (d, J = 16.0 Hz, 1H), 6.40

(s, 1H), 5.54 (dd, J = 5.2, 11.4 Hz, 1H), 5.31 (dd, J = 7.6, 12.6 Hz, 1H), 3.75 (s, 3H), 2.82

(dd, J = 8.6, 8.6 Hz, 1H), 2.53 (dd, J = 5.2, 13.4 Hz, 1H), 2.44–2.38 (m, 2H), 2.25 (s, 1H),

2.18–2.09 (m, 2H), 1.83 (ddd, J = 3.0, 3.0, 10.4 Hz, 1H), 1.72–1.56 (m, 3H), 1.47 (s, 3H),

1.16 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 201.81, 171.51, 171.06, 164.83, 148.65,

143.75, 143.19, 140.66, 139.37, 128.66, 125.14, 124.16, 120.78, 108.41, 75.52, 71.99,

64.16, 53.60, 52.05, 51.41, 43.36, 42.15, 38.18, 35.42, 30.78, 18.16, 16.48, 15.16.

HRESIMS (m/z): [M+Na]+ calculated for C30H31NO10Na, 588.1987; found, 588.1951.

HPLC tR = 33.586 min; purity = 98.73%.

2-O-(2″-Trifluoromethylcinnamoyl)salvinorin B (5j): According to general procedure B,

the title compound 5j (14 mg, 62%) was obtained as a white solid from 3 and 2-

trifluoromethylcinnamic acid. mp 208–210 °C; 1H NMR (400 MHz, CDCl3): δ 8.14 (d, J =

16.0 Hz, 1H), 7.75–7.70 (m, 2H), 7.58–7.55 (m, 1H), 7.54–7.52 (m, 1H), 7.42 (s, 1H), 7.40

(s, 1H), 6.51 (d, J = 16.0 Hz, 1H), 6.39 (s, 1H), 5.52 (dd, J = 5.2, 11.4 Hz, 1H), 5.30 (dd, J =

7.6, 12.6 Hz, 1H), 3.74 (s, 3H), 2.81 (dd, J = 8.6, 8.6 Hz, 1H), 2.52 (dd, J = 5.2, 13.4 Hz,

1H), 2.42–2.37 (m, 2H), 2.27 (s, 1H), 2.19 –2.09 (m, 2H), 1.82 (ddd, J = 3.0, 3.0, 10.4 Hz,

1H), 1.70–1.58 (m, 3H), 1.46 (s, 3H), 1.14 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 201.90,

171.58, 171.15, 164.82, 143.62, 141.65, 139.55, 132.97, 132.10, 129.83, 127.97, 126.24,

125.20, 121.01, 108.50, 75.34, 72.08, 64.02, 53.54, 51.89, 51.33, 43.30, 42.15, 38.11, 35.53,

30.80, 18.16, 16.43, 15.14. HRESIMS (m/z): [M+H]+ calculated for C31H32F3O8, 589.1971;

found, 589.1996. HPLC tR = 42.336 min; purity = 98.04%.

2-O-(4″-Trifluoromethylcinnamoyl)salvinorin B (5k): According to general procedure B,

the title compound 5k (12 mg, 60%) was obtained as a white solid from 3 and 4-

trifluoromethylcinnamic acid. mp 148–150 °C; 1H NMR (400 MHz, CDCl3): δ 7.77 (d, J =

16.0 Hz, 1H), 7.68–7.63 (m, 4H), 7.42 (s, 1H), 7.40 (s, 1H), 6.60 (d, J = 16.0 Hz, 1H), 6.39

(s, 1H), 5.54 (dd, J = 5.2, 11.4 Hz, 1H), 5.31 (dd, J = 7.6, 12.6 Hz, 1H), 3.75 (s, 3H), 2.82

(dd, J = 8.6, 8.6 Hz, 1H), 2.53 (dd, J = 5.2, 13.4 Hz, 1H), 2.42–2.36 (m, 2H,), 2.25 (s, 1H),

2.15–2.05 (m, 2H), 1.82 (ddd, J = 3.0, 3.0, 10.4 Hz, 1H), 1.69–1.58 (m, 3H), 1.47 (s, 3H),

1.16 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 201.83, 171.54, 171.09, 165.22, 144.43,

143.70, 139.45, 137.45, 128.35, 125.23, 119.36, 108.40, 75.32, 71.99, 64.15, 53.52, 52.02,

51.37, 43.42, 42.16, 38.21, 35.52, 30.89, 18.22, 16.46, 15.22. HRESIMS (m/z): [M+Na]+

calculated for C31H31F3O8Na, 611.1893; found, 611.1867. HPLC tR = 52.609 min; purity =

97.79%.
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2-O-[2″,5″-bis(Trifluoromethyl)cinnamoyl]salvinorin B (5l): According to general

procedure B, the title compound 5l (17 mg, 66%) was afforded as a white solid from 3 and

2,5-di(trifluoromethyl)cinnamic acid. mp 185–187 °C; 1H NMR (400 MHz, CDCl3): δ 8.11

(d, J = 16.0 Hz, 1H), 7.98 (s, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.42 (s,

1H), 7.40 (s, 1H), 6.59 (d, J = 16.0 Hz, 1H), 6.39 (s, 1H), 5.52 (dd, J = 5.2, 11.4 Hz, 1H),

5.30 (dd, J = 7.6, 12.6 Hz, 1H), 3.74 (s, 3H), 2.82 (dd, J = 8.6, 8.6 Hz, 1H), 2.52 (dd, J =

5.2, 13.4 Hz, 1H), 2.42–2.37 (m, 2H), 2.27 (s, 1H), 2.21–2.13 (m, 2H), 1.83 (ddd, J = 3.0,

3.0, 10.4 Hz, 1H), 1.71–1.58 (m, 3H), 1.46 (s, 3H), 1.15 (s, 3H). 13C NMR (100 MHz,

CDCl3): δ 201.62, 171.46, 171.48, 164.34, 143.71, 140.00, 134.24, 130.83, 128.79, 127.12,

125.20, 123.01, 122.29, 108.43, 75.55, 72.01, 64.10, 53.46, 51.99, 51.34, 43.23, 42.15,

38.15, 35.49, 30.79, 18.15, 16.40, 15.13. HRESIMS (m/z): [M+H]+ calculated for

C32H31F6O8, 657.1818; found, 657.1803. HPLC tR = 71.301 min; purity = 98.95%.

2-O-[3′-(3″-Pyridyl)acryloyl]salvinorin B (5m): According to general procedure B, the

compound 5m (13 mg, 63%) was obtained as a white solid from 3 and trans 3-(3-

pyridyl)acrylic acid. mp 189–191 °C; 1H NMR (400 MHz, CDCl3): δ 8.77 (s, 1H), 8.62 (d, J

= 8.0 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 16.0 Hz, 1H), 7.41–7.37 (m, 2H), 6.60

(d, J = 16.0 Hz, 1H), 6.38 (s, 1H), 5.52 (dd, J = 5.2, 11.4 Hz, 1H), 5.31 (dd, J = 7.6, 12.6 Hz,

1H), 3.74 (s, 3H), 2.82 (dd, J = 8.6, 8.6 Hz, 1H), 2.53 (dd, J = 5.2, 13.4 Hz, 1H), 2.42–2.37

(m, 2H), 2.26 (s, 1H), 2.18–2.11 (m, 2H), 1.82 (ddd, J = 3.0, 3.0, 10.4 Hz, 1H), 1.68–1.57

(m, 3H), 1.46 (s, 3H), 1.15 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 201.93, 171.49, 171.10,

165.11, 150.88, 149.52, 143.61, 142.35, 139.50, 134.67, 129.91, 125.19, 123.86, 119.13,

108.32, 75.37, 72.01, 63.84, 53.41, 51.77, 51.21, 43.35, 41.90, 37.96, 35.49, 30.65, 18.01,

16.29, 15.20. HRESIMS (m/z): [M+H]+ calculated for C29H32NO8, 522.2083; found,

522.2069. HPLC tR = 10.043 min; purity = 97.11 %.

2-O-[3′-(3″-Thiophenyl)acryloyl]salvinorin B (5n): According to general procedure B, the

compound 5n (15 mg, 67%) was yielded as a white solid from 3 and 3-thiopheneacrylic

acid. mp 184–186 °C; 1H NMR (400 MHz, CDCl3): δ 7.75 (d, J = 16.4 Hz, 1H), 7.53 (s,

1H), 7.42 (s, 1H), 7.40 (s, 1H), 7.35–7.32 (m, 2H), 6.39 (s, 1H), 6.35 (d, J = 16.4 Hz, 1H),

5.54 (dd, J = 5.2, 11.4 Hz, 1H), 5.29 (dd, J = 7.6, 12.6 Hz, 1H), 3.74 (s, 3H), 2.80 (dd, J =

8.6, 8.6 Hz, 1H), 2.54 (dd, J = 5.2, 13.4 Hz, 1H), 2.42–2.38 (m, 2H), 2.23 (s, 1H), 2.19–2.08

(m, 2H), 1.82 (ddd, J = 3.0, 3.0, 10.4 Hz, 1H), 1.68–1.57 (m, 3H), 1.47 (s, 3H), 1.15 (s,

3H). 13C NMR (100 MHz, CDCl3): δ 202.21, 171.51, 171.14, 165.78, 143.69, 139.78,

139.58, 137.03, 128.73, 127.11, 124.89, 116.55, 108.56, 75.03, 71.82, 64.04, 53.63, 51.97,

51.45, 43.40, 42.15, 35.54, 30.84, 18.25, 16.44, 15.06. HRESIMS (m/z): [M+H]+ calculated

for C28H31O8S, 527.1661; found, 527.1637. HPLC tR = 23.444 min; purity = 97.02 %.

4.3. Pharmacology

4.3.1 Affinity Determinations: HEK293T-KOR Membrane Preparation and
Radioligand Binding Assay

HEK293T membrane preparation: Cells stably expressing κ-opioid receptors (HEK293T-

KOR) were plated in 15-cm dishes (in DMEM containing 10% FBS) and grown to 90%

confluence [10]. Cells were then washed with PBS at pH 7.4, and harvested by scraping into

PBS, pH 7.4. Harvested cells were centrifuged at 1,000 × g for 10 min and subsequently
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hypotonically lysed by resuspension into ice-cold binding buffer (50mM Tris-HCl, 10mM

MgCl2 0.1mM EDTA, pH 7.4). Membranes were isolated by centrifugation at 21,000 × g

for 20 min. The supernatant was removed and the membrane pellets were stored at −80 °C

until used for radioligand binding assays.

4.3.2. Radioligand binding assay—Membranes prepared as above were resuspended in

binding buffer to 1 μg protein/μL (measured by Bradford assay using BSA as standard), and

50 μL was added to each well of a polypropylene 96-well plate containing 200 μL binding

buffer with 0.5 nM [3H]U-69593, and reference or test ligands at various concentrations

ranging from 10 pM to 10 μM (final concentrations). After 1.5 h incubation in the dark at

room temperature, the reactions were harvested onto 0.3% PEI-soaked Filtermax GF/A

filters (Wallac) and washed three times with ice-cold 50 mM Tris, pH 7.4, using a Perkin-

Elmer Filtermate 96-well harvester. The filters were subsequently dried and placed on a hot

plate (100 °C), and Melitilex-A (Wallac) scintillant was applied. The filters were then

removed from the hot plate and allowed to cool. The filters were counted on a Wallac

TriLux MicroBeta counter (3 min/well). Residual [3H] U-69593 binding to filtered

membranes was plotted as a function of log [ligand] and the data were regressed using the

one-site competition model built into Prism 4.0 (GraphPad software).

4.3.3. cAMP Inhibition: KOR-Mediated cAMP Assay—HEK293T cells were co-

transfected with plasmids encoding the cAMP biosensor GloSensor-22F (Promega) and

hKOR receptor. After 18 h incubation at 37 °C the cells were seeded (20,000 cells/20 μL/

well) into white, clear-bottom, 384 well tissue culture plates in HBSS, 10% FBS, 20 mM

HEPES, pH 7.4. After a 1- to 2-h recovery, cells were treated with 10 μL of 3× test or

reference drug prepared in HBSS, 10% FBS, 20 mM HEPES, pH 7.4. After 30 min, cAMP

production was stimulated and detected by treatment with 10 μL of 1,200 nM (4×)

isoproterenol in 8% (4×) GloSensor reagent. Luminescence per well per second was read on

a Wallac TriLux MicroBeta plate counter. Data were normalized to the isoproterenol

response (0%) and the maximal Salvinorin A-induced inhibition thereof (100%) and

regressed using the sigmoidal dose-response function built into GraphPad Prism 4.0.

4.4. Molecular Modeling

Molecular modeling investigations were conducted using the SYBYL-X molecular

modeling package (version 2.0, 2012, Tripos Associates, St. Louis, MO). GOLDSuite 5.1

(Cambridge Crystallographic Data Centre, Cambridge, UK) was employed to perform

automated docking tasks. Default parameters were used unless otherwise noted. The

molecular modeling methods employed here are analogous to those previously published

(see Wu, et al.,[9] Vardy, et al.[28] and references within).

The structure of the hKOR was prepared for docking by extracting the ‘B’ chain (protein

only) from the PDB file (PDB ID = 4DJH) and adding hydrogen atoms, and extracting the

JDTic ligand. Five water molecules (1307, 1311, 1313, 1314, 1316) located in the ‘B’ chain

binding site were also extracted and saved individually for use in the docking exercises. The

structure of the mMOR was prepared for docking in an analogous fashion by extracting the

‘A’ chain from PDB ID = 4DJH. As there is no difference in the amino acid composition of
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the hMOR and mMOR in the orthosteric binding site, the compounds were docked into the

4DJH structure. The structures of the compounds to be docked were sketched in SYBYL

and energy-minimized using the Tripos Force Field (Gasteiger–Hückel charges, distance-

dependent dielectric constant = 4.0; non-bonded interaction cutoff = 8 Å; termination

criterion = energy gradient < 0.05 kcal/(mol×Å) or 100,000 iterations).

GOLD 5.1 flexible docking was performed without constraints for all ligands. GoldScore

was used as the scoring/fitness function. For each receptor, a binding site definition

consisting of a 15-Å radius sphere around the D(3.32) Cβ atom was employed. Water

molecules were toggled on or off as required, with 10 solutions generated for each run. To

more fully explore potential binding modes for the docked compounds, the Diverse

Solutions option in GOLD was enabled with the cluster size set to 1 and 1.5 Å RMSD. The

final receptor–ligand complex for each ligand was chosen interactively by selecting the

highest-scoring pose that was consistent with experimentally-derived information about the

binding mode of the ligand. The chosen solution(s) were then merged back into the receptor

structure, along with any necessary water molecules. Finally, the complexes were energy-

minimized in SYBYL using the TFF with the previously-stated parameters. The

stereochemical quality of the final models was assessed using PROCHECK.

All computations were performed on quad-core Intel Xeon-based SGI Virtu VS (CentOS

6.1), AMD Opteron-based Hewlett-Packard xw9400 (CentOS 6.1) and 8-core Intel Xeon-

based Mac Pro (OS-X 10.6 Snow Leopard) workstations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

➢ New potential Michael acceptor analogues of salvinorin A were synthesized.

➢ Compounds were evaluated for binding affinity at κ-, δ-, and μ-opioid

receptors.

➢ Molecular modeling studies describe putative binding modes for the

compounds.

➢ Most compounds have high binding affinity at κ; 5a has dual affinity for κ

and μ.

➢ 5a could be developed as a potent CNS or peripheral drug in the near future.
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Figure 1.
The structures of salvinorin A (1), 22-thiocyanatosalvinorin A (RB-64; 2) and salvinorin B

(3).
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Figure 2.
a) The 1H NMR spectrum of 4a in CDCl3. b) The 1H NMR spectrum of 4a in DMSO-d6. c)

The 1H NMR spectrum of compound 4a in DMSO-d6 after the addition of cysteamine (note

disappearance of the olefin proton resonances). d) The 1H NMR spectrum of the reaction

mixture (acrylate derivative + cysteamine + DMSO-d6) after dilution with CDCl3 (sample

locked in DMSO-d6). e) 1H NMR spectrum of the reaction mixture after dilution with

CDCl3 (sample locked in CDCl3).
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Figure 3.
Putative binding mode for compounds a) 1, b) 4d, c) 5a and d) 5m.
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Scheme 1.
Reagents and Conditions: (a) acryloyl chloride or methacryloyl chloride, Et3N, dry DCM, 0

°C → rt, 3 h. (b) 3,3-dimethylacryloyl chloride or crotonyl chloride or 2,3-dimethylacryloyl

chloride, Et3N, dry DCM, 0 °C → rt, 3 h.
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Scheme 2.
Reagents and Conditions: (a) appropriate cinnamic acid or heterocyclic acrylic acid, DCC,

DMAP, dry DCM, rt, 2–5 h.

Polepally et al. Page 24

Eur J Med Chem. Author manuscript; available in PMC 2015 October 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Polepally et al. Page 25

T
ab

le
 1

B
in

di
ng

 a
ff

in
iti

es
 o

f 
po

te
nt

ia
l M

ic
ha

el
 a

cc
ep

to
r-

ty
pe

 s
al

vi
no

ri
n 

A
 d

er
iv

at
iv

es
 4

a–
4h

 a
nd

 5
a–

5n
 a

t M
O

R
, D

O
R

 a
nd

 K
O

R
 a

nd
 a

de
ny

la
te

 c
yc

la
se

 in
hi

bi
tio

n

in
 li

ve
 H

E
K

29
3 

ce
lls

 u
si

ng
 a

 c
A

M
P 

bi
os

en
so

r.

A
ff

in
it

yc
In

hi
bi

ti
on

g

co
m

po
un

d

K
i ±

 S
D

 [
nM

]
Se

le
ct

iv
it

y
E

C
50

±S
D

 [
nM

]

M
O

R
d

D
O

R
e

K
O

R
f

M
O

R
/K

O
R

D
O

R
/K

O
R

K
O

R

D
A

M
G

O
2.

3±
1.

1
N

D
a

N
D

a
—

—
N

D
a

na
ltr

in
do

le
N

D
a

0.
9±

0.
3

N
D

a
—

—
N

D
a

1
N

D
a

N
D

a
2.

9±
1.

2
—

—
0.

36
±

0.
04

4a
97

9±
35

>
10

00
0

18
.1

±
5.

0
54

>
55

2
13

7±
26

4b
>

10
00

0
78

23
±

10
5

34
b ±

10
>

29
3

22
1

N
D

a

4c
28

4±
13

26
25

±
10

0
38

5±
37

0.
73

6.
8

69
8±

13
8

4d
36

2±
35

>
10

00
0

6±
2

60
>

16
66

25
±

5

4e
54

0±
43

>
10

00
0

25
.3

±
6.

0
21

>
39

5
11

±
2

4f
14

41
±

10
4

32
60

±
52

10
±

4
14

4
32

6
23

±
4

4g
>

10
00

0
>

10
00

0
15

3±
18

>
65

>
65

47
7±

81

4h
43

9±
28

30
32

±
13

5
28

.8
±

8.
0

15
10

5
37

±
6

5a
52

±
9

70
0.

5±
10

1
9.

6±
2.

0
5.

4
73

7±
1

5b
>

10
00

0
>

10
00

0
64

.9
±

5.
0

>
15

4
>

15
4

10
±

1

5c
>

10
00

0
>

10
00

0
13

4.
8±

17
.0

>
74

>
74

21
±

2

5d
>

10
00

0
>

10
00

0
58

1±
13

>
17

>
17

38
±

6

5e
>

10
00

0
>

10
00

0
16

1.
5±

12
.0

>
62

>
62

27
±

3

5f
>

10
00

0
>

10
00

0
>

10
00

0
1

1
17

99
±

35
2

5g
28

20
±

11
3

>
10

00
0

32
3±

21
8.

7
>

31
50

±
5

5h
>

10
00

0
>

10
00

0
14

8.
3±

7.
0

>
67

>
67

33
±

4

5i
>

10
00

0
>

10
00

0
28

0.
5±

24
.0

>
35

>
35

32
±

4

5j
>

10
00

0
>

10
00

0
12

9.
5±

9.
0

>
77

>
77

20
±

3

5k
>

10
00

0
>

10
00

0
>

10
00

0
1

1
64

2±
12

0

5l
>

10
00

0
58

71
±

11
3

>
10

00
0

1
<

0.
58

12
10

±
22

3

Eur J Med Chem. Author manuscript; available in PMC 2015 October 06.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Polepally et al. Page 26

A
ff

in
it

yc
In

hi
bi

ti
on

g

co
m

po
un

d

K
i ±

 S
D

 [
nM

]
Se

le
ct

iv
it

y
E

C
50

±S
D

 [
nM

]

M
O

R
d

D
O

R
e

K
O

R
f

M
O

R
/K

O
R

D
O

R
/K

O
R

K
O

R

5m
33

4±
18

48
88

±
10

0
>

10
00

0
<

0.
03

<
0.

48
17

62
±

34
4

5n
18

±
5

22
8.

2±
9.

0
30

4±
11

0.
06

0.
75

58
2±

11
1

a N
ot

 d
et

er
m

in
ed

,

b R
ef

. [
21

],

c D
at

a 
ar

e 
m

ea
n 

of
 th

re
e 

ex
pe

ri
m

en
ts

 p
er

fo
rm

ed
 in

 d
up

lic
at

e,

d T
he

 b
in

di
ng

 a
ff

in
ity

 c
on

st
an

t (
K

i)
 d

et
er

m
in

ed
 a

ga
in

st
 [

3 H
]D

A
M

G
O

 li
ga

nd
,

e K
i d

et
er

m
in

ed
 a

ga
in

st
 [

3 H
]D

A
D

L
E

 li
ga

nd
.

f K
i d

et
er

m
in

ed
 a

ga
in

st
 [

3 H
]U

69
,5

93
 li

ga
nd

,

g D
at

a 
ar

e 
m

ea
n 

of
 th

re
e 

ex
pe

ri
m

en
ts

.

Eur J Med Chem. Author manuscript; available in PMC 2015 October 06.


